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Sciences, University of Alaska Fairbanks, Fairbanks, AK, USA, 6Mount Holyoke College, South Hadley, MA, USA, 7Department
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Abstract In this study we present dissolved and particulate 230Th and 232Th results, as well as particulate
234Th data, obtained as part of the GEOTRACES central Arctic Ocean sections GN04 (2015) and IPY11 (2007).

Samples were analyzed following GEOTRACES methods and compared to previous results from 1991. We

observe significant decreases in 230Th concentrations in the deep waters of the Nansen Basin. We ascribe this

nonsteady state removal process to a variable release and scavenging of trace metals near an ultraslow

spreading ridge. This finding demonstrates that hydrothermal scavenging in the deep-sea may vary on

annual time scales and highlights the importance of repeated GEOTRACES sections.

Plain Language Summary This study presents new results of thorium isotopes from the central

Arctic Ocean. Thorium-230 is produced continuously in seawater by radioactive decay of 234U and

subsequently removed by particle scavenging. We show that observed changes in 230Th concentrations

compared to earlier times are related to submarine volcanic eruptions. We use 230Th data from three different

expeditions conducted in 1991, 2007, and 2015. The Nansen Basin is part of the Eurasian Basin of the Arctic

Ocean. It is divided from the Amundsen Basin by the Gakkel Ridge. The Gakkel Ridge is a region where the

Eurasian and the North American plates spread apart, triggering volcanism. Submarine volcanos and

hydrothermal vents release trace elements such as iron. Iron is known to be oxidized to particles that react

with 230Th. Thus, when iron particles sink they remove 230Th from the water column. In the Nansen Basin

this process took place between 2007 and 2015, triggered by earthquake-induced volcanic eruptions in 2001.

In this study, we present a conceptual hydrothermal scavenging process and plume dispersal by deep

water circulation.

1. Introduction
230Th (t1/2 = 75,690 years) is produced in the ocean by the radioactive decay of dissolved 234U and removed

from the water column by scavenging onto sinking particles (Bacon & Anderson, 1982). Its water column

distribution is the result of scavenging, circulation, and in-growth (Henderson et al., 1999; Scholten et al.,

1995). 232Th (t1/2 = 1.4 × 1010 years) in seawater is supplied by lithogenic materials (Santschi et al., 2006).

Thorium isotopes are widely used tracers for particle fluxes and water mass advection (Coppola et al.,

2006; Roy-Barman et al., 2002).

A recent study shows the importance of hydrothermal activity in Th removal in the South East Pacific (Pavia

et al., 2017). Hydrothermal plumes are sources of many trace elements, for example, Fe andMn (Klinkhammer

et al., 1977; Resing et al., 2015; Saito et al., 2013) and sinks for others, including Th, due to scavenging onto

particles or mineral coprecipitation (German et al., 1991, 2002). Hydrothermal particulate Fe scavenges
230Th (Hayes et al., 2015). Hydrothermal plumes can travel over large distances (Fitzsimmons et al., 2014)

and can cause 230Th deficits even several thousand kilometers off axis (Pavia et al., 2017).

The ultraslow spreading Gakkel Ridge (Schlindwein, 2012) separates the Nansen and the Amundsen basins.

Hydrothermal vents release trace metals (Edmonds et al., 2003) constantly (Baker et al., 2004). Additionally,

sporadic explosive eruptions occur (Sohn et al., 2008); the biggest known such event was in 1999 at the

85°E volcanic complex (Schlindwein, 2012) and continued as earthquake swarms until 2001 (Schlindwein &
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Riedel, 2010). Eruptive phases are rare but can last over decades (Schmid et al., 2017). Deep water circulation

disperses hydrothermal plumes. Deep waters in the Nansen Basin flow cyclonically while the general circula-

tion direction in the Amundsen Basin is westward (Figure 3) (Rudels, 2009). The only deep water pathway to

the Atlantic Ocean is through Fram Strait, which has a less than 2,500 m sill depth.

Deep water in the central Nansen Basin has been reported to have lower particulate and higher dissolved
230Th concentrations than over the slope region (Kirk Cochran et al., 1995). Residence times of 230Th were

reported to be 18–19 years in the central Nansen Basin and 10–12 years on the Barents Sea slope

(Scholten et al., 1995). Almost 90% of the in situ produced 230Th is estimated to be removed within the

Arctic by scavenging (Moran et al., 2005).

We present dissolved, particulate, and total 230Th and 232Th results, as well as particulate 234Th data, from

expedition ARKXXIX/3 (GEOTRACES section GN04) conducted in 2015 and dissolved and total 230Th data from

expedition ARKXXII/2 (GIPY11) in 2007 and compare our results with those from 1991 (Scholten et al., 1995).

We further investigate whether hydrothermal activity at the Gakkel Ridge leads to similar observations as in

the Pacific and provide a new interpretation of how changes in this activity may affect trace element distri-

butions in the Arctic Ocean. The first 230Th time series allows us to assess the variability of hydrothermal

scavenging over time.

2. Materials and Methods

2.1. Sampling and Analysis of Th in Samples Collected in 2007

Dissolved samples were filtered directly from the 24 L CTD-Niskin® bottles into cubitainers (LDPE) using

0.45-μm pore size Acropaks®. Samples were collected in volumes of 1, 2, and 10 L and acidified with concen-

trated ultraclean HNO3. Seawater for the analysis of total 230Th was sampled without filtration. The analyses

were done at the University of Minnesota, Minneapolis, following methods described by Shen et al. (2003).

The concentrations were measured using inductively coupled plasma-mass spectrometry (ICP-MS, Thermo

Finnigan, Neptune) equipped with an secondary electron multiplier and a retarding potential quadrupole

energy filter.

2.2. Sampling and Analysis of Th in Samples Collected in 2015

Analysis of 230Th and 232Th were performed in clean laboratories of the Alfred Wegener Institute, following

GEOTRACES methods (Anderson et al., 2012). Water samples were filtered directly from the 24 L CTD-

Niskin® bottles into cubitainers (LDPE) using 0.45-μm pore size Acropaks®. Seawater was sampled in volumes

of 10 L (>2,000 m) and 20 L (<2,000 m), according to the expected concentrations (Nozaki et al., 1981).

Seawater samples were spiked with 229Th and 236U to prepare the isotope dilution analyses by ICP-MS. Spikes

were calibrated against the reference standard material UREM11, a material in state of radioactive equili-

brium (Hansen et al., 1983).

Particles were sampled using in situ pumps (McLane and Challenger Oceanic). Two hundred eight liters to

772 L of seawater were pumped through a 142 mm ø, 0.45 μm pore size Supor® (polyether sulfone) filter

(Anderson et al., 2012). Filters were cut aboard for subsamples under a laminar flow hood on a cutting board

using tweezers and scalpels. Approximately 5/6 of the filters were used for Thorium and 231Pa (not shown in

this study) analysis. A subsample (23 mm ø) was dried, placed onto plastic mounts, covered with Mylar and

aluminum foil, and directly measured by beta decay counting of 234Th (t1/2 = 24.1 days) for at least 12 hr.

Background measurements were performed 6 months later.

Filters were leached following the procedure described by Gdaniec et al. (2017). Filters were cut into pieces

using ceramic scissors and placed into Teflon® beakers and then leached in 25–30 ml of 3 M HCl in ultrasonic

baths). Samples were spiked with 233Pa, 229Th, and 236U before leaching. After leaching, the sample solution

was evaporated to less than 1 ml. Organic substances were dissolved by adding 8 M HNO3 and H2O2 to the

samples. Any remaining particles were separated by centrifugation and dissolved in concentrated HF. The

two solutions were mixed and passed through anionic exchange columns following the protocol described

in (Anderson et al., 2012). Measurements were performed using an ICP-MS (Thermo Scientific™ ELEMENT-2™)

equipped with an Apex-Q (Elemental Scientific®).

10.1029/2018GL079829Geophysical Research Letters

VALK ET AL. 10,540



3. Results
230Th results are unsupported excess 230Th (230Thxs); for simplification, here 230Th refers to 230Thxs.

Corrections were done following Hayes et al. (2015). The full radionuclide data set is available in the support-

ing information and at www.pangaea.de (https://doi.org/pangaea.de/10.1594/PANGAEA.893871).

3.1. Dissolved Th Concentrations

Both 2015 Nansen Basin profiles at stations 50 and 58 show a linear increase down to 2,000 m, followed by a

sharp decrease below this depth (Figure 1a). Station 68/69 (2015) from the Gakkel Ridge shows a similar fea-

ture; high concentrations down to 1,500 m followed by a sharp decrease (Figure 1b). In 2015, dissolved 230Th

concentrations from the Amundsen Basin (station 81 and 117) increased linearly (Figure 1c) over the entire

water column. Results from the Nansen Basin at station 260 (2007) show a similar profile compared to

2015, without a decrease below 2,000 m. Concentrations from three stations in the Makarov Basin in 2015

(shown as a scatter plot against dissolved iron (DFe) in Figure 2a) increased with depth andweremuch higher

than in the Eurasian Basin (Figure 2a).

3.2. Particulate and Total Th Concentrations

Particulate 230Th concentrations from 2015 are only available for station 50 (Figure 1d). At this station, up to

50% (3,000 m) of total 230Th was particulate. The profile shows the highest values in the deep water

(>2,000 m), reaching up to 6.5 fg/kg. Particulate 234Th from 2015 (station 50) is shown as the relative amount

of particulate 234Th (Figure 1f), calculated from 238U activities, assuming equilibrium of 234Th with total 238U

in deep water (Owens et al., 2011). Between 2,600 and 3,500 m the particulate fraction is higher than above.

Total 230Th concentrations (dissolved + particulate) decreased noticeably with depth in the Nansen Basin

below 2,000 m in 2015 (Figure 1e). Station 260 (2007) shows a similar profile to 2015, without the decrease

below 2,000 m. Total 232Th at station 50 (2015) is lower and relatively constant below 2,000 m toward the

ocean bottom (Figure 1g).

3.3. Changes in 230Th Distributions Between 1991, 2007, and 2015

We compare data from 1991 (Scholten et al., 1995) with our 2007 and 2015 data (Figure 1a). Dissolved 230Th

concentrations in the Nansen Basin are generally lower in 2015 (stations 50 and 58) compared to 1991 and

2007. Only at 2,000 m depth at station 50 are dissolved 230Th concentrations higher compared to samples

from 1991 and 2007. The decrease in dissolved 230Th concentrations in 2015 compared to 1991 and 2007

is most prominent below 2,000 m (Figure 1a).

Particulate 230Th concentrations at station 50 (2015) were similar to those from station 239 (1991; Scholten

et al., 1995; Figure 1d). Data from 2015 only exceed the 1991 data in the deepest samples (>3,000 m).

Changes in total 230Th in the Nansen Basin reveal almost the same pattern as dissolved 230Th: Above

2,000 m values observed in 2007 and 2015 are similar to or lower than those from 1991. Values below

2,000 m from 2007 were in the range of the 1991 values. Values in 2015 were much lower (Figure 1e).

4. Discussion

4.1. Possible Reasons for Temporal Changes

Total 230Th in the Nansen Basin below 2000 m decreased significantly after 2007 (Figure 1e). Advection could

cause this decrease. We rule out advection from the Amundsen Basin as the reason, because dissolved 230Th

concentrations below 2,000 m in the Amundsen Basin are higher than at station 50 in the Nansen Basin.

Moreover, deep waters in the Nansen Basin have lower CFC-11 concentrations than in the Amundsen

Basin (Smethie, 2017). We exclude enhanced biological productivity because no significantly elevated net

community production was found in the central Nansen Basin in 2011 (Ulfsbo et al., 2014). Scavenging

removal induced by surface generated particles would evoke removal over the whole water column. We only

observe depletion below 2,000 m.

Alternative particle sources are the Barents Sea shelf and slope. Sea ice formation in the Barents Sea produces

dense waters (Rudels et al., 2000) that mix with the boundary current, collecting particles from slope sedi-

ments (Moran & Moore, 1991; Rudels et al., 2000). CFC-11 data show no evidence for shelf water cascading

at station 50; in fact, values were even slightly lower compared to respective depths of surrounding
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stations (Smethie Jr., 2017). We also do not observe an enhancement in the fraction shelf/slope waters as

indicated by radium isotopes. At 3,000 m, the 228Ra/226Ra activity ratio at station 50 was 0.017 ± 0.004

(Rutgers van der Loeff et al., 2018) and similar to prior measurements by Rutgers van der Loeff et al. (1995).

At station 50, the relative amount of particulate 234Th and 230Th below 2,000 m was higher than above

(Figures 1d and 1f) indicating relatively high particle load at depth. Scholten et al. (1995) already reported

elevated particulate 230Th, interpreted, together with a slight decrease in dissolved 230Th, as a conse-

quence of periodically occurring nepheloid layers. This change did not affect total 230Th (Scholten et al.,

Figure 1. (a) Nansen Basin dissolved
230

Th concentrations from 1991, 2007 and 2015. (b) Gakkel Ridge dissolved
230

Th data from 2015. (c) Amundsen Basin

dissolved
230

Th data from 2015. (d) Nansen Basin particulate
230

Th data from 1991 and 2015. (e) Total
230

Th data from 1991, 2007, and 2015. (f) Nansen Basin

particulate
234

Th as a percentage of total
234

Th. (g) Total
232

Th data from 2015 (station 50). (h) Map of the location of the profiles shown in Figures 1a–1g; 1991 data

are from Scholten et al. (1995).
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1995). We explain the difference in depth distribution of particulate 230Th and particulate 234Th as a result

of the different time scales controlling these signals: Changes in particle load will be reflected in changes

in particulate 234Th on the time scale of 234Th decay, whereas the distribution of particulate 230Th will

adjust on the much longer time scale of the scavenging coefficient. The difference in depth distribution

between particulate 234Th and particulate 230Th therefore illustrates the temporal variability of particle

loads, for example, due to periodically occurring nepheloid layers. We conclude that a lateral supply of

Figure 2. (a) Plot of dissolved
230

Th against dissolved iron from Rijkenberg et al. (2018) below 2,000 m. Eurasian Basin is blue, and Makarov Basin is orange. Quality of

relationships is given R
2
values. (b) Conceptual model of hydrothermal removal process: Fe is released by the vents (Edmonds et al., 2003) and stabilized as

dissolved or dissolved and microparticles, which allow it to circulate around the Nansen Basin. Later, oxidation forms Fe oxy-hydroxide particles or Fe reacts with

particles being there, which scavenge and remove Th. (left) Dissolved iron from stations 50 (2015, blue) and 260 (2007, green) (Klunder et al., 2012).
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suspended particles at depth does play a role in Th scavenging in the Nansen Basin but we see no evi-

dence for an increase of resuspended particles since 1991, given the similar 228Ra/226Ra activity ratios in

1991 and 2015 and the findings of Scholten et al. (1995) that periodically occurring nepheloid layers do

not reduce total 230Th.

Dissolved 230Th concentrations in the Makarov Basin are much higher than in the Nansen Basin, which

implies a low scavenging regime in the Makarov Basin due to low particle inputs in addition to long water

mass residence time (Scholten et al., 1995). In 2007, Klunder et al. (2012) observed that DFe was lower in

the Makarov Basin than in the Eurasian Basin and explained this by the absence of Fe sources that affect

the Nansen Basin. Low concentrations of DFe coincide with high concentrations of dissolved 230Th in the

Makarov Basin (Figure 2a), while DFe in the deep Nansen Basin is generally higher and 230Th lower. This

shows two different scavenging regimes in the Eurasian Basin and Makarov Basin. The higher inputs of

DFe in the Eurasian Basin enhance Fe oxy-hydroxide production and subsequent scavenging of particle reac-

tive elements. We cannot conclude that the two scavenging regimes are only due to the presence or absence

of hydrothermal vents, but we argue that the difference is controlled by DFe inputs. Therefore any additional

Fe input would change the scavenging situation.

Continuous hydrothermal venting at the Gakkel Ridge (Baker et al., 2004; Edmonds et al., 2003; Michael et al.,

2003) is reflected by a small DFe containing hydrothermal plume at station 68/69 (Gakkel Ridge) in 2015 in

the immediate vicinity of a known vent (Rijkenberg et al., 2018). Hence, we assume that continuous venting

is part of the background steady state situation as observed in 1991. We interpret the decrease at depth in
230Th at Station 68/69 as a consequence of scavenging by this steady venting. This decrease fits to observa-

tions from the East Pacific Rise (Pavia et al., 2017). Since DFe was much higher in 2007 and dispersed over a

larger area than in 2015 we conclude that the 2007 plume must have had another source than permanent

venting and we hypothesize that it was caused by explosive volcanic eruptions at the Gakkel Ridge (Sohn

et al., 2008).

230Th decreased below 2,000 m at station 50, consistent with the plume depth from the eruptions in 2001

(Baker et al., 2004; Stranne et al., 2010). These eruptions release large amounts of material (Sohn et al.,

2008) and can cause “mega plumes” (Cann & Strens, 1989; Clague et al., 2009). Hence, explosive eruptions

may overprint the steady state situation.

4.2. Hypothesis of Transient Scavenging by Eruptional Hydrothermal Fe

Elevated DFe concentrations at discrete depth horizons in the Eurasian Basin in 2007 with highest concentra-

tions at the Gakkel Ridge and in the south western Nansen Basin in 2,000–3,500 mwere described as a hydro-

thermal plume from continuous venting (Klunder et al., 2012; Middag et al., 2011). Based on our 230Th time

series and new DFe from 2015 we interpret the high DFe data from 2007 as a plume released by huge erup-

tions. That means that after dispersal of the eruptive plume the scavenging regime in the Nansen Basin was

no longer in a steady state.

After 2007 until 2015, when only much smaller Fe peaks were observed and 230Th decreased below 2,000 m,

a scavenging event must have taken place.

We hypothesize that formation of Fe oxy-hydroxides by, for example, precipitation or coprecipitation caused

by the Fe input increased particle concentration and changed their composition. Therefore, we think that DFe

removal triggered 230Th scavenging. Between 2007 and 2015 scavenging of 230Th occurred and resulted in

DFe and 230Th removal by 2015. Figure 2b shows a conceptual model about this process.

The negative imprint of removed 230Th persists for many years, as production from 234U and supply from

above 2,000 m is only 2.34 fg/kg in 4 years (half the time between 2007 and 2015), following the approach

of Pavia et al. (2017) and using the difference in 230Th flux into and out of the plume (2,000–3,990 m) and

a settling rate from Rutgers van der Loeff et al. (2018).

By 2015 the additional eruptive Fe has been removed together with parts of dissolved 230Th. Particulate 230Th

in 2015 is similar to 1991, while total and dissolved 230Th are significantly lower now. The extreme DFe peaks

vanished but DFe is still higher in the Nansen Basin than in Makarov Basin. Our Nansen Basin 230Th profile

from 2007 suggests that any additional scavenging caused by removal of eruptive Fe had not yet caused
230Th removal by 2007.
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While measurements of particulate iron (PFe) and other potential scavengers in the plume are not avail-

able, we can estimate their contribution to adsorption of 230Th from analogies to the South East Pacific

(GEOTRACES Section GP16), based on the observed distribution of DFe in the Arctic in 2007 and 2015.

To this end we establish a PFe/DFe ratio within and outside the plume in the Pacific and apply this to

the Arctic. With this estimate of PFe in the Arctic, we use published estimates of distribution coefficients

for Th in the presence of natural Fe (OH)3 to determine the possible contribution of PFe to 230Th scaven-

ging. DFe data from the Arctic are quite comparable to GP 16 in the distant plume: For 2007, Klunder

et al. (2012) report ~1.25 nmol/L, similar to the Pacific plume (Fitzsimmons et al., 2014). For 2015,

0.5 nmol/L is reported, similar to background concentration at the depth of the plume at GP16.

PFe/DFe ratios at GP16 range from unity to three, both at the distant plume sites and for the background

below 2,500 m (Fitzsimmons et al., 2014; Lam et al., 2018). This results in an estimated PFe concentration

in the deep Nansen Basin of 1.25–3.75 nM (2007) and 0.5–1.5 nM (2015) corresponding to Fe (OH)3
concentrations of 134–402 ng/L PFe for 1.25 nM DFe (2007) or 53.5–160.5 ng/L PFe for 0.5 nM DFe

(2015). We now apply the Kd value of 230Th for Fe (OH)3 from Hayes et al. (2015) of 32.8*107 and learn

that 4.4–13.2% of 230Th in 2007 (1.75–5.25% in 2015) would be expected to be found on particles in

the Arctic, solely due to PFe.

In 2007, about 25% of 230Th is particulate (based on the difference of total and dissolved 230Th from alternat-

ing depths), which means that the above estimate (up to 13.2% of 230Th on the Fe (OH)3 phase) explains up to

half of particulate 230Th. In 2015, the high fraction of particulate Th isotopes, up to 50% particulate 230Th at

the plume depth, indicates the presence of a suspended particulate phase with either high mass concentra-

tions or with a very high Kd. The high percentage particulate 230Th cannot be explained by Fe (OH)3 scaven-

ging using the analogy to GP16. In this year, hydrothermal Fe (OH)3 can only explain a small fraction of 230Th

removal and the precise mechanisms that have led to the situation observed in 2015 remain unclear and

require further investigation of other potential scavengers, for example, MnO2.

4.3. Plume Dispersal

We have argued above that the hydrothermal scavenging in the Nansen Basin is not in steady state but tem-

porally enhanced by a plume released by eruptive volcanism. We discuss here how we think that this plume

has dispersed and circulated in the deep basins. Klunder et al. (2012) reported a vent at 37°E or a plume from

probably 85°E as a possible plume source. Klunder et al. (2012) and Middag et al. (2011) explained the hori-

zontal dispersion of the plume as a combination of eddy diffusion and scavenging removal following the 1-

dimensional first-order scavenging model of Weiss (1977). Their best fit was achieved using 5–15 years

scavenging residence time for Fe (Klunder et al., 2012) and 0.4–2 years for Mn (Middag et al., 2011) on the

basis of the horizontal eddy diffusion coefficient Kh = 5 × 106 cm2/s (Weiss, 1977). They explained the much

longer residence time of Fe compared to Mn by Fe complexation with organic ligands (Thuróczy et al., 2011).

Their models show that the basin wide dispersal could be due to horizontal diffusion from a single source

over many years, although deep water circulation and multiple plume sources (Baker et al., 2004; Edmonds

et al., 2003) complicate their calculations. They assumed a steady state distribution and based their calcula-

tions on the model of Weiss (1977), developed to describe the Mn field around a constant vent. Our new
230Th data are in conflict with a scavenging process at steady state.

4.4. Plume Dispersal by Deep Water Circulation

Until 2015, the eruptive plume affected water masses must have spread over larger areas of the Nansen Basin

by eddy diffusion and (re) circulation within the basin. We interpret our 2015 data from station 50 and 58 as

fully affected by the plume. Figure 2b shows a theoretical concept of how plume intensity and subsequent

scavenging can differ between Amundsen and Nansen basins due to circulation. Fe from eruptions in 2001

was dispersed, by the deep water circulation (Figure 3). There might be recirculation (white dashed arrows in

Figure 3) within the Nansen Basin that retains hydrothermally influenced water masses in this basin (yellow

dashed oval in Figure 3). Plume signals in the Amundsen Basin in 2007 could be due to eddy diffusion, smaller

plume branches, or both, and could have given rise to some hydrothermal scavenging. But the major part of

the plume in the Amundsen Basin is expected to be transported out of the basin toward Fram Strait (Figure 3).

Therefore, 230Th profiles from the Amundsen Basin do not represent hydrothermal scavenging as those from

the Nansen Basin (Figure 1b).
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5. Conclusions

We provide evidence in support of hydrothermal activity as a potential trigger mechanism for scavenging of

particle reactive elements in the Nansen Basin. Specifically, 230Th activities below 2,000 m have changed

between 2007 and 2015 as a result of a scavenging event, interpreted as hydrothermally induced. The
230Th time series suggests that Th scavenging in the Nansen Basin is not in steady state following submarine

volcanic eruptions. The mechanism explaining the dispersal of the hydrothermal plume throughout the

Nansen Basin will require further investigation, as well as the precise mechanism of eruptive Fe cycling lead-

ing to the 2015 situation. This proposed role of episodic hydrothermal input provides new insights on the

nature of hydrothermal scavenging in the Arctic and how other trace elements may be removed from the

Arctic. Submarine volcanic eruptions may also influence the distribution of other trace elements in the

Nansen Basin, perhaps more than in other oceans, due to the small size and enclosed nature of the

Eurasian Basins. The concurrence of geochemical and geophysical data may also improve interpretations

of other trace element distributions from the Eurasian Arctic Ocean. Time variable signals, as seen in 230Th

and DFe, complicate the interpretation of tracer data in the Arctic as being at steady state and show the value

of repeated GEOTRACES occupations in understanding variability of scavenging processes in the deep ocean.
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