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Physical dispersion resulting from anelasticity is investigated from the point of view of linear vis- 
coelastic models and causality relations. It is concluded that inasmuch as Q in the earth's mantle is nearly 
independent of frequency, at least in the seismic frequency band, a dispersion relation in the form of C(o•) 
= C(wr)[1 q- (l/•rQm) In (O)/OOr)] must be used for correcting the effect of physical dispersion arising from 
anelasticity. (Here C(o)) is the phase velocity of either body waves, surface waves, or free oscillations, co is 
the angular frequency, O) r is the reference angular frequency, and Qm is the path average Q for body waves 
or Q of a surface wave or a mode of angular frequency co; for surface waves and free oscillations, C(oOr) 
should be understood as the phase velocity at co computed by using the elastic moduli at co = wr.) The 
values of Q outside the seismic frequency band affect ma•ly the absolute value of the phase velocity but 
do not affect significantly the relative dispersion within the seismic frequency band. Even if the micro- 
scopic mechanism of attenuation is nonlinear, this dispersion relation can be used if departure from 
elasticity is relatively small, so that the signal can be approximated by a superposition of propagating 
harmonic waves. Since surface wave and free oscillation Q is 100-500 for fur!damental modes, a 
correction of 0.5-1.5% must be made for joint interpretation of body wave and surface wave data. This 
correction is nearly I order of magnitude larger than the uncertainties associated with these data and are 
therefore very significant. When this correction is made, the discrepancy between the observed surface 
wave phase velocities and free oscillation periods and those predicted by the Jeffreys or Gutenberg model 
becomes much smaller than has p'reviously been considered. 

INTRODUCTION 

Anelasticity of the earth causes physical dispersion of seis- 
mic waves. While the importance of physical dispersion has 
long been recognized in seismic body wave studies, it has been 
either ignored or assumed to be negligible in most surface 
wave and free oscillation studies. The purpose of this paper is 
to clarify several points which are somewhat obscure in the 
literature on this subject. This obscurity appears to be partially 
responsible for the neglect of physical dispersion in surface 
wave and free oscillation studies. We will show that under 

conditions prevailing in the earth's interior, physical dis- 
persion has a very significant effect on surface wave phase and 
group velocities and free oscillation periods. Although this 
effect has been discussed by Jeffreys [1965, 1967], Carpenter 
and Davies [1966], Davies [1967], Randall [1976], and, in more 
detail, Liu et al. [1976], we will look at the problem from a 
different point of view to emphasize further the importance of 
physical dispersion in surface wave and free oscillation studies. 

A number of observations show that the intrinsic quality 
factor Q in the earth's mantle depends very little upon fre- 
quency f at least over the seismic frequency band from 1 Hz to 
1 cycle/h [Knopoff, 1964]. Figure 1, which is constructed from 
Jackson and Anderson [1970], demonstrates this situation. Al- 
though a variation of a factor of 2 or 3 may exist, no obvious 
trend is seen, except that Q, may increase at frequencies higher 
than about 1 Hz. We accept this frequency independence of Q 
over most of the seismic band and use it as the basis of the 

following discussion. It should be stressed, however, that the 
existence and importance of physical dispersion do not depend 
on the exact constancy of Q. As we will show, it is only where 
Q varies as f or f-x that one can argue that physical dispersion 
may be unimportant. In this situation, however, the Q is in 
general very large, and the material is very nearly elastic. As 
we will show, the observed Q of the earth is inconsistent with 
these requirements in both magnitude and frequency depen- 
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dence. The earth therefore cannot be treated as an in- 

finitesimal perturbation from a purely elastic body. Lack of 
appreciation of this point has led some authors to propose a 
nonlinear mechanism of attenuation. This is unnecessary. Lab- 
oratory data on metals, oxides, and salts over broad ranges of 
temperature, frequency, and attenuation are adequately ex- 
plained with linear theories. 

There appear to be three major reasons for the neglect of 
physical dispersion: 

1. For a simple damped linear harmonic oscillator the 
inclusion of an infinitesimal attenuation • changes the natural 
frequency of the system from co to co(1 - C•), where C is a 
constant. Since • •, Q-X, the effect can be ignored for Q > 100, 
a typical value in the earth's mantle. 

2. Knopoff and MacDonald [1958] showed that the in- 
clusion of infinitesimal attenuation in a linear system results in 
Q which is proportional to odd powers of frequency; therefore 
a constant Q model (i.e., Q • coo) is inconsistent with a linear 
system. This led Knopoff and MacDonald to introduce a 
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Fig. 1. Observed Q for P waves (Q,) and S waves (Qa) for the 
earth's mantle. The average values for the whole mantle are shown. 
For reference to individual data points, see Jackson and Anderson 
[1970]. The lines for Q-• • f-• and Q-• • fare shown for reference. In 
calculating the average Q for model MM8 [Anderson et al., 1965] a 
high-Q lower mantle is assumed. 
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nonlinear model. No explicit dispersion relation has been ob- 
tained for such a nonlinear system. 

3. Futterman's [1962] dispersion theory, which is widely 
used in body wave seismology, predicts that inclusion of an- 
elasticity increases the propagation velocity of a pulse in the 
medium. This apparent paradox has been challenged by some 
investigators [e.g., Stacey et al., 1975]. Because of this para- 
dox, Futterman's [1962] theory, which is widely used in phase 
equalization of body waves, has not been extensively used in 
surface wave and free oscillation studies where the absolute 

phase velocity or period is the major concern. 
We will show, using a linear model, that while all of the 

above arguments are correct, they do not directly apply to the 
situation in the earth's mantle. Lomnitz [1957] also showed 
from quite general considerations that dispersion must accom- 
pany absorption. 

LINEAR VISCOELASTIC MODEL 

The behavior of anelastic solids can be most conveniently 
described with a linear viscoelastic body. In the present dis- 
cussion we follow the notation and the definition of Gross 

[1953]. 
For a purely elastic solid the stress a and strain a relation is 

given by a = Eoa, where Eo is the elastic modulus. If we 
consider a step function application of strain a(t) = H(t) 
(where H(t) is the Heaviside step function), the stress is given 
by a(t) = EoH(t). 

For a viscoelastic solid the response to a step strain appli- 
cation can be expressed as 

a(t) = EoH(t) + •'(t) 

where xi,(t) is the relaxation function with xi,(t) = 0 (t < 0) and 
• (c•) = 0. The instantaneous response is given by E= =- E0 4- 
xi,(0), which is called the instantaneous elastic modulus (or 
unrelaxed elastic modulus). 

For a viscoelastic solid with one relaxation mechanism such 

as one modeled by a parallel connection of a spring (constant 
k•) and a spring (constant k:) plus a dashpot (viscosity 
connected in series, Eo = k• and 

xi,(t) = k:e -t/r (1) 

where r = •/k,. is the relaxation time constant. 
For a harmonic strain, a .,, e "øt. The stress can be expressed 

by a = E*(w)a, where 

E*(cv) = [Eo + E,(cv)] + iE:(w) 

is the complex elastic modulus. Since ,it(t) is the indicial re- 
sponse, 

E•(w) + iEo.(w) = icy •(t)e -"øt dt (2) 

Consider a plane wave propagating in this medium: 

exp [-o•x/2Q(o•)C(o•)] exp tio•[t - x/C(o•)]} 

where x is the distance, C(w) the phase velocity, and Q(w) the 
quality factor as defined in the usual manner. If we assume 
that the departure from elasticity is small, so that I Eol >> 
I E,<•)l and lEo} >> then it is easy to show that 

C(w) = {[Eo + E•(w)l/p} •/: (3) 

and 

Q- •(w ) = Eo.(w )/Eo (4) 

where p is the density. For the spring-dashpot system discussed 
above, (1), (2), (3), and (4) immediately give 

Ilk,. (wr) 0' C(o•): Co 1+ 2 k• l+ (wr)" (5) 
where Co = (k•/o) •/0', and 

k2 wr 

Q-'(w) = • I + (wr) •' (6) 
which give the familiar attenuation and dispersion relations as 
schematically shown in Figure 2. Q-'(w) becomes maximum at 
w = 1/r (absorption peak), where Q-'(w) = k•./2k• = Qm-'. 
The low- and high-frequency limits of the phase velocity are Co 
and Ca = Co[1 + }(kdk,)] = Co(1 + Qm-'), the difference 
being CoQm-•. Since Q-• = 0 corresponds to the purely elastic 
state, an infinitesimal departure from elasticity corresponds to 
the ranges where wr >> 1 or wr << 1 (hatching in Figure 2). It 
is evident from (5) and (6) that when wr << 1, Q-'(w) 
(k•./k•)wr and C(w) --• Coil + }(k•./k•)(wr)•'], and therefore 
C(w) •. Co[1 + •(k•/k•.)Q-:]. Similarly, if wr >> 1, Q-'(w) 
(ko./k•)(1/wr) and 

C(w)• Ca I - 2k• + k,. (wr 
and therefore 

Fig. 2. The specific attenuation function Q-•(oo) and the phase 
velocity C(oo) as a function of frequency for a linear viscoelastic model 
with a single relaxation mechanism. 

c= 
Tl.•us in these limits the fractional change of the phase velocity 
is proportional to Q-•' (i.e., the Q effect is only second order). 
This is the generalization of point 1 discussed in the in- 
troduction. For Q _> 100, typical values for the earth's mantle, 
the physical dispersion is unimportant in this case. However, 
in this case, Q-' itself has either w or 1/w dependence. As is 
clearly shown in Figure 1, Q-'(w) for the earth's mantle does 
not show such dependence, except possibly for P waves at high 
frequencies. Therefore the argument made in point 1 in the 
introduction is not relevant to the problem of the earth's 
interior, at least over most of the seismic frequency band. 

tn the linear viscoelastic model shown in Figure 2, Q-'(w) is 
nearly constant when w • 1/r. This situation is closer to that 
of the earth's mantle, although Q-'(w) of the earth has a much 
broader peak. This range of w corresponds to the region 
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(cross-hatching in Figure 2) where departure from pure elastic- 
ity can no longer be regarded as 'infinitesimal.' In this range, 
Q-l(o•) • •(ko./kl) -= Qm -1 = const, and the fractional change 
of the phase velocity from that of the purely elastic states is 
t(ko./kl) • }Q,,-1. Thus the effect of Q on the phase velocity 
becomes first order. For Qm • 100 the phase velocity changes 
by as much as 0.5%. Since the actual Q-l(o•) function for the 
earth is considerably different from (6), the above argument is 
valid only qualitatively. However, it is important to note that 
to obtain a nearly frequency-independent Q requires departure 
from elasticity beyond the infinitesimal range, so that infer- 
ences from infinitesimal theories such as points 1 and 2 men- 
tioned in the introduction are not relevant to the problems of 
the earth's mantle. When Q is constant or nearly so, the 
fractional change in the phase velocity is proportional to Q-1 
rather than Q-o. predicted by infinitesimal theories. This is 
implicit in the work of Lomnitz [1957], whose model gives a 
slightly frequency-dependent Q. 

CONSTANT Q MODEL 

Various attempts have been made to explain the nearly 
constant Q from at least 1-s to 1-hour periods (Figure l) for 
the earth's mantle [Knopoff and MacDonald, 1958; Lomnitz, 
1957; Savage, 1965; Mason, 1969; Liu et al., 1976]. Liu et al. 
showed that it is possible to construct a band-limited constant 
Q model by using a linear viscoelastic model. For purposes of 
the present discussion it is most convenient to use such a 
model. 

As was shown earlier, a departure from elasticity can be 
characterized by a relaxation function •(t). This function can 
be expressed as a superposition of the elementary relaxation 
function e -st which corresponds to the simple spring-dashpot 
system (equation (1)). Thus 

{(t) = N(s)e -st ds (7) 

where s = 1/r is the relaxation frequency and N(s) is the 
relaxation spectral density (see also Gross [1953]). Combining 
this with (2), we have 

fo © (.Do' El(w) = s: + w aN(s) & (8) 
and 

• so• N(s) ds Eo.(o•) = so. + o•o. (9) 
One of the simplest ways of constructing a band-limited con- 
stant Q model is to introduce a relaxation spectrum N(s) in the 
form 

lq(s) = A/s sl < s < so. 

(1o) 

/•(s) = 0 elsewhere 

where A is a constant. 

Carrying out integrations (8) and (9) and using (3) and (4), 
we have 

2 1 r.60($2__• $1) ] Q-l(('ø) = ;rQ---• tan- L off + slso. (11) 
and 

I 1 SO.O.(Slo. + wo.) ] (12) C(o•) = C0 1 + 2;rQ,• In Slo.(SO.O. JU (.DO-) 
where Qm -1 is the maximum of Q-i(•) (Q,•-i = Or/2)(A/Eo)). 

These relations are plotted in Figure 3. If we arbitrarily choose 
a very small sl and a very large so., then for & << o• << so. we 
have 

and 

or 

where 

Q-l(o •) • Q,,-1 = const 

C(o•) = Co 1 + ;rQ• • (13) 

(14) 

C==Co l+ •.Q---•ln •-• 
and (1/;rQm) In (s:/sl) << I is assumed. These relations are 
fundamentally identical to those derived by various in- 
vestigators [e.g., Kolsky, 1956; Lomnitz, 1957; Futterman, 
1962; Savage, 1965; Strick, 1967; Liu et al., 1976] on the basis 
of a variety of assumptions, methods, and approximations and 
can be regarded as a universal dispersion relation for any 
linear models in the frequency range where Q is constant. They 
can also be derived from the equations given by Nowick and 
Berry [196 l] for a log normal distribution of relaxation times. 
We choose & and so- in such a way that the frequency range of 
our interest, say I Hz to 1 cycle/h, is completely bracketed by 
sl and so-. It is important to note that while the ratio C=/Co = 
[1 + (1/;rQm) In (s:/sl)] depends upon the ratio of the arbi- 
trary upper and lower bounds of the angular frequency s:/&, 
the ratio of the phase velocities at angular frequencies o•l and 
o•: within the range of our interest (& << o•l < o•: << so-) 

C(O.)l ) 1 + ;rQ•' • (15) 

does not depend upon these arbitrary constants. Thus in the 
frequency range where Q = Qm = const, the relative dispersion 
can be determined unambiguously without knowledge of Q 
and the phase velocity outside the frequency band considered. 
This conclusion is based on the linear model considered above, 

C0o 

Co 

io-• io o io a io • ioe 

w/S I 
Fig. 3. Band-limited constant Q model derived from a linear vis- 

coelastic model. Variables s• and s2 are low-frequency and high-fre- 
quency cutoff, respectively. The curves are computed for s2/s• = 10 •. 
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and in more general cases the relative dispersion relation can 
be affected by Q outside the range w• < w < wo.. This effect will 
be discussed in a later section. 

The necessity for introducing a spectrum of relaxation times 
or a superposition of absorption mechanisms is not unique to 
seismology. Laboratory measurements of attenuation, even on 
relatively pure materials, usually show a broader absorption 
peak than can be explained by a single relaxation time. A 
different relaxation spectrum, a log normal distribution, has 
been studied at length [Nowick and Berry, 1961] to explain 
broad regions of nearly constant Q in metals. 

The relaxation function for the model introduced in this 

section can be obtained by using (7) and (10): 

' 2Eo •(t) = 2E0 1---e-St ds = [Ei(-sd)- Ei(-s•t)] 
,rQm s ,rQm (16) 

where Ei(-x) is the exponential integral defined by 

E i ( - x ) •J• e - t X o. ---- dt = ln x +'y- x + 2 2 --'7 .... t ' ß 

+ +... (x>0) (•7) r.r! 

(see, e.g., Jahnke and Emde [1945]). When s•. >> s•, we have 

Q,• n m _ (s•.- 7I' S• 
t << 

•.Q,• n • - [-Ei(-s•.t) + lns•.t + •] S• 

t •s•. -• 

{t(t) = - 2E-•9-ø Ei(-s•t) t • s• -• 
(18) 

•(t) = 0 t >> s• -• 

RELATION TO LOMNITZ'S RELATION 

Lomnitz [1957] introduced a logarithmic creep function of 
the form 

xP(t) = q In (1 + at) (19) 

I 
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Fig. 4. Creep functions xP(t) for the Lomnitz [1957] model and the 
band-limited constant Q model. 

to construct a constant Q model. (Lomnitz used ½(t) for the 
creep function; here it is replaced by •(t) in following the 
notation of Gross [1953].) Although this creep function does 
not pass in the limit to the static case (i.e., •(t) -• co when t -• 
co [Kogan, 1966]), it describes the anelastic behavior of solids 
reasonably well. It is instructive to compare the creep function 
for the model introduced in the previous section with Lom- 
nitz's logarithmic creep function. 

The creep function •(t) is defined by 

a(t) = (l/E=) + •(t) (20) 

where a(t) is the change in the strain after application of a step 
function stress a(t) = H(t), E•o is the unrelaxed elastic modu- 
lus, and •(t) = 0 (t _< O) [Gross, 1953, equation (1)]. 

In the preceding section, only the relaxation function {(t) 
was obtained (equation (16)). In general, the creep function 
xP(t) is related to the relaxation function through the Volterra 
integral equation [Gross, 1953, equation (58)], but it is not 
always easy to obtain the creep function from the relaxation 
function. However, when the departure from elasticity is 
small, it can be obtained by using relations (36) and (40) of 
Gross [ 1953]. The result is 

dxp 2 J•s•' 2 1 d'-•- = ,rE•O• e -ts ds = -,rE•Q'•• • -[e-s•t- e-S•t] 
therefore 

2 [;0 1 ß (t) = -,rE•Q,• t dt- 'dt t 

ß (t) = ,rEooQ• n • -[Ei(-s.d)- Ei(-s•t)] (21) 

2 in(SO.) 1 {(t) (22) ,I,(t) = - 
By using (17) we fifid 

•(co) = 
and for very small t, 

2 
ß (t) = (so.- s•)t (23) 

In order to compare this with Lomnitz's relation (19), xP(t) = q 
In (1 + at), we set q = (2/,rE•Q•) and a = (so. - s•) • so.. These 
relations are plotted in Figure 4 as a function of (so. - s•)t for 
two cases, so./s• = 10 • and so./s• = 103. The creep function (21) 
is very similar to Lomnitz's logarithmic creep function for 0 < 
t < s• -• and approaches the static limit (2/,rE•Q•) In (so./s•) at 
t • co, the difficulty of Lomnitz's [1957] creep function at t • 
co thereby being removed. 

RELATION TO FUTTERMAN'S DISPERSION RELATION 

Futterman's [1962] relation was derived from the Kramers- 
Kr6nig causality relations together with the condition that the 
phase velocity approaches Co (denoted as C in the paper by 
Futterman [1962]) in the low-frequency limit. His relation 
gives higher phase and group velocities in an attenuating me- 
dium than in a nonattenuating medium. This apparent para- 

'dox appears to have partially hindered the use of this dis- 
persion relation in surface wave and free oscillation studies 
where the absolute arrival time is the major concern. We will 
show that this paradox does not constitute a real physical 
implausibility but is a result of the arbitrary assumption that 
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C0 is the reference elastic velocity. This point was recently 
discussed by Savage [1976]. 

The Kramers-Kr6nig causality relations result from the 
physical requirement that the response of a linear system to a 
transient input should not precede the time of the application of 
the input, say to. It is important to note that the causality 
relations alone do not specify when the response should start; 
it can start at any time after to. In terms of the linear vis- 
coelastic model discussed in the preceding section this situa- 
tion corresponds to specifying only the relative dispersion 
relation but not the absolute velocity. In other words, the 
causality relations determine a group of curves having a com- 
mon relative dispersion relation but not a single curve. In 
order to determine a unique dispersion curve a reference veloc- 
ity must be set at a certain frequency co = cor. Suppose we 
consider a group of linear viscoelastic models which have a 
common Qm -x, s•, and so. but different Ca (phase velocity at 
infinite frequency). Curves 1 and 2 in Figure 5 show the 
dispersion curves for two of these models. Since they are 
solutions of the viscoelastic model, both curve 1 and curve 2 
must satisfy the causality relations. However, the starting time 
of the response is obviously different between them. We next 
consider another set having a common Qm'-• which is smaller 
than Qm-•, sx and so. being kept unchanged. Curves 1' and 2' in 
Figure 5 show two models of this group. If we choose cot at 0 
and compare curves I and l', it is obvious that the model with 
Qm (more attenuating) has a higher phase velocity than the 
model with Qm' (less attenuating) at any frequency. This situa- 
tion corresponds to Futterman's [1962] model. On the other 
hand, if we choose cot at infinity and compare curves 2 and 2', 
then it is clear that the high-Q model has a higher phase 
velocity than the low-Q model at any frequency. Thus the 
paradox of Futterman's model is simply a result of an arbi- 
trary choice of the reference frequency and does not represent 
a fundamental physical defect of the model. 

Although the material behaves elastically at both very high 
and very low frequencies, since Q-• -• 0, the response at high 
frequencies represents the instantaneous response and there- 
fore corresponds to the more common interpretation of elastic 
behavior. Also, since ideal elastic behavior is only approached 
at very low temperatures, the correspondence between temper- 
ature and frequency for activated processes indicates that the 
high-frequency limit should be taken as the elastic reference 
value. The activated process assumption is consistent with our 
simple model, since the viscosity of the dashpot varies ex- 
ponentially as temperature. Of course at absolute zero the 
viscosity is infinite, and the high- and low-frequency elastic 
properties are the same. However, an increase in temperature 

will leave the high-frequency limit unchanged, since the dash- 
pot does not have time to respond, but the system is less stiff 
for low frequencies, and therefore the velocity decreases. 

EFFECT OF Q OUTSIDE THE SEISMIC FREQUENCY BAND 

We have shown that a constant Q over the seismic frequency 
band can be modeled with a linear viscoelastic solid. In this 

model, Q-•(co) falls off to zero outside the seismic frequency 
band. However, the value of Q outside the range from 1 s to 1 
hour is not very well known for the earth. It is possible that 
Q-•(co) in the earth's mantle outside the seismic frequency band 
is very different from that of linear models. A question then 
arises concerning what effect such a variation of Q has on the 
dispersion relation in the seismic band. In order to answer this 
question it is convenient to use the Kramers-Kr6nig causality 
relations. Following Lamb I1962], we consider a propagating 
harmonic plane wave 

f(x, t) • licolt - n(co) xl l (24) exp 

where n(co) is the complex refraction index 

n(co) = nx(co) - ino.(co) (25) 

with n•(oo) = 1 and no.(oo) = 0. Ca is the phase velocity at co = 
oo, which is chosen as the reference frequency. Since n(co) must 
satisfy n(-co) = n*(co) (asterisk denotes the complex con- 
jugate), nx(-co) = n•(co) and no.(-co) = -no.(co). 

The phase velocity C(co) and Q-•(co) can then be written as 

C(co) = C•/n•(co) (26) 

and 

Q-X(co) = 2no.(co) (27) 

The causality condition requires that n(co) be analytic in the 
lower half of the complex co plane. This analyticity condition is 
then expressed in terms of the Kramers-Kr6nig relations (see, 
for example, Morse and Feshbach [1953, p. 372]): 

n•(co) = 1 + 1 p •o;' • dco' (28) 

f+•o n•(co') dco' (29) __lp co' 
where P denotes the Cauchy principal value. First we consider 
the simplest case (Figure 6) where 

Q-X(co) = sgn (co)Qm -• S• _< -< s, 

Q-•(co) = 0 elsewhere 

Fig. 5. Phase velocity curves for different values of Q and reference 
velocity. 

Q-•(•o): 2n•(•o) 

-S 2 -S I ] 

-S2 -SI •1 
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Fig. 6. Two models of Q_l(co) as a function of co. 
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It is implied that the seismic frequency band is bracketed well 
within the range s• < •o < ss. Carrying out integration (28) and 
using (26), we have 

C(•o) = Ca 1 - (2;rQrn) -• In •ø s So. ø- -- 

For s• << •o << ss, 

C(•o) = C•[1 + (;rQ,,) -' In (s,A0)]-' • 

C•[l - (;rQ.,)-' In (s:/w)] 

which is identical to (14) derived from the linear model. 
We now introduce arbitrary variations of Q-•(w) outside the 

range s• • w • s:. We put 

= 0 < < 

Q-•(•) = sgn (•)Qa -• s: 

Q-•(•) = a:(•) > s• 

where ai(-•o) = -at(•o) (i = 1, 2). Then by using (28) we have 
for s• << •o << ss 

where 

and 

n•(a•) = [1 - (;rQm)-' In (w/ss)] + I• + Is 

fo •, a , ½o ' ) •o' d•o' I• = 2 •ø s •2 • 

Is = 2 f•:• as(•0') •o' O• •2 • O• 2 

Since •o << ss, 

Is • 2 

which is a function of ss only and does not depend on w. This 
term therefore affects only the absolute value of the phase 
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Fig. 7. Rayleigh wave and Love wave dispersion curves for uncor- 
rected and corrected Jeffreys and Gutenberg models. The data points 
are taken from Kanamori [1970]. The error bars represent the standard 
deviation. 

velocity but not the relative dispersion relation. For the first 
integral, since •o >> s•, we have 

O• 2 max2 

Since •0 >> sx, this term is small unless la<)l becomes very 
large, i.e., very large absorption at low frequencies. 

Thus we conclude that if the value of Q-•(w) is moderate 
outside the seismic frequency band, its effect on the relative 
dispersion in the seismic frequency band can be ignored. In 
other words, the knowledge of Q-•(w) in the seismic frequency 
band is sufficient to evaluate the relative dispersion of seismic 
signals. 

Strictly speaking, the above derivation is valid only for a 
linear system in which the propagation of a signal can be 
expressed as a linear superposition of plane waves in the form 
of (16). There is no evidence that the value of Q in the earth's 
mantle depends on the wave amplitude. Also, the similarity of 
wave forms between near-vertical multiple ScS (S wave re- 
flected from the core-mantle boundary) phases strongly sug- 
gests that no drastic distortion of wave form, other than the 
exponential decay, occurs during propagation. These obse?va- 
tions suggest that even if the microscopic mechanism of atten- 
uation is nonlinear, the propagation of the signal can be ap- 
proximated by a superposition of plane waves in the form of 
(16), and therefore the dispersion relation (15) holds with good 
approximation. 

Thus inasmuch as Q-•(w) is nearly constant in the seismic 
frequency band, the conclusion that seismic signals should 
exhibit a physical dispersion in the form of (15) appears in- 
escapable. It should be repeated that an expression identical to 
(15) can also be derived from the equations of Lomnitz [1957], 
Futterman [1962], and Nowick and Berry [1961] and is a quite 
general description of the dispersion that must accompany 
absorption in linear systems. 

SIGNIFICANCE OF PHYSICAL DISPERSION IN SEISMOLOGY 

The effect of physical dispersion is most important in the 
inversion of body wave, surface wave, and free oscillation 
data. Since this problem has already been discussed in detail 
by Anderson et al. [1976], Hart et al. [1976], and Anderson and 
Hart [1976b], we limit our discussion to some points of histori- 
cal interest. 

In the late 1950's to early 1960's the first accurate measure- 
ments of long-period mantle surface waves and free os- 
cillations were made, and introduction of digital computers 
made it possible to compute dispersion curves and free os- 
cillation periods for various earth models. A significant differ- 
ence was then discovered between the observed velocities or 

periods and those computed for the classic Jeffreys and Guten- 
berg models (Figures 7 and 8). Attempts to remove this dis- 
crepancy resulted in the later development of geophysical in- 
version theories. However, these classic models were based on 
short-period body waves, and therefore they should not be 
compared directly with the long-period surface wave and free 
oscillation data. It is necessary to apply corrections resulting 
from physical dispersion to the phase velocities or periods 
calculated for structures determined with body waves. Carpen- 
ter and Davies [1966] and Davies [1967] pointed out the impor- 
tance of physical dispersion in surface wave problems and 
discussed the compatibility of surface wave and body wave 
data. Since detailed discussions are made in Liu et al. [1976], 
only a brief account is made in the following discussion. 
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Fig. 8. Observed minus computed free oscillation periods for fun- 
damental spheroidal and torsional modes. The observed values and 
error bars are taken from Table 2 of Anderson and Hart [1976a]. The 
Bullen A density model is used in the calculations. 

Consider a N-layered spherical earth model. In each layer 
the dispersion relations are given by 

•r Qat 

fi,(co) = fi,(cor) l+ •rQ•---• 
where a, fi, Q,, and Q• are P velocity, s velocity, Q for P 
waves and Q for S waves, respectively, I is the layer index, and 
cop is the reference frequency taken at a body wave frequency. 

Then the phase velocity of Love and Rayleigh waves (or 
torsional and spheroidal modes) at frequency co computed for 
a structure defined at a body wave frequency can be corrected 
at each frequency by the following relations [Liu et al., 1976]: 

N 

= C•(w) In • C• 3• Qm-' (30) /=1 

AC•.(co) = C•.(co) In • Q•.-'(co) 

N [c• CR(co) = E + a c,(oo) aa•(oo) ] a at(oo ) 

(31) 

' = CR a13• Qm-• + C• Oat 

(33) 

where Q•.(co) and Q•(co) are Q for Love and Rayleigh waves. 
These corrections can be calculated by using either observed 
Q,.(co) and Q•(co) (through (31) and (33)) or a given depth 
distribution of Q, and Q• (through (30) and (32)). These 
corrections have been computed by Liu et al. [1976] for funda- 
mental modes and by Hart et al. [1976] for overtones. In these 
calculations, cor/2•r = 1 Hz (1 s). 

Corrections for group velocity can be calculated from 
fi C(co) by 

flu U (•__ ) U d(fiC) (34) U - C: - 1 AC+•co dco 
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Fig. 9. Fractional change in Love wave (torsional mode) and 
Rayleigh wave (spheroidal mode) phase velocities (periods) as a func- 
tion of period computed from the observed Q. 

As has been shown by Liu et al. [1976] and Hart et al. [1976], 
these corrections amount to 0.5-1.5% (Figure 9). Since the 
standard deviation of the measurement of phase velocities and 
free oscillation periods is about 0.05-0.4% (see Figures 7 and 
8), the above corrections are very significant. Although the 
details of the depth distribution of Q, and Q• are not very well 
known at present, the values of Q for Love and Rayleigh 
waves are fairly well established experimentally, at least over a 
period range from 100 to 1000 s. Thus we believe that the 
corrections for this period range shown in Figure 9 are accu- 
rate to 20%. Figures 7 and 8 show the corrected dispersion 
curves and free oscillation periods. 

It is interesting to note that much of the discrepancy be- 
tween the classic models and the data for the low-order funda- 

mental modes is removed by this correction. The agreement of 
the phase velocity of the Jeffreys model with the observed data 
is significantly improved. This comparison clearly demon- 
strates the importance of physical dispersion in the inversion 
of surface wave and free oscillation data and indicates that 

modification of these classic models, which is necessary to 
match the data, may be significantly smaller than has pre- 
viously been considered. This point was also made by Davies 
[! 967] and Carpenter and Davies [1966]. A recent reinterpreta- 
tion of the data by Anderson et al. [1976], Hart et al. [1976], 
and Anderson and Hart [1976b] shows that an earth model can 
be constructed which satisfies all the corrected surface wave 

and free oscillation data and that most, if not all, of the 
discrepancies between body wave and normal modes, such as 
the 'base line' shift, can be removed. 

CONCLUSION 

Examinations of various absorption models lead us to the 
conclusion that 

C(co)= C(co•) 1 +•ln • 

must be used for correcting the effect of physical dispersion 
arising from anelasticity. In this expression, C(co) is the phase 
velocity of body waves, surface waves, or free oscillations, co is 
the angular frequency of the wave, cop is a reference angular 
frequency, and Qm is the quality factor appropriate for the 
wave considered. We recommend that a frequency of 1 Hz be 
adopted as the standard reference frequency for future work. 
For body waves, Qm is the'path average Q, and for surface 
waves and free oscillations, Qm is the Q of a surface wave or 
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mode of frequency w under consideration. For surface waves 
and free oscillations, C(Wr) should be understood as the phase 
velocity at w computed by using the elastic moduli at w = Wr. 

Strictly speaking, this conclusion is not valid for nonlinear 
models. It is also affected by the values of Q outside the seismic 
frequency band, which is not very well known. However, if the 
departure from elasticity is relatively small so that the signal 
can be approximated by a superposition of propagating har- 
monic waves, as is usually the case in the earth, the above 
conclusion is still valid even if the microscopic mechanism of 
attenuation is nonlinear. The values of Q outside the seismic 
frequency band affect mainly the absolute value of the phase 
velocity but do not affect significantly the relative dispersion 
within the seismic frequency band. Therefore lack of knowl- 
edge about Q outside the seismic band does not prevent the use 
of dispersion relation (15) in surface wave and free oscillation 
problems. 

Since the surface wave Q is relatively low, about 100 at short 
periods and several hundreds at long periods, the effect of 
physical dispersion becomes very important in inversion stud- 
ies. 
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