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Abstract
Spectral analysis and neural field theory are used to investigate the role of local connections in brain connectivity matrices
(CMs) that quantify connectivity between pairs of discretized brain regions. Thiswork investigates how the common procedure
of omitting such self-connections (i.e., the diagonal elements of CMs) in published studies of brain connectivity affects the
properties of functional CMs (fCMs) and the mutually consistent effective CMs (eCMs) that correspond to them. It is shown
that retention of self-connections in the fCM calculated from two-point activity covariances is essential for the fCM to be a
true covariance matrix, to enable correct inference of the direct total eCMs from the fCM, and to ensure their compatibility
with it; the deCM and teCM represent the strengths of direct connections and all connections between points, respectively.
When self-connections are retained, inferred eCMs are found to have net inhibitory self-connections that represent the
local inhibition needed to balance excitation via white matter fibers at longer ranges. This inference of spatially unresolved
connectivity exemplifies the power of spectral connectivity methods, which also enable transformation of CMs to compact
diagonal forms that allow accurate approximation of the fCM and total eCM in terms of just a few modes, rather than the
full N 2 CM entries for connections between N brain regions. It is found that omission of fCM self-connections affects both
local and long-range connections in eCMs, so they cannot be omitted even when studying the large-scale. Moreover, retention
of local connections enables inference of subgrid short-range inhibitory connectivity. The results are verified and illustrated
using the NKI-Rockland dataset from the University of Southern California Multimodal Connectivity Database. Deletion of
self-connections is common in the field; this does not affect case-control studies but the present results imply that such fCMs
must have self-connections restored before eCMs can be inferred from them.
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1 Introduction

A typical method to analyze brain connectivity is through
connectivity matrices (CMs), which contain the strengths of
connections between pairs of discretized regions of interest
(RoIs), which are usually chosen to be functionally homo-
geneous and spatially contiguous; for example, RoIs can be
chosen to be voxels in functional magnetic resonance imag-
ing (fMRI), subdivisions of specific Brodman areas, or based
on the subject’s own anatomy (Friston et al. 2006; Poldrack
2007). In CMs, the rows and columns in the matrices rep-
resent brain regions and entries represent the connections
between brain regions (Bullmore and Sporns 2009; Sporns
2010; Friston 2011), so a CM is really a four-tensor that
maps the 2D cortex to itself (Robinson 2019). The strengths
of connection are defined in a variety of ways. Structural con-
nectivity is often measured using anatomical CMs (aCMs),
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which summarize the density of axonal bundles betweenRoIs
as measured by methods such as diffusion tensor imaging
(DTI) and related diffusion-weighted magnetic resonance
imaging (dwMRI) (Basser et al. 2000; Hofer and Frahm
2006). Functional connectivity is commonly measured via
functional CMs (fCMs), which are commonly determined
from the two-point covariance (equal-time correlations) of
the activity in brain regions using fMRI, on the assumption
that regions that are correlated are likely to be functionally
related. Effective connectivity matrices (eCMs), sometimes
termed gain matrices, quantify the actual effect of one brain
region to another, including the strength of connections. The
CMs that embody the strengths of direct connections between
points in a given brain state are termed direct effective CMs
(deCMs), whereas total effective CMs (teCMs) describe the
total connectivity between points via both direct and indirect
paths (Robinson 2012).

Analyses of CMs are highly topical. Previously, (Robin-
son 2012) showed how eCMs correspond to propagators,
using neural field theory (NFT) (Galán 2008), and used the
deCM to compute teCMs and fCMs. Later, the inverse prob-
lem of inferring the eCMs from fCMswas studied (Robinson
et al. 2014), and eCMs were determined from the experi-
mental fCMs of resting state brain activity using NFT and
eigenfunction analysis. On the widely used assumption that
the deCM is proportional to the aCM, the theory interrelated
structural, functional, and effective CMs in terms of propaga-
tors (Robinson 2012; Robinson et al. 2014), which enabled
the propagator theory to be applied to analysis of connec-
tivity. The existence and strength of connections that were
not detected using dwMRI were also inferred in this work,
particularly interhemispheric links via the corpus callosum.
Later, Robinson et al. (2016) applied NFT to predict and
analyze the activity eigenmodes of the bihemispheric brain,
focusing particularly on their spatial structure. The eigen-
modes of a single brain hemisphere were found to be close
analogs of spherical harmonics, which are the natural modes
of a sphere. The results showed a closematch to experimental
brain connectivity data (Robinson et al. 2016).

Self-connections are commonly removed from experi-
mental fCMs because they are thought to be trivial or because
correlations are only computed between time series from
different locations, i.e., the diagonal elements in the exper-
imental fCMs are omitted or set to zero, as in many central
papers in the field, such as Hagmann et al. (2008); Brown
et al. (2012), and in the key examples cited from the liter-
ature in foundational texts, such as those by Sporns (2010)
and Fornito et al. (2016). This does not affect case-control
comparisons where the difference between CMs is exam-
ined directly and terms involving the self-connections cancel
out. However, it is known that the diagonal entries in any
normalized covariance matrix are all 1, by definition. In
this paper, NFT is used to investigate how the deleted self-

connections impact the properties and structure of CMs.
In particular, by interrelating the fCM, teCM, and deCM
using spectral analysis and NFT (Robinson 2012; Robin-
son et al. 2014), we investigate to what extent the missing
self-connections in the fCM change the mutually consistent
inferred eCM entries. First, an investigation of the impor-
tance of the self-connections in CMs is made. The role of
the diagonal elements in the experimental fCMs is then clar-
ified, the eCMs are calculated using NFT, and the effects of
removing fCM self-connections on the inferred eCMs are
demonstrated, showing that serious errors flow from failing
to preserve the positive definiteness of the fCM, even though
the proportion of connections omitted is tiny. The connec-
tivity is also decomposed using eigenmode analysis, which
enables representation of this modal brain connectivity in a
compact diagonal matrix form and the rapid convergence is
demonstrated (Robinson 2019).

It is worth stressing that the central aim of the present
paper is not simply to prove that omission of diagonal entries
changes the properties of the fCM in some way—that is
entirely obvious (if you change anymatrix youwill change its
properties). Rather, it is concerned with how the properties
of the functional CM are changed and how these changes
affect effective CMs inferred from the fCM via NFT. Sec-
ond, it focuses on new results that can be obtained when
self-connections are correctly retained.

This paper is organized as follows. Section 2 presents the
theoretical background to NFT in matrix form, the calcula-
tion of eCMs from experimental fCMs, and the experimental
dataset used in this paper to test the predictions. The results
are presented in Sect. 3, where we show how the deleted self-
connections in experimental fCM affect the structure of the
fCM and the inferred eCMs. Methods that avoid these errors
are discussed and the CMs are further analyzed using spec-
tral methods that isolate individual eigenmode contributions
to the total connectivity. The discussion and conclusions are
presented in Sect. 4, where the broad applicability of the
results to brain connectivity studies is emphasized.

2 Methods

A key message of the present paper is that it is necessary to
define all mathematical and physical quantities carefully and
to respect their basic properties. Hence, in this section we
briefly recapitulate the relevant aspects of linear neural field
theory and how its propagators (Green functions) relate to
connection matrices.

2.1 NFT inmatrix representation

Following the approach in (Robinson 2012), which pointed
out that normal brain activity comprises mainly perturba-
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tions from a mean level that corresponds to a fixed point of
the dynamics. Thus, we write the perturbation field of the
synaptic activity of neuron population a at location r and
time t as Φa(r, t).

Since activity in a neuron populationa = 1, . . . , P (where
P is the total number of populations) is caused byneural input
from populations b = 1, . . . , P (including a) and external
input Na , we can write

Φa(r, t) =
∑

b

∫ ∫
Λab(r, t, r′, t ′)Φb(r′, t ′)dr′dt ′

+ Na(r, t), (1)

where the propagator Λab quantifies the activity evoked in
neuron population a at location r and time t by activity affer-
ent from neuron population b at r′, t ′. To preserve causality,
Λab(r, t, r′, t ′) = 0 for t < t ′.

In CM analysis, the locations and time are usually dis-
cretized, so in Eq. (1) the integrals are replaced by sums over
discrete values of r and t . Here, we discretize each of the P
populations into M spatial regions and view synaptic activity
Φa(r, t) and external input Na(r, t) as MP-element column
vectors, in which P groups of M elements each represents
one population’s activity on theM chosen regions (Robinson
2019). Then in matrix format Eq. (1) becomes

Φ(t) =
∫

Λ(t, t ′)Φ(t ′)dt ′ + N (t), (2)

where Φ and N are MP-element column vectors that rep-
resent activities through all spatial points for each neural
population in turn, and Λ is an MP × MP matrix. We note
that each element in the matrices Φ, N , and Λ includes an
implicit factor that corresponds to the volume element repre-
sented by that point, and this highlights the need to use a fine
discretization if the integral is to be done accurately, and also
possible to determinewhen experimental data suffice to yield
convergent results that reflect properties of the brain, rather
than of discretization and thresholding (Robinson 2019). In
fCM measurements, only large-scale connections of excita-
tory neurons via white matter are measured; hence, we only
consider connectivity of the excitatory population explicitly.
This means that subscripts a and b are omitted henceforth,Φ
and N reduce to M-element vectors, andΛ is of size M×M .

2.2 Inferring eCMs from fCMs

Themethod of calculation of eCMs from experimental fCMs
was introduced in Robinson et al. (2014). We emphasize that
we only consider the symmetric case because fCMs are deter-
mined from covariances, and are symmetric by definition;
they do not include information on the directionality of links.

If Λ can be approximated as static on the timescale of
cortical activity, it depends only on t − t ′. Following Eq. (2),
we then have

Φ(t) =
∫

Λ(t − t ′)Φ(t ′)dt ′ + N (t), (3)

where the propagator Λ is now identified as being the spa-
tiotemporal deCM (Robinson 2012; Robinson et al. 2014).
By Fourier transforming Eq. (3) versus time, we have

Φ(ω) = [I − Λ(ω)]−1N (ω), (4)

= T (ω)N (ω), (5)

whereω is the angular frequency (this argument distinguishes
Fourier transformed quantities from temporal ones, which
have time as their argument), I is the unit matrix, and T is
the transfer matrix that links activity Φ to input N , which is
approximated as white noise in the resting state, i.e., T is the
teCM.

The teCM T can be expanded in a Taylor series to give

T (ω) =
∞∑

m=0

[Λ(ω)]m, (6)

where thepowers represent successively higher-order polysy-
naptic paths from input locations to the cortex (Robinson
2012; Robinson et al. 2014; Mehta-Pandejee et al. 2017)

We define the fCM C̃ to be the covariance matrix of the
activities (Robinson et al. 2014),

C̃(τ ) = 〈Φ(t + τ)ΦT (t)〉, (7)

where the angle brackets indicate an average over t .With τ =
0, we write Eq. (7) in terms of transfer function as (Robinson
et al. 2014)

C̃(ω) = T (ω)T †(ω), (8)

in the resting state where the dagger indicates a Hermitian
conjugate and is just the transpose (denoted by the superscript
T below) at ω = 0 where T is real. For very low frequencies
of fMRI, i.e., ω � 1 s−1 (Jezzard et al. 2001; Aquino et al.
2012), we can approximate Eq. (8) as

C̃ ≈ C̃(ω = 0). (9)

We note that all matrices relevant to fMRI involve very low
frequencies, soω ≈ 0, andweomit this argument henceforth.

Most experimental studies use the normalized covariance
matrixC to define the fCM; this is obtained from C̃ bydividing
all its elements c̃i j by the geometric mean of c̃i i and c̃ j j , with
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i = 1, . . . , p and j = 1, . . . , M . If we write the elements of
C as c̃i j , we thus have

ci j = c̃i j√
c̃i i

√
c̃ j j

. (10)

If we approximate the diagonal elements by their average
〈c̃i i 〉, Eq. (10) can be simplified to

ci j = c̃i j
〈c̃i i 〉 , (11)

whence

C = 1

〈c̃i i 〉 C̃ . (12)

We emphasize that we use the normalized covariance
matrix C to define the fCM. Equations (4)–(6), and (8) show
that Λ, T , C , and C̃ commute. Hence using standard matrix
theory for symmetric Λ, we can write

Λ = ULU †, (13)

where U is a unitary matrix whose columns are the eigen-
vectors of Λ, U † = U−1, and L is a diagonal matrix of the
eigenvalues λ j of Λ, written

L = diag(λ j ). (14)

For ω = 0, the unitary matrices become real orthonormal
matrices and the Hermitian conjugates above are equivalent
to transposes.

We can also write T and C in diagonal form, analogous
to Eq. (13):

T = UΘU †, (15)

C = UKU †, (16)

where Θ as a diagonal matrix of the eigenvalues of T and
K as a diagonal matrix of the eigenvalues of C . Follow-
ing (Robinson et al. 2014; Pinotsis et al. 2014),

Θ = diag(θj) = diag([1 − λj]−1), (17)

K = diag(κj) = diag(|1 − λj|−2), (18)

where Eqs (17) and (18) express θ j and κ j in terms of λ j .
The matrices L , Θ , and K are the deCM, teCM, and fCM
expressed in terms of eigenfunctions (i.e., in the eigenfunc-
tion basis, rather than the coordinate basis defined by RoIs).

3 Results

In this section, we first point out some theoretical and prac-
tical errors that result from removing self-connections in
fCMs and stress that, although the mathematical cause is
quite simple, the result is that serious errors have affected
a whole research field, and continue to do so. We then
demonstrate and illustrate the results, especially for non-
mathematical audiences, and investigate how the removal
of self-connections impacts the structure of fCMs and
eCMs inferred from them using the publicly available NKI-
Rockland experimental dataset, obtained from the USC
Multimodal Connectivity Database (Nooner et al. 2012). The
fCM (of size 165×165) used in this paper is based on group-
average data and is a normalized covariance matrix. In each
connectivity matrix, the elements are ordered so that the first
81 elements in each row and column are from the left hemi-
sphere and the next 84 are from the right hemisphere.

A detailed description of the NKI-Rockland dataset can
be found in Brown et al. (2012), so we do not reproduce this
material in full here. In brief, fMRI time series were collected
over severalminutes per scan in voxels of (1-2mm)3. Prepro-
cessing to remove motion artifact, reduce noise, and correct
for a range of systematic effects in the experiment was then
carried out. The resulting time series were clustered into 188
regions of interest (RoIs), of which 165 were cortical. The
mean time series for each RoI was then calculated and cor-
related with the others to obtain the fCM used here, which is
restricted to the cortical RoIs.

3.1 Effect of deleting self-connections on CMs

In the NKI-Rockland fCMs, as in many others, the self-
connections in the experimental fCM have been removed by
setting the diagonal elements to 0. However, we know that
the diagonal entries in any normalized correlation matrix are
1 by definition. In this section, we investigate how the prop-
erties of the experimental fCM are affected by deletion of
the self-connections, as well as the effect of this step on the
eCMs that are inferred via Eqs (13)–(18).

We write the normalized experimental fCMs with diago-
nal entries as C , and the fCM with diagonal entries deleted
as

C̆ = C − I , (19)

where I is the unit matrix.
Now C and C̆ commute because I commutes with any

matrix. Hence, the three matrices share the same eigenvec-
tors, and we can write

C̆ = U K̆U †, (20)
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Fig. 1 Comparison between the
eigenvalues κ j of C (solid) and
κ̆ j of C̆ (dashed). a All
eigenvalues. b Expanded view
of eigenvalues with κ j < 5

(a) (b)

Fig. 2 Comparison between the
eigenvalues λ j and θ j of Λ and
T calculated from C (solid) and
λ̆ j and θ̆ j of Λ̆ and T̆ of C̆
(dashed). a Eigenvalues of the
deCMs. b Eigenvalues of the
teCMs

(a) (b)

where K̆ is the diagonal matrix of the eigenvalues κ̆ j of C̆ .
We know that the eigenvalues of a unit matrix are all 1, so

κ̆ j = κ j − 1. (21)

We use the notation Λ̆, T̆ for the deCM and teCM calculated
from C̆ , respectively, and λ̆ j and θ̆ j for the eigenvalues of Λ̆

and T̆ , respectively.
Figure 1 compares the eigenvalues of experimental C

and C̆ , arranged in decreasing order. The results agree with
Eq. (21) to within numerical round-off errors. We notice that
κ̆ j < 0 for j ≥ 21, which demonstrates a fundamental error
in the use of C̆ because covariance matrices are positive defi-
nite by definition and thus must have positive eigenvalues. If
we were to use κ̆ j to calculate the eigenvalues of the deCM
and teCM, only 21 eigenvalues of C̆ would potentially be
available to calculate λ̆ j and θ̆ j and even these are not accu-
rate. Hence, diagonal elements of the fCM must be retained
to obtain valid results.

Figures 2a, b, respectively, show the eigenvalues of the
deCMs and teCMs calculated fromC (solid) and C̆ (dashed).
We observe that use of κ̆ j leads to incorrect estimation of the
eigenvalues of deCM and teCM, although the first few are
approximately correct.We also note that the largest eigenval-
ues of the deCMs are both approximately 0.87, which is also
in close agreement with prior EEG- and fMRI-based results
(Robinson 2017).

Figure 3 compares the effect of self-connectivity on fCMs
and the corresponding inferred eCMs. Comparing Figs 3a,

b we notice the absence of diagonal connections in C̆ . Fig-
ure 3c shows the teCM T calculated from C , we observe
structure in Fig. 3c that is similar to that in Fig. 3a, except
that there is a smaller fraction of strong connections, and
these are concentratedmore tightly around themain diagonal
and the secondary diagonals that represent interhemispheric
connections between homologous regions. Some block-like
structure is seen, although this is mostly an illusion that is
caused by mapping the 2D cortex onto a 1D list of RoI label,
it does not represent discrete modularity (Henderson and
Robinson 2011)

Figure 3e shows the deCM Λ calculated from C . Again,
we observe that the strongest entries are on the main diag-
onal and secondary (interhemispheric, between homologous
regions) diagonals. However, entries near the main diagonal
are negative. These negative elements reflect the presence
of net local inhibition that approximately balances the net
excitation at longer ranges, as is required for the brain to
have its observed overall marginal stability (Robinson 2017).
Notably, they also demonstrate the ability of the inversion
method to infer the effects of spatially unresolved structure
with scales (< 1 mm) well below those of the cortical dis-
cretization (∼ 4 cm). In contrast to Fig. 3a, c, many entries in
Λ are negative, this is because Λ only quantifies the strength
of direct connections between RoIs. One important point to
stress here is that the net local inhibition at scales of one grid
point (representing several square cm of cortex) with longer
range excitation via white matter fibers must not be confused
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Fig. 3 Functional CM and the corresponding inferred eCMs with the
strengths of entries given by the color bar at right. a C , b C̆ , c T , d T̆ ,
e Λ, and f Λ̆

with the well-known sub-mm central excitation and surround
inhibition of individual neurons. The implication is that the
latter is the stronger, when integrated over distances of 1 mm
or more, and that it must then be balanced by even longer-
range excitation to achieve the observed near-criticality of
the cortex.

Wenext examine theCMscalculated from C̆ in Fig. 3b.We
see that the incorrect estimation of the eigenvalues θ̆ j leads
to incorrect estimation of T̆ . Although the diagonals and
block-like structures appear in T̆ , the connectivity strength,
especially the entries in the main diagonal are significantly
reduced in T̆ . Figure 3f shows Λ̆, which shows almost no
sign of the main structures seen in Λ. This is because most
of the negative eigenvalues in Λ are not captured in Λ̆.
Thus, our results show that the missing self-connections in
the fCM greatly affect the estimated connections within and
between hemispheres in the inferred eCMs and thus must be
retained to obtain the accurate results. At one level this is to
be expected, but the extent of the changes is surprising, given
how small a proportion of the connections are deleted in the
fCM—only 0.6% in the present case.

From the theoretical analysis, we know that the eigen-
modes of the fCM and the inferred eCMs are the same. By
using eigenmode analysis and spectral method we can write
the connectivity matrix in diagonal form. Figure 4a, b high-
lights the dramatic simplification relative to Fig. 3a, b by
showing the diagonalized fCMs K and K̆ , respectively. The
entries in Fig. 4a are all positive because C is a covariance
matrix and thus can have only positive eigenvalues. However,

1 165

1

165

(a) (b)

(c) (d)

(e) (f)

0

-6

6

1

1651
1

165

165

Fig. 4 Diagonalized fCMs and the corresponding inferred eCMs with
the strengths of entries given by the color bar at right. a C , b C̆ , c T ,
d T̆ , e Λ, and f Λ̆

in Fig. 4b, only 21 eigenvalues are positive, as was discussed
in Sect. 3.1. Figure 4c shows the diagonalized T (i.e., Θ)
calculated via Eq. (17), again showing an enormous simpli-
fication with all eigenvalues positive. Figure 4e shows the
diagonalized Λ (i.e., L) calculated using Eq. (13). In this
case, we observe negative λ j at large j in Fig. 4e. Figure 4d,
f shows the diagonal matrices Θ̆ and L̆ , respectively. Since
only 21 eigenvalues in C̆ can be used in calculating T̆ and Λ̆,
we only observe limited eigenvalues in both figures, which
leads to the incorrect estimation of eCMs shown in Fig. 3.
We note that NFT in a spherical geometry (Robinson et al.
2016; Robinson 2019) implies

λ j ∼ − j, (22)

θ j ∼ j−1, (23)

and

κ j ∼ j−2, (24)

at large j , shown in Figs. 1 and 2, all of which are consistent
with the results shown in Fig. 4. Therefore, θ j and κ j con-
verge to 0 as j increases, whereas λ j grows. Thus, only C
and T are expected to give diagonal forms that are dominated
by just a few modes, in accord with the results in Fig. 4. The
teCM T is far more important dynamically than Λ because
it includes all connections, not just direct ones (Robinson
2012; Robinson et al. 2014, 2016).
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3.2 Modal analysis of CMs

Using the above data, we now investigate the contributions of
individual modes to the CMs C and T , which have the most
compact forms. Previous work has shown the lowest terms
to be dominant (Robinson et al. 2016), but the form of the
individual contributions to the CMs has not been previously
studied. The contributions of the j th eigenmode to C and T
are

C j = UK jU
†, (25)

and

Tj = UΘ jU
†, (26)

respectively, where

K j = diag(0, . . . , 0, κ j , 0 . . . , 0), (27)

and

Θ j = diag(0, . . . , 0, θ j , 0 . . . , 0). (28)

We also define the partial sums of the first m eigenmode
contributions to C and T to be

Sm =
m∑

j=1

C j , (29)

and

Vm =
m∑

j=1

Tj , (30)

respectively.
Figure 5 shows modal contributions to C and their partial

sums. Figure 5a–e shows the contributions C1, C2, C3, C5

and C20, respectively, while Fig. 5f–j shows the correspond-
ing partial sums S1, S2, S3, S5, and S20, and Fig. 5(k) showsC
for comparison. The first mode, shown in Fig. 5a, is approx-
imately spatially uniform and has no negative entries, which
is consistent with the previous results that this corresponds to
a uniform mode (Robinson et al. 2016; Gabay and Robinson
2017). The next modes have approximately equal numbers
of positive and negative entries, consistent with their mean
values being zero because of orthogonality to the lowest,
uniform mode. These contributions are spatially nonuniform
because their spatial eigenmodes have nodal lines that divide
positive from negative regions (Robinson et al. 2016; Gabay
and Robinson 2017). The size of these contributions drops
rapidly fromC1 toC20 as the eigenvalues decrease. As shown
in Fig. 5g–i, the block-like structures start to appear in S2,

(k)

(e)

(d)

(c)

(b)

(f)

(g)

(h)

(i)

(j)

(a)

0-6 6

Fig. 5 Functional connectivity matrix in modal analysis with the
strengths of entries given by the color bar at bottom left. a–e show
modal contributions C1, C2, C3, C5 and C20, respectively; f–j show
partial sums S1, S2, S3, S5 and S20, respectively; and k shows C

the diagonals start to appear in S3 and most of the strongest
connectivity is already present in S5, in accord with just
the first few eigenmodes being dominant (Robinson et al.
2016). Comparing Fig. 5j, k, we observe that the connec-
tivity strength is almost the same for S20 and C . This shows
that to obtain the full sharpness and strength of the diagonals,
requires superposition of around 20 or more modes to obtain
sufficient spatial localization.

Figure 6 shows modal contributions to T and their partial
sums. Figure 6a–e shows modal contributions T1, T2, T3, T5
and T20, respectively, Fig. 6f–j shows partial sums V1, V2, V3,
V5 and V20, respectively, and Fig. 6k shows T . As for C1, we
find that T1 in Fig. 6a is approximately uniform. Indeed, the
structure of each eigenmode contribution is the same as forC
becauseC and T have the same eigenvectors, but the weights
decrease more slowly in T because of the slower decrease
of its eigenvalues. Comparing Fig. 6j–k, we again observe
that accurate representation of the main diagonal requires
retention of more modes than other parts of the matrix.
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(k)

(e)

(d)

(c)

(b)

(a) (f)

(g)

(h)

(i)

(j)

6- 60

Fig. 6 Total effective connectivity matrix in modal analysis with the
strengths of entries given by the color bar at bottom left. a–e show
T1, T2, T3, T5 and T20, respectively; f–j show V1, V2, V3, V5 and V20,
respectively; and k shows T

4 Conclusion

The importance of retaining self-connections in experimental
fCMs and the eCMs inferred from themhas been investigated
using methods from spectral analysis and neural field theory.
We have introduced new methods to explore the connectivi-
ties and their effects on the relationships between functional
and effective CMs using eigenmode analysis and spectral
methods through which we also represent the brain connec-
tivity in a compact diagonal matrix form. The results have
been illustrated and verified usingNKI-Rockland data,which
underline the need to adopt these new methods to ensure the
accurate results. The main findings are:

(i) The near-universal step of in published studies, delet-
ing diagonal entries from functional CMs defined by
activity covariances, is invalid. It violates fundamen-
tal mathematical requirements on covariance matrices
and invalidates the physical relationships between func-
tional and effective CMs, as detailed in the following
points. Again, we stress that the fact that there is a

change of some kind is mathematically obvious and
the central purpose of the paper is thus not merely to
establish its existence, but to explore its nature and the
resulting effects on both the fCMand,more importantly,
on the effective CMs that are inferred from it via NFT.

(ii) The analytical and numerical results show that all
eigenvalues of C decrease by 1 after deleting the self-
connections. Therefore, most of the eigenvalues of the
fCM without self-connections become negative, which
is impossible for a covariance matrix, and indicates a
fundamental error. These negative values cannot be used
to validly calculate eCMs (Robinson et al. 2014). Thus,
it is mathematically essential for self-connections to be
retained.

(iii) Because the fCM, deCM, and teCM are symmetric and
commute, they share the same eigenvectors and can be
represented in closely related diagonalized forms. How-
ever, unless self-connections are retained, the inferred
eCM structures are severely affected, especially for
the deCM, whose diagonals and block-like structures
are not captured. These changes are fundamental and
disproportionate to the small number of connections
deleted. Deletion of fCM self-connections also implies
widespread long-range differences in the correspond-
ing effective connectivities and removes the ability to
infer short-range net inhibitory connections at subgrid
scales. (Note that these include the sub-mm Mexican-
hat structure of very short range excitatory connections
with inhibitory surround, plus longer excitatory con-
nections out to ∼ 2 cm but within the same region of
interest.)

(iv) We have decomposed the fCMand teCMvia eigenmode
analysis, retaining self-connections and confirming that
the first few eigenmodes suffice to reproduce the main
features of C (Robinson et al. 2014, 2016) and T . We
also showed that to accurately represent diagonal entries
of the fCM, only around 20 eigenmodes are needed for
NKI-Rockland data with N = 165 regions of interest.
This contrasts with the N (N + 1)/2 = 13695 entries
that are required in a conventional representation.

(v) The deCM Λ has more large entries in its diagonal rep-
resentation than do C and T , because |λ j | increases
at large j , but Λ only summarizes direct connections
between RoIs, whereas T is the quantity of direct
dynamical relevance.

In summary, we have investigated the importance of
retaining self-connections when analyzing the experimental
fCM and the corresponding inferred eCMs. We have shown
that the self-connections in the fCM play essential math-
ematical and physical roles in the correspondence between
fCMs and eCMs and thus cannot be deleted from experimen-
tal data if one wishes to have mutual consistency between
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these quantities; this is contrary to their usual removal. We
note that this does not make a difference in case-control com-
parisons,where the self-connection terms cancel, but inferred
relationships between fCMs and eCMs in existing studies in
which diagonal fCM elements have been deleted should be
reviewed. This underlines the need to respect and preserve
the formal properties of quantities being measured (in this
case, the covariance matrix) to avoid the potential for math-
ematically invalid analysis steps. We have also shown that
the methods discussed here deliver compact spectral repre-
sentations of CMs and verify that these can greatly simplify
treatment of brain connectivity, thus promising new andmore
tractable analyses and insights. These latter results have been
illustrated in familiar CM form to emphasize their utility.
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