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Abstract. We present a detailed budget of formic and acetic

acids, two of the most abundant trace gases in the atmo-

sphere. Our bottom-up estimate of the global source of

formic and acetic acids are ∼1200 and ∼1400 Gmol yr−1,

dominated by photochemical oxidation of biogenic volatile

organic compounds, in particular isoprene. Their sinks

are dominated by wet and dry deposition. We use the

GEOS-Chem chemical transport model to evaluate this bud-

get against an extensive suite of measurements from ground,

ship and satellite-based Fourier transform spectrometers, as

well as from several aircraft campaigns over North Amer-

ica. The model captures the seasonality of formic and acetic

acids well but generally underestimates their concentration,

particularly in the Northern midlatitudes. We infer that the

source of both carboxylic acids may be up to 50% greater

than our estimate and report evidence for a long-lived miss-

ing secondary source of carboxylic acids that may be asso-

ciated with the aging of organic aerosols. Vertical profiles
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of formic acid in the upper troposphere support a negative

temperature dependence of the reaction between formic acid

and the hydroxyl radical as suggested by several theoretical

studies.

1 Introduction

Formic (HCOOH, hereafter FA) and acetic (CH3COOH,

hereafter AA) acids are among the most abundant and ubiq-

uitous trace gases in the atmosphere. They have been de-

tected in remote, rural, polar, marine and urban environments

in the gas-phase as well as in clouds and in aerosols (Keene

and Galloway, 1988; Chebbi and Carlier, 1996; Khare et al.,

1999).

Sources of FA and AA include direct emissions from

biomass burning, biofuel, fossil fuel, soil, vegetation, as well

as secondary production from gas-phase and aqueous pho-

tochemistry (Chebbi and Carlier, 1996; Khare et al., 1999).

Measurements of the isotopic composition of FA and AA

have shown that they are primarily composed of modern

carbon (Glasius et al., 2000, 2001), consistent with major
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biogenic and biomass burning sources. Furthermore, most

field measurements show a remarkable correlation between

FA and AA suggesting similar sources. The sources of FA

and AA remain, however, very poorly understood and sev-

eral investigations (Poisson et al., 2000; von Kuhlmann et al.,

2003a; Ito et al., 2007) have pointed to large inconsistencies

between measurements and model predictions.

Sinks of FA and AA are better understood. Both acids

are relatively long-lived in the gas-phase with respect to

OH photooxidation (τFA ≃ 25 days and τAA ≃ 10 days at

T = 260 K and [OH]=106 molec cm−3). Because both gases

are very soluble, their primary atmospheric sink is thought

to be deposition (Chebbi and Carlier, 1996). Irreversible

uptake on dust can also be an important regional sink

(Falkovich et al., 2004).

Better constraints on the budget of FA and AA are impor-

tant to understand patterns of rain acidity particularly in re-

mote regions (Galloway et al., 1982). More generally, since

FA and AA are major trace gases in the atmosphere and have

few anthropogenic sources, the study of their budget offers

a glimpse at the interaction between the biosphere and the

atmosphere.

In this work, we derive a detailed inventory of FA and AA

sources and sinks. We then use a chemical transport model

to evaluate the resulting budget against measurements from

an extensive suite of ground, aircraft and satellite-based mea-

surements. Major discrepancies between the model and the

measurements are investigated and several avenues for fur-

ther research are discussed.

2 Global budget

We use the GEOS-Chem global 3-D chemical transport

model (Bey et al., 2001) to investigate the budget of FA and

AA. In the standard GEOS-Chem mechanism (v8.3), photo-

chemical sources of AA include ozonolysis of isoprene and

reaction of peroxyacyl radicals with HO2 and other peroxy

radicals (RO2) while sinks are limited to its reaction with

OH. FA is not treated explicitly.

In the following, we describe the sources and sinks of

FA and AA and their implementation into the GEOS-Chem

framework. In this work, the model is driven by the GEOS-5

assimilated meteorology from the NASA Goddard Earth Ob-

serving System. The horizontal resolution is degraded here

to 4◦ × 5◦ and the vertical resolution to 47 vertical layers.

The model is run from 2004 to 2008 following a one-year

spin-up.

2.1 Emissions

2.1.1 Terrestrial vegetation

Terrestrial vegetation emits both FA and AA (e.g.

Kesselmeier, 2001). Emissions by trees are triggered by

light and are well correlated with the transpiration rate. In

contrast, crops have been reported not to emit detectable

amounts of FA or AA (Kesselmeier et al., 1998). FA emis-

sions by plants are related to the C1 pathway, ethene syn-

thesis and photo-respiration (Kesselmeier and Staudt, 1999).

The emission of AA by plants occurs as the result of the hy-

drolysis of acetyl-coA, a product of the degradation of fats

and carbohydrates (Kesselmeier and Staudt, 1999).

We use the Model of Emissions of Gases and Aerosols

from Nature (MEGAN) v2.1 (Guenther et al., 2006) imple-

mented in GEOS-Chem as described by Millet et al. (2010)

to compute biogenic emissions from each GEOS-Chem grid

cell (E):

E = γ
∑

i

εiχi

where the sum is over the number of plant functional types

with baseline emission factor, ε, and fractional coverage, χ .

For both FA and AA, ε are 30 µg (m−2 h−1) for trees and

shrubs and 4.8 µg (m−2 h−1 for crops (Guenther et al., 2000,

updated on the basis of recent measurements (A. Guenther,

personal communication, 2010)). The emission activity fac-

tor, γ , accounts for the variability in the local environment

(e.g., temperature, light, leaf area, soil moisture). In particu-

lar for FA and AA:

γ = exp(β(T −303))γ(other) with β = 0.08 and T inK

where γ(other) is described in Millet et al. (2010) and T is the

current leaf temperature.

2.1.2 Biomass burning and biofuel

Both FA and AA have been measured in biomass burning

plumes (Goode et al., 2000; Christian et al., 2003; Yokel-

son et al., 2009). We estimate biomass burning emissions

of FA and AA from biomass burning emissions inventory

(GFEDv2 Randerson et al., 2006) using the emission factors

(EF) summarized in Table 1. Emissions from biofuels are

calculated in the same way using the CO emission inventory

from Yevich and Logan (2003).

We note that the emission factors used in this study are

generally smaller than the ones reported by Andreae and

Merlet (2001) for FA but larger for AA. These changes reflect

the very large variability in the reported emission factors.

2.1.3 Fossil fuel

Emissions of FA and AA from motor vehicles were first mea-

sured by Kawamura et al. (1985). Here we estimate fos-

sil fuel FA and AA from CO fossil fuel emissions (Duncan

et al., 2007) scaled by the emission ratios derived by Talbot

et al. (1988) at the Hampton Roads Bridge Tunnel (Virginia):

2.1×10−4 FA per CO and 4.2×10−4 AA per CO.
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Table 1. Biomass burning emission factors for FA and AA (in g

per kg of dry matter, Yokelson personal communication and Akagi

et al. (2010)). Emission factors from Andreae and Merlet (2001)

are indicated in parentheses.

Savanna Tropical Boreal Biofuel∗

FA 0.18 (0.7) 0.42 (1.1) 0.80 (2.9 ± 2.4) 0.22 (0.13)

AA 1.58 (1.3) 3.11 (2.1) 4.05 (3.8 ± 1.8) 4.97 (0.4–1.4)

∗ Derived from open-cooking.

2.1.4 Agricultural emissions

Large emissions of acetic acid are associated with inten-

sive animal farming (from both cattle and cattle waste Shaw

et al., 2007). Ngwabie et al. (2008) used the correla-

tion between AA and ammonia to derive emission factors

(2×10−3–0.2 gC/gNH3 and a global estimate of AA emis-

sions from cattle (4–17 Gmol yr−1). Using an emission fac-

tor of 0.1 gC/gNH3 and the anthropogenic emissions of am-

monia (Bouwman and Hoek, 1997) located on agricultural

lands, we estimate the global soil emissions of AA to be

∼40 Gmol yr−1.

Ethanol, which has nearly the same molecular weight as

FA, is a major emission of cattle farming. This makes it

difficult to quantify the emissions of FA by proton transfer

mass spectrometry (PTRMS), the most common technique

for these investigations. We assume that the emissions of

FA (in moles) are equal to the emissions of AA. This corre-

sponds to 40% of the upper estimate of ethanol global emis-

sions by Ngwabie et al. (2008).

Both FA and, to a lesser extent, AA farming emission es-

timates are larger than those from Ngwabie et al. (2008) and

probably represent upper estimates. However, the contribu-

tion of agricultural activities to the FA and AA budget is

likely to be underestimated as one can expect FA and AA

production from the photooxidation of volatile compounds

emitted as a result of farming activities but not represented

in the model.

2.1.5 Soil

FA and AA production by soil bacteria is well documented

with soil concentrations ranging from 2 to 5 mol m−3 (Spos-

ito, 1989, p. 66). The few studies of FA and AA emissions

(Sanhueza and Andreae, 1991; Enders et al., 1992) suggest

that soil emission is an important source of acids where pro-

duction from terrestrial vegetation is low.

Sanhueza and Andreae (1991) reported emissions of FA

(AA) of ∼0.4 nmol (m−2 s−1) (0.2 nmol (m−2 s−1)) at noon

over dry savanna soil. Emissions of both acids were found to

be temperature dependent. Here we approximate the temper-

ature dependence reported by Sanhueza and Andreae (1991)

using an exponential law:

E
dry
FA (savanna) = 1.7×10−3 ×(exp(0.119×T )−1),

T > 0 ◦C (R2 = 0.66)

E
dry
AA(savanna) = 2.5×10−3 ×(exp(0.091×T )−1),

T > 0 ◦C (R2 = 0.50)

where T is the soil temperature in ◦C and EX is the emis-

sion of the acid in nmol (m−2 s−1). This corresponds to an

average emission of EFA = 1.8 × 10−1 nmol (m−2 s−1) and

EAA = 8.4 × 10−2 nmol (m−2 s−1) over the 30 ◦C to 40 ◦C

temperature range.

For a similar environment and using a much larger

dataset, Yienger and Levy (1995) derived ENO = 1.89 ×

10−1 nmol (m−2 s−1). We use the soil emissions of NO from

Yienger and Levy (1995) in other environments to infer the

emissions of FA and AA (Table 2). This assumes that the

ratio between the emissions of FA (AA) and NO is indepen-

dent of the environment type and that the emissions of FA

and AA exhibit the same temperature dependence as the one

measured by Sanhueza and Andreae (1991). Field measure-

ments are clearly needed to assess these assumptions.

Because of the weak acidity of FA (pKa = 3.75) and AA

(4.75), their soil emissions are likely to depend on soil pH

under wet conditions. We assume that the emissions listed

in Table 2 are at pH = pKa(FA/AA) and 30 ◦C, i.e. that they

correspond to half of the maximum emissions under wet con-

ditions. Under these assumptions, the wet emissions are thus

obtained by scaling the baseline wet emission by the follow-

ing factor:

exp

(

−
1HX

R

(

1

Tsoil
−

1

303.15

))

× 2
1+10pH−pKax

with X = {FA,AA}

where the soil pH is taken from the ISRIC World Soil Infor-

mation Database (http://www.isric.org) and 1H is the heat

of dissolution at 298 K.

Sanhueza and Andreae (1991) also reported an increase in

AA emissions after watering the soil, while FA emissions

were suppressed. The AA emission increase hints at the

existence of water-stressed AA-producing microorganisms,

similar to denitrifying bacteria (Davidson, 1992). Here, we

use the same pulsing factors for AA as the one derived by

Yienger and Levy (1995) for the soil emissions of NO. AA

pulsing increases AA soil emissions by ∼10% globally.

2.2 Photochemical sources of formic and acetic acids

2.2.1 Terrestrial biogenic precursors

The oxidation of biogenic compounds, and in particular their

ozonolysis has been suggested to be a major source of FA

and AA (Jacob and Wofsy, 1988; Neeb et al., 1997).
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Table 2. Soil emissions of formic and acetic acids at Tsoil = 30 ◦C in nmol (m−2 s−1) for different land types.

Land Type∗ Formic Acid Acetic Acid

wet dry wet dry

Agriculture (not Rice) 1.8 × 10−1 – 1.1 × 10−1 –

Agriculture (Rice) 5.9 × 10−3 – 3.5 × 10−3 –

Conifer and other deciduous 1.47×10−2 4.9×10−3 8.8×10−3 2.9×10−3

Desert 0 0 0 0

Drought deciduous 2.9×10−2 8.9×10−3 1.8×10−2 5.4×10−3

Grassland 1.8×10−1 5.9×10−2 1.1×10−1 3.6×10−2

Tropical rain forest 1.3 1.9×10−1 7.7×10−1 1.2×10−1

Tundra 2.4×10−2 8.2×10−3 1.5×10−2 5.0×10−3

Woodland 8.3×10−2 3.2×10−2 5.0×10−2 1.9×10−2

Wetland 1.5×10−3 – 8.8×10−4 –

∗ Wang et al. (1998); Wang and Jacob (1998).

Here we update the photochemical oxidation mechanism

of isoprene, a non methane hydrocarbon which accounts for

∼30–50% of biogenic emissions (Guenther et al., 2006),

to include sources of FA from products of its photooxida-

tion with OH: hydroxyacetone, glycolaldehyde and isoprene

nitrates (Butkovskaya et al., 2006a,b; Paulot et al., 2009,

cf. Supplement). Ozonolysis of methylvinylketone (MVK)

and methacrolein (MACR), two major products of isoprene

photooxidation, are also known to yield FA (Aschmann et al.,

1996; Grosjean et al., 1993). In contrast, isoprene photo-

chemistry has long been thought to be an insignificant source

of AA (Jacob and Wofsy, 1988). Recent experimental evi-

dence suggests, however, that the photooxidation of hydrox-

yacetone produces significant amounts of AA (Butkovskaya

et al., 2006b) at low temperature. Isoprene is also a signifi-

cant source of peroxy acetyl radical (PA), which reacts with

HO2 to yield AA with a yield of 15% (Hasson et al., 2004;

Dillon and Crowley, 2008).

The OH-oxidation of methylbutenol (MBO), a volatile or-

ganic compound emitted in large quantities by coniferous

trees (Harley et al., 1998), also yields glycolaldehyde and hy-

droxymethylpropanal (HMPR), a precursor of acetone (Car-

rasco et al., 2006), and thus of AA via PA. MBO ozonoly-

sis has also been shown to yield FA as well as acetone and

HMPR (Carrasco et al., 2007).

The OH-oxidation of various monoterpenes has been re-

ported to produce FA. However, the yield remains very un-

certain. For instance, reported FA yields from the OH-

oxidation of α-pinene range from 7% (Orlando et al., 2000)

to 28% (Larsen et al., 2001). Yields greater than 50% have

been reported for limonene (Larsen et al., 2001). Ozonolysis

of various monoterpenes also yields FA and AA (Lee et al.,

2006). Monoterpenes are lumped into one species, MONX,

in the GEOS-Chem chemical mechanism. We adopt a FA

yield of 15.5% for the reaction of MONX with OH and a FA

(AA) yield of 7.5% (8%) for its ozonolysis. The formation

of carboxylic acids in the oxidation of MONX by OH has

been ascribed to the reaction of stabilized α-hydroxyalkyl

radicals with NO (Orlando et al., 2000; Larsen et al., 2001).

However, Peeters et al. (2001) calculated that this reaction is

only competitive with their thermal decomposition to alde-

hyde + HO2 under laboratory conditions (NO ∼ 1–10 ppmv),

suggesting that the yield of FA from the first steps of MONX

photooxidation is negligible (Peeters et al., 2001; Capouet

et al., 2004). Conversely, the very simplified representation

of MONX secondary photochemistry in GEOS-Chem may

result in an underestimate of their overall FA/AA forming

potential.

The OH-oxidation of acetaldehyde, whose sources in-

clude large emissions from the terrestrial and marine bio-

sphere (Millet et al., 2010), is an important source of AA via

PA + HO2. The modification to the GEOS-Chem mechanism

are summarized in Table S4.

2.2.2 Marine precursors

Ozonolysis of marine biogenic emissions has been suggested

to provide a source of FA and AA in the marine atmosphere

(Arlander et al., 1990; Sanhueza et al., 1996; Baboukas et al.,

2000).

In this study, we include monthly marine emissions of iso-

prene, acetaldehyde, ethene and larger alkenes. Acetalde-

hyde marine emissions (∼1.3 Tmol yr−1) are from Millet

et al. (2010) and isoprene sources are from Arnold et al.

(2009) (top-down estimate : 28 Gmol yr−1). Emissions of

ethene (162 Gmol yr−1) and larger alkenes (164 Gmol yr−1)

are inferred from isoprene emissions using the flux ratios ob-

served by Broadgate et al. (1997).

Atmos. Chem. Phys., 11, 1989–2013, 2011 www.atmos-chem-phys.net/11/1989/2011/
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2.2.3 Anthropogenic/biomass burning precursors

In addition to fresh emissions from biomass burning or an-

thropogenic sources, production of FA and AA within fire

plumes has been measured in many (Goode et al., 2000; Gao

et al., 2003; Yokelson et al., 2003; Herndon et al., 2007) but

not all instances (de Gouw et al., 2006). Here, we include for-

mation of FA and AA from the photooxidation of acetylene

(Hatakeyama et al., 1986), ethene and propene (and higher

alkenes).

Anthropogenic inventories for CO are described by Bey

et al. (2001) and biofuel emissions by Yevich and Logan

(2003). Recent updates of these inventories are described by

Millet et al. (2010). Emissions and photooxidation of acety-

lene, propene and ethene, which are precursors of FA and

AA, were recently included or updated by Fu et al. (2008)

in the GEOS-Chem model. In addition we include biomass

burning emission of hydroxyacetone and glycolaldehyde (Fu

et al., 2008), two precursors of FA and AA.

2.3 Sources not treated

Graedel and Eisner (1988) estimate that emissions of FA

from formicine ants could exceed motor vehicle and biomass

burning emissions. The overall contribution of formicine

ants to the FA budget is, however, likely to be limited (Chebbi

and Carlier, 1996) but may be important in ecosystems where

formicine ants are abundant (e.g., tropical forests).

Aqueous phase oxidation of formaldehyde within clouds

has been proposed to be a non-negligible source of FA in re-

mote environments (Chameides, 1984; Jacob, 1986). How-

ever Lelieveld and Crutzen (1991) argued that the very fast

aqueous oxidation of FA would greatly diminish the role of

cloud chemistry as a source of FA.

The source of FA and AA from enol photochemistry is

not included in the model (Archibald et al., 2007). Enol are

known intermediates in combustion (Taatjes et al., 2005) and

could originate from keto-enol tautomerizations catalyzed by

carboxylic acids (da Silva, 2010). However, the importance

of these processes as a source of FA and AA is poorly known

and additional experimental constraints are needed to include

these processes in a global model.

2.4 Sinks

2.4.1 Photochemical

FA reacts with OH primarily via abstraction of the acidic hy-

drogen with a recommended temperature independent rate of

4.5×10−13cm3 (molec s−1) (Atkinson et al., 2006). The un-

certainty of this rate coefficient is relatively large (1log =

0.15 at 298 K (Atkinson et al., 2006)) because of experimen-

tal challenges (dimerization of FA). To our knowledge, this

rate coefficient has not been determined below 298 K. The-

oretical calculations suggest, however, that the acidic (R1),

dominant at ambient temperature, and formyl (R2) channels

have opposite temperature dependence (Galano et al., 2002;

Sun and Saeys, 2008).

HCOOH+OH → HCOO· +H2O (R1)

→ ·COOH+H2O (R2)

This results in a relatively “flat” temperature profile near

298 K where the laboratory investigations were conducted

but a strong negative temperature dependence at lower tem-

perature. This will be examined in Sect. 4.3.

In contrast, the AA reaction with OH has been studied

over a much wider temperature range. The reaction fol-

lows a mechanism similar to FA (Butkovskaya et al., 2004)

and exhibits a negative activation energy. The tempera-

ture dependence remains uncertain and we use the IUPAC

recommendation, 4.2 × 10−14exp(855/T ) cm3 (molec s−1)

(1log = 0.15 at 298 K) (Atkinson et al., 2006), which is in

excellent agreement with the two most recent determinations

of this reaction rate coefficient (Butkovskaya et al., 2004;

Huang et al., 2009).

2.4.2 Dry deposition

Dry deposition of oxidants and water soluble species is com-

puted using a resistance-in-series model based on the for-

mulation of Wesely (1989) implemented in GEOS-Chem by

Wang and Jacob (1998). The dry deposition velocities of

FA and AA depend on surface momentum and sensible heat

fluxes, temperature, solar radiation as well as the effective

Henry’s constant of FA and AA (H), which are calculated

at a pH of 7, a reasonable assumption for most surfaces

(Wesely, 1989). We use the median of the reported mea-

surements: HFA = 5400 M atm−1, HAA = 5350 M atm−1

(Sander, 1999).

2.4.3 Wet deposition

Wet deposition is thought to be the most important sink of FA

and AA (Chebbi and Carlier, 1996). The GEOS-Chem wet

deposition scheme includes scavenging of soluble tracers in

convective updrafts, as well as rainout and washout of solu-

ble tracers (Mari et al., 2000; Liu et al., 2001). We assume a

rain pH of 5 and that the acids are fully retained at freezing,

as with HNO3.

We modify the GEOS-Chem deposition scheme to in-

clude the uptake of FA and AA in ice clouds. Briefly, as-

suming equilibrium between the ice surface concentration

[X]s (molec cm−3) and the gas-phase concentration [X]g

(molec cm−3), non-dissociative uptake and non competitive

adsorption, [X]s can be related to the surface area of ice (Sice

(cm2 cm−3)), the maximum number of molecules which can

be adsorbed on the surface (Nmax (molecules cm−2)) and the

fractional coverage (θ ) by:

www.atmos-chem-phys.net/11/1989/2011/ Atmos. Chem. Phys., 11, 1989–2013, 2011
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[X]s = SiceθNmax

θ is given by the Hill-Langmuir equation:

θ =

K
Nmax

[X]g

1+ K
Nmax

[X]g

where K (cm) is a temperature dependent partition coeffi-

cient: K = α×exp(β/T ) with αFA = 5.8×10−11 cm, αAA =

1.0×10−10 cm and βFA = 6500 K, βAA = 6600 K (Marécal

et al., 2010; Crowley et al., 2010).

2.4.4 Dust

Field measurements have identified formate and acetate on

collected mineral aerosols (Lee et al., 2000, 2002; Russell

et al., 2002; Falkovich et al., 2004). Falkovich et al. (2004)

found that formate and acetate were the most abundant mono

carboxylic anions in dust particles and that their uptake was

facilitated at higher relative humidity (RH).

Consistent with these observations, efficient uptake of car-

boxylic acids on various components of dust (Usher et al.,

2003) has been measured: FA on clay (montmorillonite)

(Hatch et al., 2007) and CaCO3 (Al-Hosney et al., 2005); AA

on SiO2, α−Al2O3, α−Fe2O3 (Carlos-Cuellar et al., 2003)

and CaCO3 (Prince et al., 2008). Increased water enhance the

capacity of the mineral dust to take up carboxylic acids (Al-

Hosney et al., 2005; Hatch et al., 2007; Prince et al., 2008)

but does not change the accommodation coefficient (γ ) sig-

nificantly.

Surface saturation needs to be explicitly treated as it

severely reduces the efficiency of this removal mechanism

(Hatch et al., 2007). Accounting for the saturation limit,

Hatch et al. (2007) estimated that up to 40% of gaseous AA

could be removed during a dust storm.

In GEOS-Chem, dust is carried into four different size

bins. Here we use emissions from the dust entrainment

and deposition (DEAD) scheme (Zender et al., 2003; Fair-

lie et al., 2007). From Hatch et al. (2007), we use γFA = 4×

10−4 and γAA = 3×10−4 for RH < 30%; γFA = 5.4×10−4

and γAA = 14 × 10−4 for RH ≥ 30%. The dependence of

surface saturation (S in mg(acid)/g(dust)) on RH is approx-

imated by fitting an exponential to Hatch et al. (2007) mea-

surements: SFA = 2+4.7×(1−exp(−8.6×10−3×RH)) and

SAA = 2 + 5.8 × (1 − exp(−2.6 × 10−2 × RH)). Heteroge-

neous degradation of FA (Al-Hosney et al., 2005) and AA

(Prince et al., 2008) to CO2 is not represented but may fur-

ther enhance the uptake of FA and AA.

2.5 Simulated distribution

2.5.1 Formic acid

The total source of formic acid in the model is about

1200 Gmol yr−1 (Table 3). This is about twice as large as pre-

vious estimates (Ito et al., 2007; von Kuhlmann et al., 2003a).

Modeled FA sources are dominated by photochemical pro-

duction from the oxidation of biogenic precursors. More than

a third of the FA photochemical source stems from glyco-

laldehyde and hydroxyacetone via the Butkovskaya’s mech-

anism (Butkovskaya et al., 2006a,b). These sources were

not included in previous estimates and account for much of

the difference (Table 3). Other important sources include

isoprene ozonolysis (14% of the photochemical production)

and monoterpenes photooxidation (6%). Acetylene is the

dominant non-biogenic precursor (6.5%).

Over three quarters of FA photochemical production is de-

rived from isoprene photooxidation, many aspects of which

remain uncertain. In particular, it is worth noting that the

mechanism recently proposed by Peeters et al. (2009) re-

sults in large modifications of the distribution of isoprene

photooxidation products determined from chamber experi-

ments (including hydroxyacetone and glycolaldehyde). If

correct, this could significantly affect the modeled budget of

FA. Nevertheless, despite our incomplete knowledge of iso-

prene photooxidation, its representation in the GEOS-Chem

mechanism is much more explicit than for most other bio-

genic volatile organic compounds. This probably results in

an overestimation of the importance of isoprene as a precur-

sor for FA as the photooxidation of other biogenic volatile

organic compounds, such as the different monoterpenes, is

much more simplified.

Direct emissions of FA are small (∼15%) and dominated

by terrestrial vegetation and biomass burning. Emissions

from vehicles do not contribute significantly to the mod-

eled FA budget, consistent with observations from de Gouw

et al. (2005). Our modeled FA budget suggests, however,

that more than 90% of FA is composed of modern carbon

globally (Table S2). This percentage is lower in the north-

ern mid and high latitudes, though FA is still predicted to be

largely dominated by modern sources (Table S2), consistent

with isotope studies in Europe (Glasius et al., 2001).

The enhancement in FA (1FA) in aged biomass burning

plumes and its correlation with 1CO has frequently been

used to derive emission factors from ground or satellite based

observations (e.g. Paton-Walsh et al., 2005; Rinsland et al.,

2007; Gonzàlez Abad et al., 2009). Our study suggests that

FA is rapidly removed from the boundary layer by wet and

dry deposition, so that little FA emitted or formed in the

boundary layer is advected over long distances or transported

into the free troposphere. Therefore 1FA observed in aged

plumes is unlikely to represent direct emissions, as com-

monly assumed, but rather the production of FA from the

photooxidation of biomass burning emitted precursors. Thus,

1FA cannot be used, in general, to derive emission factors

far away from emission regions.

FA sinks are dominated by depositions. Dust is not a sig-

nificant sink globally but can result in a large decrease of

acids in the vicinity of large deserts.

The modeled atmospheric lifetime of FA is 3.2 days, con-

sistent with previous estimates (Chebbi and Carlier, 1996).
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Table 3. Modeled global budget of atmospheric formic and acetic acids (2004–2008 average). Previous estimates are indicated in

parentheses.

Formic acid (τ = 3.2 days) Acetic acid (τ = 2.3 days)

Total Sources (Gmol yr−1) 1232 (666a, 587b) 1424 (1550a, 1217b)

Photochemical production 1055 976

(370a, 370b) (1250a, 700b, 2000c)

Biogenic 917d 955d

Anthropogenic 138 21

+Biomass burning

Emissions 177 (296a, 217b) 448 (300a,517b)

Anthropogenic 3.5 7

Biofuel Burning 6.5 (25b) 114.5 (274b)

Biomass Burning 32.5 (174a, 183b) 187 (243a, 279b)

Cattle 39.5 39.5

(25−100f,g) (4.2−16.8f)

Soil 39 57

Terrestrial vegetation 56 43

(122a, 125h, 33−166i, (56a, 25h,17−83i, 10−33j)

20−130j)

Total Sinks (Gmol yr−1) 1233 1426

Photochemical 229.5 413

Dry deposition 536 522

Wet deposition 437.5 451.5

Dust 30 39.5

a von Kuhlmann et al. (2003a,b).
b Ito et al. (2007).
c Baboukas et al. (2000).
d Neglect biomass burning contribution to hydroxyacetone and glycolaldehyde.
e Sum of biomass burning and biogenic emissions.
f Ngwabie et al. (2008).
g C2H5OH+HCOOH.
h Lathière et al. (2006).
j Kesselmeier et al. (1998).

The lifetime of FA in the boundary layer is about 1.6 days

(excluding transport to the free troposphere).

The FA atmospheric mass is highest in the tropics (∼60%

of the global burden Table S2) as a result of large biogenic

and biomass burning emissions (Fig. 1). Modeled mixing

ratios in the Northern midlatitudes are low and follow the

seasonal cycle of biogenic emissions.

2.5.2 Acetic acid

The total source of acetic acid is about 1400 Gmol yr−1 (Ta-

ble 3). Emissions of AA account for about one third of AA

sources. The difference with FA stems from much larger di-

rect emissions from biomass and biofuel burning. Secondary

production from anthropogenic sources or biomass burn-

ing is small. AA production has, however, been observed

in biomass burning plumes. For instance, Yokelson et al.

(2003) observed 1AA/1CO increase by as much as 9% in

some biomass burning plumes and noted that the secondary

production of AA exceeds the measured direct emissions.

This observation cannot, however, be generalized since other

plumes did not exhibit production of AA (de Gouw et al.,

2006; Yokelson et al., 2009, and references therein). Yokel-

son et al. (2009) also noted that the growth of FA and AA in

the Yucatan biomass burning plumes cannot be accounted for

by the photochemistry of their known precursors, pointing to

unidentified high molecular weight precursors. The impor-

tance of these precursors as a source of FA and AA will be

investigated in Sect. 4.2.

Photochemical production is dominated by the reaction of

PA with HO2 (53%) and other peroxy radicals (24%), with

isoprene photochemistry and acetaldehyde oxidation the pri-

mary sources of PA. Our estimates are consistent with those

of von Kuhlmann et al. (2003a) and Ito et al. (2007) but

much lower than the estimate by Baboukas et al. (2000). von

Kuhlmann et al. (2003a) pointed out that this is the result of

the very high branching ratio for the production of AA from

PA + HO2 assumed by Baboukas et al. (2000), inconsistent

with values reported in recent laboratory experiments (e.g.,

Dillon and Crowley, 2008).
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Fig. 1. Annual simulated distribution of FA and AA in the boundary

layer. FA and AA maxima in the tropics reflect strong biogenic

sources.

Similar to FA, deposition is the major sink of AA. Because

AA is less soluble than FA and because its oxidation by OH

is faster and has a negative temperature dependence, pho-

tooxidation of AA is much more important than for FA and

contributes to the significantly shorter lifetime of AA in the

atmosphere: 2.3 days (1.7 days in the boundary layer). AA

is predicted to primarily consist of modern carbon globally

(Table S3). The distribution follows patterns similar to FA

with a stronger influence of biomass and biofuel burning.

3 Comparison with observations

In this section, we evaluate the GEOS-Chem simulation

against upper tropospheric and total column measurements

of FA by solar absorption spectrometry in the infrared using

a Fourier transform spectrometer (FTS) as well as FA and

AA aircraft measurements. The location of ground based

stations, the ship cruises and aircraft-based measurements is

indicated in 2.

3.1 FTS measurements

FA can be measured by FTS using the Q-branch of

the ν6 mode near 1105 cm−1. In this section, we use

FA total columns retrieved by ground-based stations of

the Network for the Detection of Atmospheric Composi-

tion Change (NDACC, http://www.ndacc.org/, Kurylo and

Solomon (1990)) as well as during several cruises by the Ger-

man vessel Polarstern in the Atlantic ocean (Velazco et al.,

2005). We also use upper tropospheric FA profiles measured

by the space-borne Atmospheric Chemistry Experiment FTS

(Bernath et al., 2005). All retrievals use the revised spec-

troscopic parameters for FA (Vander Auwera et al., 2007)

contained in the HITRAN 2008 spectral database (Rothman

et al., 2009).

3.1.1 Ground-based total column

Solar spectra in the vicinity of the ν6 vibration have been ob-

tained by several stations of the NDACC: Barcroft in the Inyo

National Forest (California) at 3800 m, Bremen in north-

western Germany, La Réunion 700 km east of Madagascar,

Paramaribo on the coast of Suriname, Thule in northwestern

Greenland, and Wollongong, 100 km south of Sydney. The

different measurement sites and the cruise ship tracks are de-

picted in Fig. 2. Measurement uncertainty is estimated to be

∼19%. The choice of the spectral microwindow used to re-

trieve FA could result in a systematic bias in the retrieved

FA as large as ±2.7 × 1015 molec cm−2. A more detailed

description of the FTS retrievals can be found in the Supple-

ment (Figs. S1 to S4 and Table S1).

Photooxidation of isoprene and other biogenic emissions:

a major source of FA

The FA seasonal cycle at the mid-latitude stations, Wollon-

gong (Fig. 3a, see also Fig. S5), Bremen (Fig. 4b, see also

Fig. S6) and Barcroft (Fig. 4c, see also Figs. S7 to S9) is

consistent with a major source of FA from terrestrial biogenic

emissions and their photooxidation. At Wollongong, for in-

stance, FA and biogenic emissions peak simultaneously in

January. In contrast, CO and HCN total columns generally

peak around October, at the height of the biomass burning

season (Fig. S5). At Barcroft, the strong correlation between

FA and CH2O in the summer months (Fig. S7) also suggests

a large influence of biogenic emissions on the FA budget. In

contrast there is no correlation between FA and HCN. This

interpretation is consistent with the conclusions of Zander

et al. (2010) that FA seasonal variations above the Alpine

plateau are the result of natural processes.

At all sites, the model predicts large contributions of bio-

genic photooxidation to the FA budget. The model performs

best in regions and time periods impacted by large isoprene

emissions such as in Wollongong (Fig. 3a) and La Réunion

(Fig. 4a). Interestingly, the model predicts a biogenic peak

in FA in May at La Réunion later than the maximum in iso-

prene emission in Southern Africa (Otter et al., 2002). In-

tense precipitations from January to April over La Réunion

may explain this delay by efficiently scavenging FA (leading

to a minimum in the modeled FA in January). As the climate

becomes drier in May, the atmospheric lifetime of FA in-

creases resulting in higher FA total columns in spite of lower

Atmos. Chem. Phys., 11, 1989–2013, 2011 www.atmos-chem-phys.net/11/1989/2011/
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Fig. 2. Locations of the measurement sites used in this study. Red crosses: FTS ground stations (B: Barcroft, Br: Bremen, P: Paramaribo, R:

La Réunion, T: Thule, W: Wollongong). Cyan dots: ship cruises. Blue, Magenta, Yellow and Green dots: aircraft missions flight tracks.

isoprene emissions. This illustrates the complicated inter-

play between FA sources and sinks in the tropics. The model

suggests La Réunion is especially sensitive to this effect as

the modeled FA total column is dominated by transport from

Madagascar and Southern Africa.

In contrast, the model greatly underestimates FA at Bre-

men (Fig. 4b) and Barcroft (Fig. 4c). These stations ex-

hibit a marked biogenic signature but are located in regions

with lower isoprene emissions. This likely reflects a miss-

ing biogenic precursor of FA in the model. In these re-

gions, FA production may be promoted by seasonal biotic

emissions from cattle and crop farming (Karl et al., 2009)

associated with elevated ozone due to anthropogenic activi-

ties. The anthropogenic contribution to FA is predicted to be

low at both sites (less than 5%) consistent with the seasonal

profile of FA and previous isotope measurements in Europe

(Glasius et al., 2000, 2001).

We note that Barcroft data must be interpreted cautiously

as the complicated topography of the region is not resolved

in the model. In particular summer FA total columns show

evidence for boundary layer incursions which are not cap-

tured at the coarse resolution used in this study. However,

CH2O seasonality is surprisingly well-captured in the model

despite a low-bias in the summer (Fig. S8). Therefore, me-

teorology alone is unlikely to explain the large discrepancy

between the model and the data over this site, and sources

from the Central Valley (150 km to the west of Barcroft) are

likely underestimated.

Missing biomass burning precursors

Evidence for a large but more localized and seasonal biomass

burning source of FA can be found in the Wollongong and La

Réunion records (Figs. 3a and 4a). In La Réunion, FA peaks

in October. This peak is also observed in CO and CH2O FTS

measurements at the same location and is associated with

biomass burning in Southern Africa (CO) and Madagascar

(CO and CH2O) (Vigouroux et al., 2009). In Wollongong,

the anomalously high FA total column measured in Decem-

ber 2006, the largest on the record, is also associated with

biomass burning, since (a) it clearly precedes the biogenic

peak in FA observed in other years, (b) very large bush fires

burned over 1 million acres from December 2006 to January

2007 in the Victorian Alps ∼450 km southwest of Wollon-

gong, and (c) anomalously high CO and HCN columns are

recorded during the same time period (Fig. S5). This is con-

sistent with the work of Paton-Walsh et al. (2005) who re-

ported a significant correlation between aerosol optical depth

and FA at the same site during bush fires from 2001 to 2003

and inferred that biomass burning could result in a strong en-

hancement in FA total column at this site.

The model captures the timing of the biomass burning con-

tribution to the FA column well but underestimates FA dur-

ing biomass burning periods. The coarse resolution of the

model is likely to contribute to this discrepancy due to the

dilution of biomass burning plumes. However, the system-

atic discrepancy on a multi-year average at La Réunion may

also indicate missing biomass burning sources of FA.

The discrepancy for marine sites (cruise (Fig. 5) and Para-

maribo (Fig. 4d)) also hints at a missing biomass burn-

ing source of FA. Air masses affected by biomass burning
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Fig. 3. The observed seasonal cycle of FA total column (blue, lower

panel) is well captured by the model at (red, lower panel) at Wol-

longong, Australia (34.5◦ S, 150◦ E, 20 m a.s.l., (a)) and is consis-

tent with a strong biogenic influence (green, upper panel). This is

not the case in the high latitude site at Thule, Greenland (76.53◦ N,

68.75◦ W, 220 m a.s.l., (b)) where model under predicts measured

FA. Upper panel: modeled contribution of biogenic sources (green:

emission + photochemical production) and biomass burning (black:

emissions + photochemical production) to FA total column. Lower

panel: modeled (red) and measured (blue) FA total column. Mea-

surements and model are averaged over a two day time period.

emissions are known to be advected aloft from Africa to

South America and their impact has been measured over

Paramaribo during the dry season from August to Novem-

ber (Peters et al., 2004; Petersen et al., 2008). High CO mea-

sured in the tropics during cruises is also well correlated with

FA (R = 0.64, Fig. S10). The lifetime of FA is, however, in-

compatible with a large contribution of directly emitted FA

to the FA total column over Paramaribo (transport time from

Africa to Paramaribo has been estimated at 10 days by Pe-

ters et al. (2004)) and suggests a missing long-lived precur-

sor from biomass burning. Sources of FA and AA from ma-

rine emissions are also likely to be underestimated since the

model predicts surface concentrations which are 2 to 5 times

lower than measurements made during cruises by Arlander

et al. (1990) and Baboukas et al. (2000).

A local source in the polar regions

FA and AA account for a large fraction of the water-soluble

organic carbon (gas + particle) over snow in polar regions

(Anderson et al., 2008). Better constraints on the budget of

FA and AA in these regions may help understand the large

variations in FA and AA observed in the ice core record

in the last 100 000 years (Legrand and De Angelis, 1996).

These variations have been tentatively attributed to changes

in the biosphere or biomass burning activity in boreal regions

(Fuhrer and Legrand, 1997; Eichler et al., 2009).

Measured FA over Thule is about one order of magnitude

lower than in Wollongong (Fig. 3b). The largest FA total

columns are measured in the summers of 2004 and 2008.

Both these periods are characterized by exceptional biomass

burning in boreal regions (in North America in 2004 and in

Asia in 2008) (Giglio et al., 2010), consistent with the hy-

pothesis that FA anomalies may reflect large biomass burn-

ing events. In the absence of local sources, the modeled FA

column is dominated by transport. This is reflected in the

modeled vertical distribution of FA peaking in the free tro-

posphere. The model predicts a strong seasonal cycle with

maximum during the boreal summer, corresponding to the

largest biogenic and biomass burning emissions. The model

underestimates FA total column by a factor of 2 to 5. This

discrepancy may in part reflect insufficient biomass burn-

ing emissions (Andreae and Merlet, 2001). We also note

that the model predicts very low concentrations of FA at the

surface (∼10 pptv). This is in sharp contrast with the mea-

surements of Anderson et al. (2008) which report ∼1 ppbv

of water-soluble organic carbon (primarily FA and AA) over

Summit at 1.5 m above the snow. This discrepancy between

model and observation in Thule may thus reflect missing lo-

cal sources. Indeed, Dibb and Arsenault (2002) reported sur-

face concentrations of FA and AA measured in the Arctic

could not be sustained by transport alone but required a large

source from snow photochemistry.

Missing winter sources

Mid latitude and low altitude sites (Bremen, Wollongong)

show larger relative biases between the model and the data

during the winter (Figs. 3a and 4b). This may point to

large missing anthropogenic sources of FA (Talbot et al.,

1988). Alternatively leaf decay may also contribute to

the FA sources in the winter months (Kesselmeier et al.,

1998). A missing biogenic contribution would be consis-

tent with isotope measurements which showed that FA and

AA are primarily made of modern carbon even in the winter

(Glasius et al., 2001).
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Fig. 4. (a) La Réunion, France (−20.9◦ N, 55.5◦ E, 10 m.as.l.). Measurements are from campaigns in 2004 (Aug–Oct), 2007 (May–June;

Aug–Oct) and 2009 (May–Dec) and (b) Bremen, Germany (53.1◦ N, 8.9◦ E, 27 m a.s.l.). Measurements are from 2002 to 2010. (c) Barcroft,

United States (37.6◦ N, −118.2◦ E, 3800 m a.s.l.). Measurements are from campaigns in 1994 (Aug), 1998 (Oct–Dec), 1999 (Jan–Jul), 2000

(Oct–Dec), 2001 and 2002 (Jan-Aug) and (d) Paramaribo, Suriname (5.8◦ N–55.2◦ W, 23 m a.s.l.). Measurements are from campaigns in

2004/2006 (Oct–Nov), 2005/2007 (Feb–Mar; Sep). Upper panels: same as Fig. 3. Lower panel: comparison between modeled and measured

FA total columns. Individual total column measurements are indicated with blue dots. The 2004–2008 model range is indicated by the red

shaded area and the model mean by the white dashed line.

3.1.2 ACE-FTS

The Atmospheric Chemistry Experiment (ACE) is a Cana-

dian satellite that was launched by NASA on on 12 Au-

gust 2003. FA is measured by high spectral resolution

(0.02 cm−1) FTS operating from 2.2 to 13.3 µm. Using solar

occultation, the altitude profile of temperature, pressure and

various chemical compounds, including FA, CO and C2H2

are determined between 85◦ N and 85◦ S. Here, we are using

version 3.0 of the ACE-FTS Level 2 data product.

Rinsland et al. (2006) and Gonzàlez Abad et al. (2009)

have used the ACE-FTS spectra to retrieve mid and upper

tropospheric FA. Even though most FA is located at low alti-

tude and thus cannot be observed by ACE-FTS, these upper

atmospheric profiles provide insights into the sinks, sources

and transport of FA.

Figure 6 shows the average distribution of FA measured

by ACE-FTS from 2004 to 2008. FA is highest from 10 to

50◦ S, probably reflecting large biogenic sources. The North-

ern hemisphere exhibits lower FA mixing ratios on average.

FA mixing ratios decrease rapidly with altitude and away

from the source region. High mixing ratios observed at high

altitudes in the Southern Hemisphere may indicate efficient

transport of FA or, more likely, its precursors from the bound-

ary layer to the free troposphere.

The model captures mid tropospheric FA in the tropics and

Southern mid latitudes relatively well. It is biased low north

of 40◦ N (Fig. 7), mirroring the low modeled concentration

of FA in the planetary boundary layer (Fig. 1) and consistent

with the large underestimation of FA total column over Bre-

men. The model is biased high south of 50◦ S. This region

experiences among the lowest concentrations of FA and it is

unclear how significant this discrepancy is.
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Fig. 5. Monthly FA total column measured during cruises in the

Atlantic ocean in 1996, 1999, 2000, 2002, 2003 and 2005 (dots).

The 2004–2008 model monthly mean range is indicated by the red

shaded area. FA maximum in the tropics reflects biomass and bio-

genic sources.
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Fig. 6. Measured distribution of FA (pptv) by ACE-FTS from 2004

to 2008. Median of FA measurements is calculated in 10◦ lati-

tude 50 mbar bins. Only cells with more than ten measurements

are shown.

The model greatly underestimates the measured vertical

gradient of FA in the free troposphere, underestimating FA

at low altitude and overestimating it at high altitude (Fig. 7).

The correlation plot between FA and CO reveals possible

reasons for this discrepancy (Fig. 8). The model overes-

timates FA at low CO (40 to 60 ppbv) which primarily re-

flects the high bias of the model at high altitude where most

of the ACE-FTS measurements are taken. ACE HCN mea-

surements (not shown) imply that air masses with CO mix-
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Fig. 7. Comparison of the simulated FA with observations by ACE-

FTS suggests an altitude-dependent error. Increasing the reaction

rate of OH with FA reduces the model high-bias in the upper tro-

posphere (C) while injection of biomass burning in the free tropo-

sphere provides little improvement in the middle troposphere while

degrading FA simulation in the upper troposphere (B). Absolute

difference between the model and the ACE-FTS measurement is

shown in pptv with contours indicating the relative difference in %

((model-measurement)/measurement). Cells with no measurements

are grayed. Panel (A) shows the comparison for the reference run

(R1), Panel (B) for R2b and Panel (C) for R4 (see Sect. 4). The

model is sampled at the location and time of the ACE-FTS mea-

surement.

ing ratios greater than 160 ppbv are strongly influenced by

fresh biomass burning emissions. This is in part captured by

the model which shows a strong enhancement of FA in this

regime. The largest discrepancy is found for values of CO

ranging from 120 to 150 ppbv. These air masses exhibit a

weak biomass burning signature and are primarily located in

the lower free troposphere at high northern latitudes. These

air masses may be affected by boundary layer air, carrying

high mixing ratios of FA or its precursors of biogenic or an-

thropogenic origins. Alternatively, they may be associated

with aged biomass burning, which would support the exis-

tence of long-lived biomass burning precursors of FA.

3.2 Aircraft measurements by mass spectrometry

From the previous section, large sources of FA appears to be

missing in the Northern Hemisphere mid latitudes. Here we

present data from several aircraft missions over North Amer-

ica to gain insights on these missing sources. We use mea-

surements from the Intercontinental chemical transport ex-

periment (INTEX-B/IMPEX April to May 2006 with a focus

on the transport of pollution from Asia to the United States

over the Pacific, Singh et al., 2009), the Second Texas Air

Quality Study (TexAQS II – August to October 2006 Par-

rish et al., 2009), the Intercontinental Transport and Chem-

ical Transformation experiment (ITCT 2k4 campaign over
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Fig. 8. The correlation between CO and FA observed by ACE-

FTS (blue crosses) in the free troposphere is not well-captured by

the model (green, red and blue crosses), suggesting a missing sec-

ondary source. Lower panel: correlation plot between FA and CO

(lower panel) for the measurements (blue) and the model: R1 (red),

R2b (green), R4 (black). Upper panel: distribution of measured and

modeled CO. The extent of the error bars indicate the 25 and 75

percentiles. The model is sampled at the location and time of the

ACE-FTS measurement.

the Northeastern United States, Fehsenfeld et al., 2006) and

the Aerosol, Radiation and Cloud Processes Affecting Arctic

Climate study (ARCPAC 2008 over Alaska (Warneke et al.,

2009)). FA and AA were measured by Chemical Ionization

Mass Spectrometry during INTEX-B Crounse et al., 2006)

and AA was measured by PTRMS during ITCT 2k4, AR-

CPAC 2008 and TexAQS II de Gouw and Warneke, 2007.

Even though FA was not measured during these missions, it

can be expected to correlate very well with AA (e.g., R = 0.9

for INTEX-B).

The model underestimates AA and FA in all missions, con-

sistent with total column observations in the Northern mid

and high latitudes (Bremen and Thule). Missions closer to

large biogenic or anthropogenic sources (ITCT 2k4 and Tex-

AQS II) exhibit a smaller discrepancy than INTEX-B (im-

pacted by aged Asian pollution) or ARCPAC 2008 (impacted

by biomass burning). This suggests a large missing long-

lived precursor of FA and AA. Consistent with this hypothe-

sis, air masses exhibiting a strong Asian pollution signature

(as defined by Dunlea et al., 2009) exhibit a marked enhance-

ment in FA and AA mixing ratio over other air masses sam-

pled over the Pacific (Table 4). Since FA and AA emitted

or formed in Asia are expected to be washed out as air is

lifted out of the boundary layer, this enhancement hints at a

secondary production of both acids. The correlation of FA

with the organic fraction of the aerosols (R = 0.83, Fig. 9),

which are predominantly of secondary origin (Dunlea et al.,

2009) is consistent with this hypothesis. Similarly, in AR-

CPAC 2008, a strong correlation of AA with black carbon
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Fig. 9. In-situ measurements show strong correlation of FA and AA

with the abundance of organic aerosol over the West Coast of the

United States and the eastern Pacific (INTEX-B), in urban environ-

ments (MILAGRO) as well as in arctic regions (ARCPAC).

(R = 0.86) and the organic content of the aerosol (R = 0.82)

hints at missing sources of AA from biomass burning.

Unrepresented precursors of FA and AA could also ac-

count for some of the discrepancy in INTEX-B (e.g. Sinreich

et al., 2010). The discrepancy in the marine boundary layer

for both acids is similar to the one reported by Baboukas

et al. (2000) in the Atlantic ocean. Modeled marine sources

of FA are a negligible fraction of FA photochemical produc-

tion (∼2.5%) reflecting the low emissions of FA precursors.

This is not true for AA as acetaldehyde emissions from ma-

rine sources are large, resulting in ∼8.5% of AA production

over the ocean. The marked maximum in FA total column in

the tropics is, however, consistent with an important role of

transport from the continents (Fig. 5).

INTEX-B measurements over the California Central Val-

ley (Table 4) also confirm that cattle and/or crop farming

is accompanied by very large mixing ratios of FA and AA

(5 times greater than in Asian plumes and 10 times greater

than in the Pacific free troposphere). In contrast with mea-

surements taken over the Pacific, AA appears to be pro-

duced/emitted more efficiently than FA in this environment.

Comparisons between the model and the data show lower

discrepancies for TexAQS II and ITCT 2k4(∼2−3x, Fig. 10a

and 10b). Correlations with anthropogenic markers (ben-

zene: R = 0.5 for TexAQS II, R = 0.75 for ITCT 2k4 ;

methoxyperoxyacetylnitrate: R = 0.85 for ITCT 2k4) sug-

gests a source of AA may be associated with anthropogenic

processes.
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Table 4. The increase in the median measured (m) FA and AA in polluted air observed during INTEX-B/IMPEX reflects the importance of

secondary sources in the budget of FA and AA. These sources are missing from the model (M). α is the slope of the linear fit: AA=αFA+β

calculated using York’s method (York et al., 2004) for the measurement (ordinary least square for the model). Characterization of the air

masses follows the approach of Dunlea et al. (2009).

FA (pptv) AA (pptv) α ± 1σ (R2)

m M m M m M

Free troposphere 296 26 193 25 0.37 ± 0.16 (0.53) 0.42 (0.37)

(Asian pollution)

Free troposphere 108 26 86 26 0.62 ± 0.23 (0.52) 0.54 (0.51)

(pristine + dilute Asian pollution)

Boundary layer 1291 81 906 62 1.59 ± 0.16 (0.63) 0.40 (0.91)

(California Central Valley)

3.3 Summary of model-measurement comparisons

The comparisons between measurements and model results

have revealed that:

1. the model captures FA concentration and seasonality in

regions with large biogenic emissions (ACE-FTS in the

tropics, Wollongong, La Réunion)

2. FA and AA concentrations are largely underestimated

when biomass burning (ARCPAC 2008, ACE-FTS,

La Réunion) or anthropogenic influences (Bremen,

INTEX-B) are strong. However, even in these instances,

FA and AA seasonality (Bremen) suggests that a large

fraction of FA and AA is associated with emission and

photooxidation of biogenic compounds.

3. The rapid decrease in FA with altitude in the upper tro-

posphere is not captured by the model.

4. FA and AA are greatly underpredicted in polar regions

and in Northern midlatitude regions impacted by an-

thropogenic activities.

These observations are consistent with major secondary

sources of FA and AA missing in the model. In the follow-

ing, we use a series of sensitivity runs to examine the criteria

a secondary source of FA and AA must meet to help bridge

the gap between the model and the data. The reference simu-

lation described in this section is referred to as R1 hereafter.

4 Sensitivity study

4.1 Biomass burning injection height

As a default in GEOS-Chem, biomass burning emissions are

solely released in the boundary layer. However observations

have shown that major fires can inject emissions well above

the boundary layer (e.g. de Gouw et al., 2006; Vigouroux

et al., 2009). Several modeling studies have also shown that

observations of CO and aerosols downwind of fires could be

best explained when a large fraction of the fire emissions

is released above the boundary layer (e.g. Turquety et al.,

2007). Injection of FA/AA or their precursors outside of the

boundary layer is of great importance in their budget. In-

deed a fast transport of carboxylic acids out of the bound-

ary layer increases their lifetime by reducing the dry depo-

sition sink and results in a large increase in their net life-

time. This in turn results in enhanced transport of FA and

AA on larger scales. Furthermore biomass burning has been

associated with a reduction of low-level precipitation (e.g.

Andreae et al., 2004) which may further increase carboxylic

acid lifetime.

Several studies have associated enhancements of FA in the

free troposphere to biomass burning (Gonzàlez Abad et al.,

2009). Here we examine whether injection of biomass burn-

ing emissions outside of the boundary layer can help bridge

the gap between between model and observations at high

CO. We use two different scenarios. In the first one (R2a),

60% of the biomass burning is emitted in the boundary layer

while 35% is emitted in the mid troposphere (from the top of

boundary layer to 400 hPa) and 5% in the upper troposphere

(400 hPa to 200 hPa). In the second scenario (R2b), we adopt

one of the scenarios used by Turquety et al. (2007) to inves-

tigate biomass burning over North America with 40% of the

biomass burning emissions in the boundary layer, 30% in the

mid troposphere and 30% in the upper troposphere. Since our

goal is to examine the sensitivity of free tropospheric FA to

biomass burning injection height, modifications of the injec-

tion height are applied globally, an important simplification

(Val Martin et al., 2010, and references therein). Furthermore

we assume that EF for FA and AA are independent of the the

biomass burning injection height. This is another important

simplification since (a) the injection of biomass burning in

the free troposphere strongly depends on the fire intensity,

and (b) EF for FA and AA exhibit some correlation with the

modified combustion efficiency (MCE), an indicator of the

combustion type (flaming or smoldering). Therefore, a more
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Fig. 10. (a) TexAQS II and (b) ITCT 2k4. Comparison between

measured (blue) and modeled (red) vertical AA profiles. The box

(thick line) extent represents the 25% and 75% percentiles.

quantitative study of the importance of biomass burning in

the FA and AA budget would require an explicit description

of the relationship between MCE and EF as well as MCE and

injection height.

Both scenarios lead to an enhancement of FA in the mid

troposphere (by 10% for R2a (not shown) and by 35% for

R2b (Fig. 7 panel b)). The increase is especially large at high

CO, greatly reducing the discrepancy between the model and

the measurements (Fig. 8). This is remarkable since biomass

burning emissions of FA and its precursors account for a rel-

atively small fraction of FA sources in the model. This dis-

proportionate effect highlights the strength of boundary layer

sinks of FA which greatly hinder its transport to the free tro-

posphere. The increase in FA induced by both scenarios is,

however, insufficient to bridge the gap between the model

and the data in the lower troposphere. In particular, it has

no effect on the modeled FA in air masses with CO mixing

ratios ranging from 120 to 150 ppbv. This is not surprising if

these air masses are associated with aged biomass burning,

as FA sinks (photooxidation and wet deposition) are faster

than for CO. In contrast, the injection of FA into the free tro-

posphere significantly amplifies the discrepancy between the

model and the measurements in the upper troposphere. The

very long lifetime of FA in the upper troposphere is respon-

sible for this strong sensitivity. In R2b, FA is increased by

almost 50% in the upper troposphere compared to the refer-

ence run, resulting in large discrepancies for CO between 40

and 120 ppbv (Fig. 7).

These observations suggest that the distribution of FA in

the free troposphere is only sensitive to biomass burning in-

jection height for fresh biomass burning plumes. As FA is

removed from the free troposphere faster than CO, the cor-

relation between FA and CO across the whole CO range can

only be sustained if the photooxidation of long-lived unrep-

resented compounds (i.e., poorly soluble and reactive) pro-

duces FA. However, if such a source exists, the observed ver-

tical gradient of FA indicates a large sink is missing from the

model in the upper free troposphere.

4.2 Secondary source of FA and AA and organic aerosol

aging

The positive correlation of FA and AA with submicron or-

ganic aerosol observed in several aircraft campaigns (Fig. 9)

hints at a possible relationship between FA and AA produc-

tion and aerosol aging, i.e., processes affecting aerosol com-

position.

Aerosol composition is very dynamic as evidenced by the

positive correlation between the oxygen to carbon ratio and

the residence time of aerosols (DeCarlo et al., 2008; Capes

et al., 2008). Near sources, aging is thought to be domi-

nated by gas-phase oxidation of semivolatiles (a), while, for

longer residence time, heterogeneous oxidation (b) may be-

come important (DeCarlo et al., 2008; George et al., 2008).

The combined evolution of the oxygen to carbon ratio and

of the hydrogen to carbon ratio during aerosol aging was

recently showed to be consistent with the formation of car-

boxylic groups (Heald et al., 2010). This is not inconsistent

with (a), even though we are not aware of direct evidence for

the formation of either FA or AA from the photooxidation

of semivolatiles. In contrast, laboratory experiments provide

ample evidence for the volatilization of FA and AA (b) fol-

lowing the photolysis of aerosols (Walser et al., 2007; Pan

et al., 2009) as well as their heterogeneous oxidation by O3

(Eliason et al., 2003; Park et al., 2006) and OH (Eliason et al.,

2004; Molina et al., 2004; Vlasenko et al., 2008). As het-

erogeneous oxidation operates on relatively long time scales

(>4 days George et al., 2008), it could help account for ob-

servations during INTEX-B and at Paramaribo. It appears,

however, to be too slow to provide a large source of FA and
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AA near emission centers (DeCarlo et al., 2008). These ob-

servations suggest that aerosol aging and wall reactions could

result in a significant source of FA and AA in chamber ex-

periments that was not accounted for by Paulot et al. (2009).

Comparison between the data and the model suggests

global sources of FA and AA may be underestimated by up

to 50% for both acids, i.e., an additional ∼2 TmolC yr−1. Es-

timates for the global flux of carbon from the photooxidation

of aerosol range from 4 to 16.5 TmolC yr−1 (Kwan et al.,

2006), suggesting FA and AA volatilization would need to

account for a very large fraction of this flux (10–50%). How-

ever this estimate does not account for the probably large

dynamic exchange of matter between the gas and aerosol

phases driven by semivolatile volatilization and photooxida-

tion (Robinson et al., 2007; Kroll et al., 2009; Jimenez et al.,

2009).

Proper evaluation of the role of aerosol aging as a source of

FA and AA requires detailed modeling of aerosol evolution

(e.g., following the framework presented by Jimenez et al.,

2009) informed by additional laboratory measurements. This

is beyond the scope of this paper. Here, we do not explic-

itly model secondary organic aerosol but use organic aerosol

(OA) to generate a diffuse source of FA and AA associated

with aerosol aging (scenario R3). In GEOS-Chem, OA rep-

resents both emitted OA (primarily from biomass burning

with an important contribution of anthropogenic sources in

the Northern midlatitudes) and a small and simplified sec-

ondary production from the condensation of low volatility

compounds from biogenic and anthropogenic sources (Park

et al., 2003). The largest global source of OA is biomass

burning globally. We assume that the reaction of OH with

OA produces FA and AA according to:

dFA

dt
=

dAA

dt
=

(

rp

Dg
+

4

vγ

)−1

A×OH

where rp is the particle radius, γ the reaction probability (as-

sumed to be 1 here), Dg the gas-phase diffusion coefficient,

v the mean molecular velocity of OH and A the aerosol sur-

face area. This reaction does not represent a physical process

(OA is not lost via this reaction) but is meant to provide a

diffuse source of FA and AA correlated with OA. Including

this process results in an increase in the source of FA and AA

by 320 Gmol yr−1, about ∼25% (∼0.95 TmolC yr−1).

This large additional FA source greatly improves the

agreement with La Réunion. The mean FA concentration

increases by almost 60% in October (Fig. 11a). Similarly,

the anomalously high FA measured in December 2006 in

Wollongong is much better reproduced in the model with

this hypothetical aerosol source (Fig. 11b). We note that it

has little effect on the FA total columns for the other years,

underlining the exceptional intensity of the 2006 bush fires.

For both sites, a similar increase in biomass burning emis-

sions of FA would not result in such a large improvement.

This is because the lifetime of organic aerosol is longer than
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Fig. 11. A diffuse source of FA from aerosol aging (dominated by

biomass burning (R3)) allows the model to reproduce the increase

in FA during the biomass burning season in La Réunion (a) and

Wollongong (b). Color code as Fig. 3.

the lifetime of FA. This is evident in the comparison with

the cruise measurements where a very large increase is ob-

served in the tropics, reflecting the enhanced transport of FA

biomass burning precursors away from their source regions

(Fig. S11). Other locations impacted by biomass burning

such as Thule see large increases in FA or AA though this

remains insufficient to bridge the gap between model and

measurements.

In the GEOS-Chem simulations used in this study, or-

ganic aerosol sources are dominated by biomass burning.

Because of the lack of a proper representation of secondary

organic aerosol (SOA) in our simulation, it is not surpris-

ing the discrepancy remains very large in locations where

organic aerosols are dominated by SOA from biogenic or

anthropogenic sources (e.g., Bremen (Fig. S13), INTEX-B).

Future work will focus on assessing the role of semivolatiles

as a source of FA and AA. In particular, the interaction be-

tween biotic emissions (biogenic and agricultural) and an-

thropogenic activities need to be properly represented, as it

has been shown that this interaction could result in enhanced
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secondary aerosol formation (de Gouw et al., 2005; Weber

et al., 2007; Goldstein et al., 2009). If SOA aging is indeed

a source of FA and AA, this could help explain the biogenic

signature of FA and AA in polluted regions (seasonality and

isotopic composition), as well as the similar magnitudes of

Wollongong and Bremen FA total columns despite very dif-

ferent isoprene sources.

4.3 Upper tropospheric budget of FA

The ACE-FTS comparison revealed a high bias of the model

in the upper troposphere. At these altitudes, wet deposition

becomes small and FA sink is dominated by the reaction of

OH with FA.

To examine the sensitivity of the FA profile to the temper-

ature dependence of its reaction with OH, we use the tem-

perature dependence derived theoretically by Galano et al.

(2002) for the acidic (k1) and formyl channels (k2) and scale

it to match the experimental rate of FA + OH determined at

room temperature. The resulting rate constant of FA with OH

(kFA+OH) is :

kFA+OH = k1 +k2 = 2.94×10−14 ×exp

(

786

T

)

+9.85×10−13 ×exp

(

−
1036

T

)

At 220 K, this predicts the oxidation of FA is 2.3 times faster

than at 298 K.

In the R4 simulation, we also include FA formation from

organic aerosol (as in R3) as well as the injection of FA in

the mid troposphere (as in R2a). The change in the reaction

rate at cold temperature results in a dramatic decrease of FA

in the upper troposphere (Fig. 7), because photooxidation is

the dominant sink of FA in this region. This decrease is es-

pecially remarkable since mid troposphere FA is increased

as a result of the injection of biomass burning in this regions.

This result must be interpreted cautiously as the model may

underestimate HOx in the upper troposphere, especially in

the tropics (Wennberg et al., 1998). The fate of FA in the up-

per troposphere deserves more study since FA could provide

a useful proxy to investigate biomass burning injection in the

free troposphere.

The discrepancy between model and observation of FA

in the upper troposphere is further amplified if the equilib-

rium between HOCH2OO and HCHO+HO2 is considered

(Veyret et al., 1989).

HCHO+HO2 ⇆ HOCH2OO (R3)

HOCH2O2 +HO2 → HOCH2OOH (R4)

HOCH2O2 +HO2 → HOCH2O+OH+O2 (R5)

HOCH2O2 +HO2 → FA+H2O (R6)
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Fig. 12. Including a representation of HCHO+HO2 chemistry in-

creases FA in the upper troposphere by nearly 50% (red) compared

to the reference run (blue). Such a source (black dashed line) would

further amplify the high bias of the model with respect to ACE-FTS

observations. Profile of FA at −14◦ N, 60◦ W July 2005.

HOCH2O2 +NO → HOCH2O+NO2 (R7)

HOCH2O+O2 → FA+HO2 (R8)

HOCH2OOH
S
→ FA (R9)

HOCH2OOH+OH → FA+H2O+OH (R10)

HOCH2OOH+OH → HOCH2OO (R11)

HOCH2OOH+hν → HOCH2O+OH (R12)

Reaction of HOCH2OO with NO results in FA forma-

tion. Jenkin et al. (2007) reported than (R5) and (R6) ac-

count for 20% and 30% of the reaction of HOCH2OO with

HO2. The photooxidation of hydroxymethylhydroperoxide

(HOCH2OOH) is also expected to form FA with high yield

from photolysis, reaction with OH and heterogeneous de-

composition (Neeb et al., 1997). Therefore we assume that

the reaction of HO2 with HOCH2OO results in FA forma-

tion with a yield of 1. As shown on Fig. 12, HO2 +HCHO

chemistry significantly increases FA in the upper troposphere

where the lifetime of HOCH2OO is long enough for the re-

action of HOCH2OO with NO and HO2 to compete with

HOCH2OO decomposition. As pointed by Hermans et al.

(2005), proper assesment of HCHO+HO2 importance as a

sink of formaldehyde and source of FA requires very precise

knowledge of the temperature dependence of (R3). Recent

measurements of HOCH2OO → HO2 +CH2O by Pinceloup

et al. (2003) are significantly slower than the recommended

IUPAC value (Atkinson et al., 2006) used in this simulation.

This suggests the source of FA from HCHO+HO2 in the free
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troposphere may be even larger than shown on Fig. 12. FA

observations in the upper troposphere thus provide a much

needed test of the representation of HCHO+HO2 in models.

5 Conclusions

We have derived a detailed bottom-up inventory of FA and

AA in the atmosphere. Our updated source of FA is more

than twice as large as previous estimates, reflecting the for-

mation of FA from the photooxidation of isoprene and its

products by OH. Both carboxylic acids are predicted to orig-

inate primarily from the photooxidation of biogenic com-

pounds with biomass burning a significant seasonal source

in many environments.

Despite these larger sources, the model remains biased

low, especially in the Northern mid latitudes and in air

masses affected by biomass burning. This discrepancy can-

not be solely resolved by increasing biomass burning emis-

sions of FA and AA.

We propose that a long-lived secondary source of FA and

AA of order ∼2 TmolC yr−1 has yet to be identified. We

hypothesize that the strong correlation of aerosol organic

content with FA and AA hints at the possible relationship

between aerosol aging and carboxylic acid production. If

this relationship is demonstrated, FA and AA could prove

very valuable to investigate aerosol aging, composition and

sources. A realistic treatment of SOA (especially the missing

SOA in polluted regions, including through anthropogenic-

biogenic interactions), may help reduce the discrepancy in

the mid latitudes where the biomass burning source of or-

ganic aerosol is limited.

The comparison between ACE-FTS mid and upper tropo-

spheric measurements also reveals that strong enhancements

in FA are consistent with injection of biomass burning emis-

sions outside of the boundary layer (though FA is most likely

associated with secondary production). FA may be used as

a proxy to track biomass burning injection in the free tro-

posphere, a very uncertain parameter in chemical transport

models.

Finally even though the data set presented in this study of-

fers the first long-term overview of the global distribution of

FA, many regions of interest (in particular Africa and Asia),

remain very poorly sampled. Ongoing efforts to retrieve FA

from TES, IASI (Clerbaux et al., 2009; Razavi et al., 2011) or

MIPAS-ENVISAT (Grutter et al., 2010) are thus particularly

promising.

Supplementary material related to this

article is available online at:

http://www.atmos-chem-phys.net/11/1989/2011/

acp-11-1989-2011-supplement.pdf.
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E. J., Lanzendorf, E. J., Anderson, J. G., Gao, R.-S., Keim, E. R.,

Donnelly, S. G., Negro, L. A., Fahey, D. W., McKeen, S. A.,

Salawitch, R. J., Webster, C. R., May, R. D., Herman, R. L., Prof-

fitt, M. H., Margitan, J. J., Atlas, E. L., Schauffler, S. M., Flocke,

F., McElroy, C. T., and Bui, T. P.: Hydrogen Radicals, Nitrogen

Radicals, and the Production of O3 in the Upper Troposphere,

Science, 279, 49–53, doi:10.1126/science.279.5347.49, 1998.

Wesely, M. . L.: Parameterization of surface resistances to gaseous

dry deposition in regional-scale numerical models, Atmos. Envi-

ron., 23, 1293–1304, doi:10.1016/j.atmosenv.2007.10.058, 1989.

Wiedinmyer, C., Guenther, A., Harley, P., Hewitt, N., Geron, C.,

Artaxo, P., Steinbrecher, R., and Rasmussen, R.: Global Or-

ganic Emissions from Vegetation (in Emissions of Atmospheric

Trace Compounds), 18 of Advances in Global Change Research,

Springer, 2004.

Yevich, R. and Logan, J. A.: An assessment of biofuel use and

Atmos. Chem. Phys., 11, 1989–2013, 2011 www.atmos-chem-phys.net/11/1989/2011/

http://dx.doi.org/10.1021/es061475e
http://dx.doi.org/10.5194/acp-9-2301-2009
http://dx.doi.org/10.5194/acp-10-11359-2010
http://dx.doi.org/10.5194/acp-10-11359-2010
http://dx.doi.org/10.1021/jp802017q
http://dx.doi.org/10.1126/science.1112532
http://dx.doi.org/10.1029/JD093iD02p01638
http://dx.doi.org/10.1029/2006JD007281
http://dx.doi.org/10.1021/cr020657y
http://dx.doi.org/10.5194/acp-10-1491-2010
http://dx.doi.org/10.5194/acp-10-1491-2010
http://dx.doi.org/10.1063/1.2712439
http://dx.doi.org/10.1029/2004JD005351
http://dx.doi.org/10.5194/acp-9-9523-2009
http://dx.doi.org/10.5194/acp-9-9523-2009
http://dx.doi.org/10.1021/jp0772979
http://dx.doi.org/10.1029/2002JD003348
http://dx.doi.org/10.1029/2002JD002893
http://dx.doi.org/10.1021/jp066293l
http://dx.doi.org/10.1029/1998JD100004
http://dx.doi.org/10.1029/98JD00158
http://dx.doi.org/10.1029/2008GL036194
http://dx.doi.org/10.1029/2007JD008408
http://dx.doi.org/10.1126/science.279.5347.49
http://dx.doi.org/10.1016/j.atmosenv.2007.10.058


F. Paulot et al.: Formic and acetic acid budget 2013

burning of agricultural waste in the developing world., Global

Biogeochem. Cy., 17, 1095, doi:10.1029/2002GB001952, 2003.

Yienger, J. J. and Levy, H.: Empirical model of global soil-

biogenic NOx emissions, J. Geophys. Res., 100, 11447–11464,

doi:10.1029/95JD00370, 1995.

Yokelson, R. J., Bertschi, I. T., Christian, T. J., Hobbs, P. V., Ward,

D. E., and Hao, W. M.: Trace gas measurements in nascent, aged,

and cloud-processed smoke from African savanna fires by air-

borne Fourier transform infrared spectroscopy (AFTIR), J. Geo-

phys. Res., 108, 8478, doi:10.1029/2002JD002322, 2003.

Yokelson, R. J., Crounse, J. D., DeCarlo, P. F., Karl, T., Urbanski,

S., Atlas, E., Campos, T., Shinozuka, Y., Kapustin, V., Clarke,

A. D., Weinheimer, A., Knapp, D. J., Montzka, D. D., Holloway,

J., Weibring, P., Flocke, F., Zheng, W., Toohey, D., Wennberg,

P. O., Wiedinmyer, C., Mauldin, L., Fried, A., Richter, D.,

Walega, J., Jimenez, J. L., Adachi, K., Buseck, P. R., Hall,

S. R., and Shetter, R.: Emissions from biomass burning in the

Yucatan, Atmospheric Chemistry and Physics, 9, 5785–5812,

doi:10.5194/acp-9-5785-2009, 2009.

York, D., Evensen, N. M., Martı́nez, M. L., and Delgado, J.

D. B.: Unified equations for the slope, intercept, and stan-

dard errors of the best straight line, Am. J. Phys., 72, 367–375,

doi:10.1119/1.1632486, 2004.

Zander, R., Duchatelet, P., Mahieu, E., Demoulin, P., Roland,

G., Servais, C., Auwera, J. V., Perrin, A., Rinsland, C. P.,

and Crutzen, P. J.: Formic acid above the Jungfraujoch during

1985–2007: observed variability, seasonality, but no long-term

background evolution, Atmos. Chem. Phys., 10, 10047–10065,

doi:10.5194/acp-10-10047-2010, 2010.

Zender, C. S., Bian, H., and Newman, D.: Mineral Dust En-

trainment and Deposition (DEAD) model: Description and

1990s dust climatology, J. Geophys. Res. Atmos., 108, 4416,

doi:10.1029/2002JD002775, 2003.

www.atmos-chem-phys.net/11/1989/2011/ Atmos. Chem. Phys., 11, 1989–2013, 2011

http://dx.doi.org/10.1029/2002GB001952
http://dx.doi.org/10.1029/95JD00370
http://dx.doi.org/10.1029/2002JD002322
http://dx.doi.org/10.5194/acp-9-5785-2009
http://dx.doi.org/10.1119/1.1632486
http://dx.doi.org/10.5194/acp-10-10047-2010
http://dx.doi.org/10.1029/2002JD002775

