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Abstract The role of primary plant chemistry on trophic

interactions is not well studied. We examined the effect of

primary plant metabolites, focusing on nitrogen, on several

biological indices of second and third trophic level insects

in a model tritrophic system, consisting of two strains of

the crucifer, Brassica napus (canola) (SLM046 and

RGS003), the specialist insect herbivore Plutella xylostella

(L.) (Lepidoptera: Plutellidae), and its specialist koinobiont

larval-pupal parasitoid Diadegma semiclausum (Hellén)

(Hymenoptera: Ichneumonidae). In particular, we mea-

sured relative growth rate of the herbivore in relation to an

index for plant quality (nitrogen content of leaf tissues),

developmental time of the herbivore (sum of second, third,

and fourth larval instars durations), and intrinsic rate of

increase (rm) of the herbivore and the parasitoid. Tritrophic

studies were conducted on development, survivorship

curve analysis, reproductive potential, life history, para-

sitism, and several other fitness correlates of the parasitoid.

The life table parameters of D. semiclausum were deter-

mined under laboratory conditions. The intrinsic rate of

increase (rm) of the parasitoid was significantly higher on

RGS003 than SLM046. In this tritrophic model, the results

indicated that the bottom-up direct effect on the herbivore

population growth rate was marginally as strong as the

direct effect of top-down force due to the parasitoid pop-

ulation growth rate; but it was higher than its indirect

counterpoint mediated with the parasitoid population

growth rate. Consequently, D. semiclausum performed

better on RGS003, which was the most inferior host to P.

xylostella in comparison with another plant cultivar and

had the lowest content of nitrogen in its leaves.

Keywords Plant quality � Insect fitness � Plutella

xylostella � Diadegma semiclausum

Introduction

Plant quality can affect herbivore fitness directly as food of

herbivores and indirectly by affecting foraging cues for

natural enemies of herbivores (Awmack and Leather 2002;

Walker et al. 2008). Bottom-up effect can further extend to

the third and even fourth trophic levels (Harvey et al.

2007). For instance, the rate of parasitism in some lepi-

doptera can vary considerably depending on the plant

species on which they are feeding (Hunter 2003; Lill et al.

2002); this is true even when feeding on different cultivars

of one plant species in agro-ecosystems (Eigenbrode et al.

1996). Domestication of brassicaceous plants in some cases

has reduced the level of secondary plant metabolites in

addition to changes in the strength of indirect plant

responses (Gols et al. 2008b). For instance, artificial

selection in Brassica oleracea (one of the progenitors of B.

napus) has caused a significant variation in shape and

structure of different parts of the plants (Benrey et al.

1998). Artificial selection has also produced different
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concentrations of nitrogen and glucosinolates in several

wild and domesticated crucifers (Scriber 1981).

It has been long demonstrated that toxic secondary

compounds (allelochemicals) in an herbivore diet may

affect their natural enemies’ fitness, including develop-

ment, survival, morphology, and size (Harvey et al. 2007;

Ode et al. 2004). This effect of poor-quality plants can thus

indirectly lead to poor-quality parasitoids (Hunter and

Price 1992; Hunter 2003; Price et al. 1980). However, the

strength of this bottom-up force has yet to be measured

especially when primary metabolites cascade-up to higher

trophic levels.

Much previous research in plant–insect interactions has

focused on the role of toxic secondary plant compounds on

insect performance; see reviews by Harvey (2005), Ode

(2006), and primary studies by Barbosa et al. (1991),

Campbell and Duffey (1979), Gols et al. (2008a, b, 2009),

Gunasena et al. (1990), Harvey et al. (2003), Kos et al.

(2011), Poelman et al. (2009), Soler et al. (2005, 2007);

while primary plant metabolites, including nitrogen, which

have been shown to strongly affect the feeding and growth

of insect herbivores (Johnson 2008; Mattson 1980; Scriber

1979; Smith and Northcott 1951; White 1984) has been

paid less attention. Moreover, to manipulate the nitrogen

content of plants (i.e., to vary the plants’ nutrient quality),

studies often apply different levels of synthetic nitrogenous

fertilizers; see for example, Aqueel and Leather (2011) and

Smith and Northcott (1951). A problem in such studies is

that the plant biomass changes as the plants grow faster

(Stiling and Moon 2005), so one cannot precisely isolate

the effect of plant quality on insect fitness. Here, we

selected two Brassica napus (canola) cultivars (SLM046

and RGS003) to represent high- and low-quality host plants

that differ dramatically in nitrogen content and previously

were shown to significantly affect the biology and life table

parameters of diamondback moth (DBM) (Soufbaf et al.

2010a, b). To quantify the strength of the bottom-up effect,

we utilized a tritrophic system consisting of DBM, Plutella

xylostella (L.) (Lepidoptera: Plutellidae), as the herbivore

which is among the most important pest of cruciferous

crops in the world (Talekar and Shelton 1993), and one of

its major parasitoids, Diadegma semiclausum (Hellén)

(Hymenoptera: Ichneumonidae), an important natural

control agent of DBM (Lohr et al. 2007; Talekar and

Shelton 1993).

Our objectives were to determine: (1) whether the per-

formance of DBM, measured by its relative growth rate

(RGR), the larval development time (sum of the second,

third, and fourth larval instars), and larval weight differs

when feeding on these two plant cultivars (2) whether the

performance of the parasitoid D. semiclausum, quantified

by the vital rates potentially affecting its fitness, is also

affected by the primary metabolite of plant cultivars on

which its’ host feeds?, and finally, (3) how does the fitness

of both DBM and D. semiclausum correspond to the pri-

mary chemistry of their host plant?

Materials and methods

Study species

Two cultivated B. napus cultivars, SLM046 and RGS003, were

used in the laboratory trials. Seeds were obtained from the

Seed and Plant Improvement Institute, Karaj, Iran, and used

for raising plants in the greenhouse (27 ± 5�C, 60 ± 10%

RH). Plants were raised in a standard potting mix in plastic

pots (20 cm height and 15 cm diameter); 4–5 seeds were

planted in each pot, without any fertilizer. Leaves from

4-weak-old plants were used in all trials. To evaluate the

nitrogen content of plant leaves, we dried leaves of each plant

cultivar at 55�C for 12 h to get the dry weights, and then, the

nitrogen content of these dried ground leaves was estimated

by the Kjeldahl method (Karla 1998). Three replicates were

run for each host plant; dried leaf samples of each plant

cultivar were obtained from ten different plants due to var-

iability in nitrogen quality and quantity among individual

plants (Mattson 1980).

A colony of DBM was established and maintained in the

laboratory on cabbage, B. oleracea var. capitata Linnaeus.

DBM larvae and pupae were originally collected from cab-

bage grown in the horticulture fields of the University of

Tehran. The stock culture was maintained for about

2 months in the greenhouse. Sub-colonies were established

on the two test plant cultivars separately and maintained in a

constant environment at 25 ± 2�C on the respective host

plants for more than four generations before the trials. At

least 120 moths were used to initiate the colony and 20 wild

adult males/females, collected from the field, were added to

each colony (stock culture and sub-colonies) weekly.

A potted canola plant with one cohort of 200 early-third-

instar DBM larvae was placed in a perspex cage

(30 cm 9 30 cm 9 30 cm) with a muslin sleeve on one

side of the cage. Ten pairs of 2-d-old mated D. semiclau-

sum were introduced into the cage. The wasps were pro-

vided with a diet of 10% honey solution. After 24 h, the

exposed larvae were removed and placed in ventilated

plastic containers (20 cm 9 15 cm 9 7 cm). Fresh canola

leaves were added until pupation. DBM pupa could not

form in case of parasitized larva, so the parasitoid pupae

were harvested and put in clean plastic containers for adult

emergence. The D. semiclausum culture was established

and maintained in a constant environment at 25 ± 2�C,

and adults of the second generation were used in the

experiments.
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The performance of DBM

To calculate the relative growth rate (RGR) of the herbi-

vore, we weighed the larvae every 24 h and defined RGR as

the difference in wet weights (natural log) between first and

last time periods divided by measurement times (Johnson

and Zalucki 2007; Kogan and Cope 1974):

RGR ¼ ln wt1ð Þ � ln wt0ð Þð Þ= t1 � t0ð Þ

The RGR was measured for *20 larvae per cultivar. To

measure the development times of second, third and fourth

larval instars, two cohorts of DBM eggs (50 individual

eggs laid on clean plants over a 10-h interval) were reared

individually until pupation. Although D. semiclausum can

parasitize all four larval stages of DBM (Yang et al. 1993),

the first instar would not transfer plant quality to the next

trophic level. We thus ignored the duration of the first

instar in the analysis. The intrinsic rate of increase in the

herbivore (rm) was estimated using the Jackknife

simulation model, well described in Maia et al. (2000).

The performance of D. semiclausum

Estimation of the development time of the parasitoid was

conducted in the laboratory (25 ± 1�C, 55 ± 5% RH).

Each of the test plants (*20 cm in average height with

eight leaves) was infested with one cohort of 120 second-

instar DBM larvae obtained from the respective host plant

cultivar. The plants were placed individually in wood cages

(120 cm 9 80 cm 9 80 cm) with a muslin sleeve on all

sides of the cage. Ten pairs of 2-d-old mated parasitoids

were introduced into the cage through the sleeve and

allowed to parasitize hosts. These parasitoids were supplied

only with 10% honey solution with no host before the trial.

Twenty-four hours later, the plants were removed from the

cages. All exposed DBM larvae from each host plant were

removed using a soft camel brush and placed individually

in plastic Petri dishes (8 cm 9 1.5 cm) containing a leaf

from the respective host plant. The Petri dishes were

covered with a lid with a muslin-covered window for

ventilation and placed in an incubator (Binder KBWF 720,

Germany). The leaves from respective test plants were

changed daily until the larvae pupated. Cocoon spinning

was recorded as the start of the pupal period. The cocoons

were weighed within 24 h of formation to the nearest

10-4g using a Sartorius electronic balance (Sartorius

GMBH, Göttingen, Germany) and then placed individually

in plastic vials for adult emergence. Egg–larval period,

pupal period, and survivorship of the immature stages of

the parasitoid were recorded. When the wasps emerged, the

time of eclosion was recorded. Data for superparasitism

and dead larvae were discarded.

To assess the effect of different plant cultivars on the

reproductive potential of the parasitoid, 20 newly emerged D.

semiclausum females from each test plant from each cultivar

experiment were placed individually in clean plastic vials

(2.5 cm 9 7.5 cm) and paired with males from the same test

plant cultivar and left together for 6 h to ensure mating (most

pairs mated in the first few seconds). A leaf from the respective

test plant was placed in a ventilated plastic container (15 cm

diameter and 20 cm height) and infested with one cohort of 20

early second-instar DBM larvae. To prevent the leaf from

wilting, the petiole was wrapped with cotton wool soaked in

water. A pair of 1-d-old mated D. semiclausum was placed in

the container and allowed to oviposit. After every 24 h, par-

asitoids were transferred to another plastic container with a

leaf infested with a cohort of 20 early second-instar DBM

larvae, and the process was repeated until death of last female

wasp. The exposed larvae were transferred into ventilated

plastic containers (10 cm 9 6.5 cm) lined with tissue paper

to absorb excess moisture. Leaves from respective test plants

were added as required until the larvae pupated. Cocoons from

individual females were placed separately in clean ventilated

plastic containers (5 cm diameter and 4 cm height) and

observed daily for the emergence of adults. The number of

emerged DBM and parasitoids was recorded. After the wasps

had emerged, the cocoons were checked and the number that

failed to emerge recorded. Following Carey (2001), we cal-

culated the life table parameters: the intrinsic rate of natural

increase (rm), mean generation time (T), finite rate of increase

(k), doubling time (DT), and net reproductive rate (R0).

To calculate successful daily percent parasitism, we

used the following equation:

Successful Parasitism %ð Þ ¼ Pp=Lh

� �
� 100;

where Pp stands for numbers of parasitoid pupa that

developed successfully, and Lh is total number of DBM

larva released daily to each container.

To assess the effect of different plant cultivars on the

body size of the parasitoid, 20 newly emerged male and

female parasitoids from each test plant cultivar were killed

by placing them in a vial containing 70% alcohol. The left

forewing and left hind tibia were removed using a pair of

forceps under a dissecting microscope. The forewing and

hind tibia were placed on a microscope slide using a soft

camel hair brush and the wing spread in a drop of alcohol.

The lengths were measured to the nearest 10-2 mm using a

graticule fitted on the dissecting microscope.

Statistical analyses

All data obtained from measurements on two plant culti-

vars were subjected to Kolmogorov–Smirnov test for nor-

mality before analysis, and all pair-wise comparisons were

done using Student’s t-test. The data on fertility were
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subjected to square root transformation before analysis, and

the data on daily parasitism rate and nitrogen contents were

subjected to log transformation before analysis. The effect

of host plant on the survival of herbivore and parasitoid

larvae during the development period was tested using

linear regression, and the homogeneity of parasitoid sur-

vivorship on the two plant cultivars was tested by the log-

rank test (Rosner 2000) (PROC LIFETEST, SAS 2003).

Values of 1-lx in the age class of x were used as the

mortality on each cultivar in the LIFETEST program. The

data on daily parasitism throughout parasitoid age were

analyzed using univariate General Linear Model (GLM) to

determine the effects of plant cultivar, parasitoid age, and

their interactions on daily parasitism (PROC GLM, SAS

2003), and means were compared by Tukey’s test at

P \ 0.05 significance level. The life table parameters for

the parasitoid were estimated by the Jackknife simulation

method (Meyer et al. 1986), and Jackknife pseudo values

were subjected to Student’s t-test for pair-wise compari-

sons. Pair-wise correlations of pupal weight, fertility,

forewing length, and hind tibia were conducted using

Pearson product-moment coefficient (r) with a significance

level of a = 0.01, to identify relationships between struc-

tural measurement and weight of parasitoid cocoons. Direct

and indirect effects of nitrogen content of leaves on

development time of both herbivore and parasitoid, RGR of

herbivore, and the intrinsic rate of natural increase rm in

both herbivore and parasitoid were assessed using path

analysis after Bryman and Cramer (2002). Data transfor-

mations, Student’s t-tests, regressions, path, and Pearson

correlation analyses were performed using SPSS 16 (SPSS

2008).

Results

Plant cultivar quality

Nitrogen contents of leaves, as an index for plant quality,

were significantly different between the two experimental

plant cultivars (5.1 and 1.6% for SLM046 and RGS003,

respectively). There was 350% more nitrogen in SLM046

than in RGS003 (T = -40.86, df = 2, P = 0.001).

Effect of plant cultivars on mass growth

and development time of DBM

Relative growth rate (RGR) of DBM differed between two

plant cultivars; for individuals reared on RGS003, the RGR

was higher compared with those on SLM046 (Table 1).

Accordingly, weight of larvae at the 4th instar on RGS003

was higher than on SLM046. Larval development time

(time in second ? third ? fourth instars) differed between

the two plant cultivars (Table 1).

Effect of plant cultivars on the fitness of D.

semiclausum

Fertility, development, parasitism, and survivorship

The total number of offspring produced by parasitoids was

significantly higher on RGS003 than SLM046 (Table 1), but

the overall parasitism rate on the two host plant was not

significantly different. The female longevity with host and

food was significantly greater on RGS003 than on SLM046

(Table 1), which probably accounts for the greater number

of offspring produced. Data on daily parasitism showed

significant differences between the two cultivars and among

parasitoid ages (Table 2). The highest daily parasitism was

observed on RGS003 and on 2nd day as 57.5 ± 4.7% and

showed significant difference with daily percent parasitism

on 4th day (43.5 ± 12.7%). Also, there was a significant

difference between parasitism on days 1 and 4. Daily per-

cent parasitism on 1st day was 2.82% more than its value on

4th day. The age-specific survivorship (lx) at age of adult

emergence of D. semiclausum on RGS003 and SLM046 was

0.82 and 0.69, respectively. Regression analysis showed that

larval survivorship declines with a steeper slope in SLM046,

survival = 0.989–0.0289 age (R2 = 95%, pinter-

cept = 0.000) than in RGS003, that is, survival = 1.05–

0.0166 age (R2 = 87%, pintercept = 0.000). Log-rank test

showed that the survival curve patterns were the same for

parasitoids on the two plant cultivars, Deevey’s curve type I

(Deevey 1947) (v2 = 3.0248, df = 1, P = 0.0826) (Fig. 1).

The pupal period of the parasitoid was significantly longer

on SLM046 (Table 1).

Morphological structures

Forewing length varied significantly between females and

males. The lowest and highest values were observed on

SLM046 and RGS003, respectively (Table 1). Forewing

lengths in females varied from 2.7 to 3.67 mm and from

2.87 to 3.4 mm in males on SLM046; these size ranges for

females on RGS003 were 3.025–3.925 mm and 3–3.9 for

males. The lowest and highest pupal weights and lowest

and highest adult weights of D. semiclausum were

observed on SLM046 and RGS003, respectively (Table 1).

Pupal weights varied from 0.0018 to 0.0039 g and from

0.0020 to 0.0053 g on SLM046 and RGS003, respectively.

Accordingly, adult body weights varied from 0.0011 to

0.0066 g and from 0.0008 to 0.0065 g on SLM046 and

RGS003, respectively. There were no significant differences

in tibia lengths. Correlations showed significant inverse

relationships between pupal weight and female tibia
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lengths on the two plant cultivar (r = -0.642, P \ 0.01 on

SLM046; r = -0.598, P \ 0.05 on RGS003), and positive

correlation between pupal weight and female forewing

length for parasitoids reared on RGS003 (r = 0.712,

P \ 0.01).

Life table parameters

The intrinsic rate of increase, rm, in D. semiclausum was

significantly different between cultivars as the cohort

reared on RGS003 had the higher rm (Table 1), but the net

reproductive rate (R0) and mean generation time (T) were

not significantly different between cultivars. The cohort

reared on RGS003 had the smallest doubling time (DT) and

those on SLM046 had the smallest finite rate of increase (k)

(Table 1).

Relationship between plant quality and insect fitness

The total standardized direct effect of nitrogen on para-

sitoid rm was negative and strong, more powerful than the

standardized indirect effect mediated with RGR

Table 1 Life history traits of herbivore (Plutella xylostella) (DBM) and its larval parasitoid Diadegma semiclausum on two cultivated canola

cultivars

Plant cultivar SLM046 RGS003 df T

Insect performance

DBM

RGR (mg mg-1 d-1) 0.429 ± 0.024 0.509 ± 0.027 44 2.21*

Larval development time (2nd, 3rd, and 4th instars) (days) 5.64 ± 0.14 6.54 ± 0.13 84 4.63***

Larval weight in last instar (4th) (g) 0.005 ± 0.00026 0.006 ± 0.00027 40 -2.32*

D. semiclausum

Pupal period (days) 6.51 ± 0.09 6.24 ± 0.09 70 -2.18*

Number of offsprings 15.90 ± 1.9 22.30 ± 2.2 17 2.18*

Female longevity with host (with parasitism activity) 3.00 ± 0.24 5.40 ± 0.91 10 2.56*

Pupal weight (mg) 2.54 ± 0.000 3.24 ± 0.000 167 6.03***

Adult body weight (mg) 2.38 ± 0.000 3.22 ± 0.000 63 2.44*

Forewing length (mm)

Female 3.11 ± 0.05 3.49 ± 0.09 21 -3.42***

Male 3.05 ± 0.03 3.31 ± 0.07 19 -3.08***

Net reproductive rate (R0)a 5.56 ± 0.67 7.62 ± 0.84 – ns

Finite rate of increase (k) 1.16 ± 0.00 1.21 ± 0.16 12 2.69*

Intrinsic rate of increase (rm) 0.147 ± 0.07 0.188 ± 0.01 13 2.72*

Mean generation time (T) 20.25 ± 5.43 14.00 ± 1.75 – ns

Doubling time (DT) 4.67 ± 0.18 3.66 ± 0.27 15 -3.06**

Population growth parameters of Diadegma semiclausum obtained using Jackknife simulation method on canola cultivars

The values are Means ± SE of insect performances measurements after Student’s t-test
a This parameter showed difference between cultivars at P = 0.07. * P \ 0.05, ** P \ 0.01, *** P \ 0.001, and nsP [ 0.05

Table 2 Analysis from the daily percent parasitism of Diadegma semiclausum, parasitoid of Plutella xylostella, on two cultivated canola

cultivars

Source Type III sum of squares df F

Model 9.83283772 48 3.40***

Age 2.84042867 4 11.78***

Cultivar 0.78640240 1 13.04**

Replication 2.14410660 9 3.95**

Age 9 cultivar 1.05702778 3 5.84**

Replication 9 age 4.84948351 23 3.50**

Error 0.90440362 15

A linear model approach was used to assay changes in percent parasitism between cultivars with age of parasitoid

The only significant main effects and their interactions were showed here. * P \ 0.05, ** P \ 0.01, *** P \ 0.001, and ns P [ 0.05
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(Nitrogen ? RGR ? Parasitoid rm, b = -0.196). The

direct effect of nitrogen on the herbivore rm was positive

and stronger than its effect on parasitoid rm (Fig. 2). The

indirect path Nitrogen ? RGR ? Herbivore rm was rela-

tively effective (b = ?0.307), but lower than its direct

counterpoint. There was a negative effect of herbivore

development time on parasitoid development time; but the

effect in question on parasitoid rm was weak. The effect of

RGR on herbivore rm was negative and relatively strong.

The direct effect defined as Nitrogen ? Herbivore rm was

the strongest bottom-up force at the first place and Nitro-

gen ? Parasitoid rm at the second place as demonstrated

here. As a strong top–down force, there was a direct

negative effect of parasitoid rm on herbivore rm (Fig. 2,

Table 3).

Discussion

There are many studies regarding the development of fit-

ness strategies in both herbivore and parasitoid but most of

them have focused on secondary chemistry of plants, while

ignoring the potentially opposite (or countering) effect of

primary plant metabolites. Furthermore, many studies are

available which examine the effects of synthetic nitroge-

nous fertilizers as an index for plant quality on insect fit-

ness. Here, we compare our results with some of these

studies to compare primary and secondary metabolites’

effects on the performance of insects in the second and

third trophic level and, to explore the potential differences

between natural plant quality and chemically enhanced

plant quality using fertilizers.

DBM performance

DBMs grew slower (lower RGR), completed development

in a shorter time at a smaller weight on SLM046, which is

the most suitable host plant for DBM, in terms of rm

(Soufbaf et al. 2010a). This cultivar has a significantly

higher value of nitrogen in its leaves than another host

plant, RGS003. On the latter, development time for DBM
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Fig. 1 Survivorship patterns of Diadegma semiclausum reared on

two plant cultivars under laboratory conditions. This figure is

prepared using Microsoft Office Excel 2007, copied and then pasted

as picture (enhanced metafile) to this file
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Fig. 2 Output diagram of causal relationships in the plant nitrogen

survey on the fitness of second (DBM), and third (Diadegma
semiclausum) trophic levels after path analysis. Arrows represent

standardized direct and indirect effects of trophic levels components

on each other. Thickness of arrows is proportional to the size of the

effect. Path coefficients (b), errors (e = 1 - R2), and P-values

represented in Table 3 (the numbers close to the head of arrows

represent the path number). DT represents larval development time

(2nd ? 3rd ? 4th instars) for herbivore and egg ? larvae ? pupa

duration for parasitoid, PW represents pupal weight. Upward and

downward arrows represent bottom-up and top-down forces direc-

tions in the tritrophic model. This figure is prepared using Flow

Charting 6, copied and then pasted as picture (enhanced metafile) to

this file
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was longer, but larvae gained weight faster (high RGR) and

were heavier at the end of the larval period. One inter-

pretation could be related to the high level of nitrogen

available in the plant cultivar SLM046 and so DBM satisfies

nitrogen needs with feeding in shorter periods and a lower

growth rate. Larvae on the low-nitrogen plant has to feed

longer to gain the same or similar amount of nitrogen and

end up larger but not necessarily fitter; see Raubenheimer

and Simpson (1997) on the C/N balance hypothesis. Using

a different method to define RGR, Coley et al. (2006)

showed that caterpillar’s RGR was faster on young leaves,

which had higher values of nitrogen than the older leaves.

Contrary to our findings, many workers have found that

caterpillars developed more slowly on low-nitrogen plants

than on high-nitrogen plants (e.g., Loader and Damman

1991; Lou and Baldwin 2004). However, there are reports

that larval performance (e.g., larval growth) is relatively

independent of plant nitrogen (Karowe and Martin 1989;

Prudic et al. 2005). We observed a negative and relatively

strong effect of RGR on the herbivore rm; as an implicit

result, higher population growth rates could not have

resulted from higher RGRs.

High level of secondary metabolites, glucosinolate (GS)

as the major secondary metabolite in crucifers, reduce the

performance of DBM (Gols et al. 2008a; Li et al. 2000),

and this reduction is usually less pronounced than in gen-

eralist herbivores. Gols et al. (2008a) reported that DBM

developed most poorly on the wild population of Brassica

which had higher values of GS in their leaf tissues. We

encountered a similar scenario, as nitrogen showed a

negative and relatively strong effect on RGR (b = -0.661,

P = 0.153). This negative effect is confirmed according to

slower RGR on SLM046, which had the higher contents of

nitrogen in its leaves than the other plant cultivar. Low

nitrogen results in a total consumption increase through

prolonged developments of herbivores (Coley et al. 2006;

Mattson 1980), as we found.

Agrawal (2004) suggested that nitrogen content is a

good predictor of rm, which will have a strong influence on

the population dynamics of herbivores, and our result

supports this suggestion. Also, larval development time

(feeding window) of herbivores could be a good predictor

of parasitoid development time in the current study. A

positive causal relationship between nitrogen and intrinsic

growth rate of herbivore was observed, which is in spite of

Johnson (2008) who reported negative correlations

between leaf nitrogen and herbivore rm, but is similar to

many studies, that report a positive relationship (e.g.,

Agrawal 2004, Aqueel and Leather 2011, Winter and

Rostás 2010).

Parasitoid performance

Immature survival of parasitoid showed faster declines on

SLM046 than on the other plant cultivars. Despite our

result, some workers report that immature parasitoid sur-

vival was higher on plants with higher nitrogen (fertilizer),

which DBM fed on (e.g., Sarfraz et al. 2009). Winter and

Rostás (2010) working on soybean—Spodoptera fru-

giperda—Cotesia marginiventris system, reported similar

findings to ours for parasitoid pupal weight, development

time, and longevity; although they used synthetic N fer-

tilizers in plant cultures. Coley et al. (2006) suggested that

species feeding on mature leaves (with lower nitrogen

contents) were the most defended against natural enemy

(ants). Nitrogen had a strong negative effect on parasitoid

rm; accordingly, RGS003 that had lower values of nitrogen

supported fitter parasitoids in our system. Despite our

results, there is a positive relationship between nitrogenous

fertilizer applications and parasitoid abundance (De Kraker

Table 3 Standardized path

coefficients (b), errors

(e = 1 - R2), and P-values of

causal relationships in the plant

nitrogen survey on the fitness of

second (DBM), and third

(Diadegma semiclausum)

trophic levels after path analysis

Path b e = (1-R2) F P value

1 -0.476 0.773 1.174 0.348

2 ?0.431 0.815 0.910 0.394

3 -0.895 0.199 16.052 0.016

4 ?0.959 0.08 46.047 0.002

5 -0.495 0.755 1.295 0.319

6 -0.661 0.563 3.110 0.153

7 -0.303 0.908 7.162 0.009

8 -0.465 0.784 7.983 0.008

9 -0.126 0.984 0.760 0.388

10 ?0.296 0.913 1.725 0.206

11 ?0.239 0.943 2.114 0.155

12 -0.318 0.899 3.267 0.081

13 -0.960 0.079 46.716 0.002
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et al. 2000; Loader and Damman 1991). We found lower

progeny and rm of parasitoid when its host was reared on

the plant cultivar that contained a higher level of nitrogen.

However, it is frequently reported that performance of

parasitoids declined when caterpillars fed on plants raised

in nitrogen-poor cultures (e.g., Winter and Rostás 2010).

Gols et al. (2008a; 2009) examining the effect of plant

populations with different GS values on parasitoid perfor-

mance showed that D. semiclausum developed more slowly

on the cultivated and wild populations of Brassica than on

the feral population, while plant population had no sig-

nificant effect on the survival rates of the parasitoid.

However, parasitoid development time did not differ sig-

nificantly between plant cultivars in our study (data not

shown), while survival of immature parasitoids declined

faster on the plant cultivar with higher value of nitrogen.

Gols et al. (2008b) showed that development time and

adult body mass in Cotesia glomerata did not vary sig-

nificantly with plant species, while adults and pupa of

parasitoid were heavier on RGS003 (with lower level of

nitrogen) than on another cultivar in the current study.

Our results on the performance of herbivore and its par-

asitoid under the effect of nitrogen differ from many studies

that have examined the effect of secondary plant metabolites

on herbivore and its parasitoid performance. We found that

performance of DBM increased on the plant cultivar that had

a higher content of nitrogen in its leaf tissues, but the story

was reverse for parasitoid, as the most fitness correlates of D.

semiclausum were higher when its host reared on the plant

cultivar with lower content of nitrogen. Most often, GSs

enhanced the parasioids performance in different ways, but

the herbivore performance under GSs effects showed more

inconsistent results (see above).

Applied implications and study concerns

We observed a significant effect of both plant cultivar and

parasitoid age on daily percent parasitism, which is similar

to many other studies (e.g., Moreau et al. 2009). The

highest daily percent parasitism occurred on the second day

of parasitism on RGS003, which was reported as the most

inferior host plant for DBM (Soufbaf et al. 2010a, b), and

had the lowest nitrogen content in the current study.

Moreover, there was a strong negative and significant

effect of nitrogen on the parasitoid growth rate. Host plant

resistance and biological control with parasitoids are two

important tactics, which are utilized in many management

programs (Ode 2006); interestingly, RGS003 showed both

compatibility to parasitoid and unsuitability to herbivores

in our artificial system. In general, it is thought that plant

resistance and biological control are incompatible. So,

using some plant cultivars like RGS003, which naturally

represent low qualities for the herbivore and inversely

improve the parasitoid fitness could have implications for

managers to achieve safer agro-ecosystems and potentially

lessen management costs. We have yet to address the

question of how plant palatability and yield correlate with

primary metabolites in plant cultivars, and we leave this

interesting question for future research.

Even though nitrogen is one of the most important plant

components that strongly affect insect fitness, DBM has

shown to be influenced considerably by sulfur contents in

leaf tissues of its host plant. Gupta and Thorsteinson (1960)

argued that sulfur could enhance the attractiveness of host

plant as oviposition substrate for DBM, but McHugh and

Foster (1996) suggested that sulfur applications on cabbage

foliage caused a significant decrease in DBM oviposition.

However, besides sulfur or nitrogen on their own, nitrogen/

sulfur ratio has been shown to affect GS content and sub-

sequently plant–insect interactions (Badenes-Prez et al.

2010). Plant quality tends to decrease with leaf age (Tra-

vers-Martin and Müller 2008), and this decline in quality

can affect insect fitness through different ways, but con-

tinuous usage of fertilizers keeps nutritious elements at

accessible levels for insect, which is one of the aspects of

anthropogenic influences on the ecosystems, and the out-

come can divert us from improving our understanding of

reality. However, in some ecosystems nutrient enrichments

increased primary consumer production but not predator’s

counterpoint (Davis et al. 2010) and can cause instability in

a system (Roy and Chattopadhyay 2007).

It is well known that plant allelochemicals can affect the

behavior and performance of parasitoids (Harvey et al. 2005),

but scenarios are different depending on plant condition dur-

ing experiments. When plants are living, they can interact with

herbivores, and it will be expected that this interaction differs

throughout an herbivores feeding window, as both interacting

species are varying in performance. But when leaves are

excised from plants, their interactions with herbivores may be

disrupted, as the leaves are just dead materials with the same

quality of their plant at cutting time. In this case, the quality of

the host plant is fixed during herbivore feeding time and the

amount of the food will only decrease. In such studies that

used excised leaves as host plant material, the herbivores do

not encounter with living plant reactions (to herbivore feeding

activity) and so are expected to suffer less from their host

defense strategies. But the effect on parasitoid performance is

less well predicted, as their host (herbivore) shows two faces,

one as a high-quality host and another as well defended against

natural enemies. However, results of such studies should be

interpreted with caution.
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