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Importance of Shrinkage in Empirical Bayes Estimates for Diagnostics: Problems
and Solutions
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Abstract. Empirical Bayes (“post hoc”) estimates (EBEs) of ηs provide modelers with diagnostics: the
EBEs themselves, individual prediction (IPRED), and residual errors (individual weighted residual
(IWRES)). When data are uninformative at the individual level, the EBE distribution will shrink towards
zero (η-shrinkage, quantified as 1-SD(ηEBE)/ω), IPREDs towards the corresponding observations, and
IWRES towards zero (ε-shrinkage, quantified as 1-SD(IWRES)). These diagnostics are widely used in
pharmacokinetic (PK) pharmacodynamic (PD) modeling; we investigate here their usefulness in the
presence of shrinkage. Datasets were simulated from a range of PK PD models, EBEs estimated in non-
linear mixed effects modeling based on the true or a misspecified model, and desired diagnostics
evaluated both qualitatively and quantitatively. Identified consequences of η-shrinkage on EBE-based
model diagnostics include non-normal and/or asymmetric distribution of EBEs with their mean values
(“ETABAR”) significantly different from zero, even for a correctly specified model; EBE–EBE
correlations and covariate relationships may be masked, falsely induced, or the shape of the true
relationship distorted. Consequences of ε-shrinkage included low power of IPRED and IWRES to
diagnose structural and residual error model misspecification, respectively. EBE-based diagnostics should
be interpreted with caution whenever substantial η- or ε-shrinkage exists (usually greater than 20% to
30%). Reporting the magnitude of η- and ε-shrinkage will facilitate the informed use and interpretation
of EBE-based diagnostics.
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INTRODUCTION

Model-based analysis has lately become a method of
choice for analyzing the outcome from clinical trials in drug
development. The model(s) explaining underlying pharmaco-
kinetics (PK) and pharmacodynamics (PD) of a therapeutic
agent as well as disease progression is used for data description,
interpretation, and simulation of future scenarios, as well as
decision-making. Thus, the choice of an adequate model is a
crucial but often not straightforward procedure. The model
building process is difficult and involves testing, evaluating, and
diagnosing a range of plausible models with a major aim to
make an adequate inference from the observed data, summar-
ized as parameter estimates, variability estimates, and signifi-
cant covariates (1).There are several tools assisting modelers in
a model building process, including graphical diagnostics (1–3).

Graphical displays are extensively used during the model
building process and are considered an essential tool for data
visualization, inspection of model adequacy, and assumption
testing. Graphical diagnostics are considered a powerful and
intuitive visual method to be used not only by modelers but

also as a communicating tool. The US Food and Drug
Administration and the European Committee for Medicinal
Products for Human use guidances explicitly mention the
utility of graphical diagnostics. Specifically mentioned in both
guidances are graphical diagnostics based on individual
parameter estimates (4–6). The individual parameter esti-
mates in non-linear mixed effects are estimated using the
Bayesian methodology, and they are generally referred to as
an empirical Bayes estimates (EBEs). The use of the phrase
‘empirical Bayes’ emphasizes that the parameters for the
prior distribution are estimated from the data and are used as
if they were known to obtain the posterior distribution. At
one extreme, with no observations available, the patient will
be regarded as a typical patient. At the other extreme, when
data for an individual goes towards infinity, the prior will have
marginal impact; in between these extremes, both factors will
contribute, and depending on the relative variability (includ-
ing both, between, and within subject variability), individual
estimates could be closer either to the population mean or to
the true individual parameter value (7–9).

Although the advantages and strengths of graphical
diagnostics have been justified and stressed on several occa-
sions, shortcomings have not been systematically explored (10).
In this work, we investigate the informative value of the EBE-
based diagnostics and how their usefulness depends on the
individual data richness. Additionally, circumstances which are
likely to misguide modelers towards making erroneous deci-
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sions in model development, relating to choice of structural,
covariate, and stochastic model components, are underlined.

METHODS

Empirical Bayes Estimation and Notation

Derivation of individual parameter estimates (EBEs),
denoted for an individual j as a vector of s model parameters
Pj=(pj1,pj2…pjs), requires quantities such as (1) typical
individual estimates denoted as a vector of θ=(θ1,… θs); (2)
the magnitude of inter-individual variability of parameters in
question, variances (ω1

2,…,ωs
2), and covariances of the Ω-

matrix; as well as (3) the magnitude (variance) of residual
variability (σ2) to be known. The number of variance
parameters (ω2) does not necessarily need to be the same as
the number of typical parameter estimates (θ). Then, in
individual j, the kth parameter’s deviation from the typical
parameter value in the population can be denoted ηjk. In
parametric non-linear mixed effect modeling, the shape of the
distribution of the ηs is assumed to be normal. Commonly, to
avoid negative parameter values, the parameter distribution
is log-normally transformed using the relationship described
in Eq. 1 where ηjk enters nonlinearly into the expression for
the parameter in order to appropriately mimic the parameter
distribution shape in the population. Also, as Eq. 1 is
straightforward, the ηjk value is often referred to as an
individual parameter. Thus, considering Eq. 1, the vector ηk
will be used as an indicator for the individual parameter
throughout the remainder of this communication.

pjk ¼ �k � e�jk ð1Þ

For individual j, individual parameter �jk; e1 � k � s can be
estimated from the observed data vector yji=(yj1, yj2,…,yjn), n
being the number of observations within an individual and
known prior parameter distribution. Detailed derivation of
this estimation procedure is available elsewhere (7,11).

With ŷji, we denote a model prediction of yji, defined as a
function of parameter vector Pj and Xji, Xji being the vector
of independent variables (such as time and dose covariates)
related to yji (Eq. 2).

byji ¼ f Pj;Xji

� �

: ð2Þ

Definition of Diagnostic Variables

In this communication, ŷji is referred to as an individual
prediction (IPRED) and to ηEBE,jk as the EBE. Another
useful term, the individual weighted residual (IWRES), is
calculated following Eq. 3. By using the standard deviation of
the residual variability as a weighting factor, the IWRES
distribution is standardized to have a zero mean and unit
variance expectation when the model and parameters are
correct at the individual level.

IWRES ¼
yij � byij

� �

�
: ð3Þ

Definition of η- and ε-Shrinkage

If the population model is adequate, the quality of the
individual parameter estimate will depend heavily on the
observed data available. When data are sparse and less
informative on individual parameters, it is expected that the
EBEs will deviate less from the population mean, which will
result in a difference in the EBE and priors distribution,
mainly in terms of decreased variance of EBEs but also with
possible distortions of the distribution shape. In an extreme
case of no data available on a particular individual, the
individual’s EBE will be equal to the population value. So,
the variance of EBE distribution is shrinking towards zero as
the quantity of information at the individual level diminishes,
a phenomenon defined as η-shrinkage (shη). Similarly, as
individual parameter estimate tend towards the true individ-
ual parameter in case of informative data, IWRES distribu-
tion approaches a normal distribution with zero mean and
unit variance. Conversely, as data diminishes, the IWRES
distribution shrinks towards zero. We define this phenom-
enon as ε-shrinkage (shε) and is sometimes also called
“overfitting”.

η- and ε-shrinkage are calculated using Eqs. 4 and 5. A
shrinkage magnitude of zero, i.e., no shrinkage, corresponds
to the situation when the model is correct and individual data
is sufficiently abundant so that individual parameter estimates
mimic the true individual parameter estimates, and a
magnitude of one is the opposite case when data contain
virtually no information about the parameters in question and
the individual parameter values approach the typical param-
eter value.

sh� ¼ 1� SD �EBEð Þ
!

ð4Þ

sh" ¼ 1� SD IWRESð Þ ð5Þ

Simulations

General Description

The influence of shrinkage on EBE-based diagnostics
was assessed via ordinary (n≤10) or Monte Carlo (MC; n=
100) PK or PD model simulation–estimation procedures using
non-linear mixed effects modeling (NONMEM; 12). The
model summary is given in Table I. Data sets with different
information content were created by altering the number
(sample frequency) and location (sampling time) of samples.
Each scenario defined with a certain model, and study design
underwent multiple simulations. If not specified otherwise
below, each simulated dataset contained 1,000 subjects.
Thereafter, the EBEs were estimated using either the true
and/or an intentionally misspecified model for each dataset
using Bayesian estimation (i.e., MAXEVAL=0 option) in
NONMEM. In this estimation, the prior information, i.e.,
population parameter estimates, variances, covariances, and
residual variability were fixed to the same values used for
simulations of the data sets, whenever misspecification was
not introduced.
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Based on estimated EBEs, IPREDs, and IWRES, graph-
ical diagnostics were created and subsequently inspected for
trends or indications of model misspecification. Also, the
extent of η- and ε-shrinkage was calculated for these
estimated EBE or IWRES distributions. Overall, the relation-
ship between the extent of shrinkage and informativeness of
diagnostics was assessed both qualitatively, i.e., by visual
inspection of whether or not the resulting plot indicated the
expected pattern, and quantitatively, i.e., to determine at
what shrinkage magnitude a particular diagnostics lose its
utility.

Commonly used EBE diagnostics were explored. A brief
description of these diagnostics as well as the methodology
used to study their informativeness for each case is given
below.

Specific Description

1. Shape of EBE distribution

Description. A visual diagnostic often used to inspect the
EBE distribution and to confirm the normality assumption is
either a histogram or, preferably, a quantile–quantile-plot
(qq-plot), where deviations from normality can be detected.

Methodology. Multiple datasets (n=10 for each unique
design) were simulated from a PK model (one compartment
model with first order absorption, model 4) using different
study designs with respect to sampling frequency (2–10) and
sampling times. The EBEs were estimated using the true
model for each dataset. EBE and IWRES distributions were
visualized and compared to the true normal distribution using
qq-plots.

2. ETABAR outcome

Description. A hypothesis test if the mean value of EBEs
is significantly different from zero is performed at each run,
and the p value of this test is reported in the so-called
“ETABAR outcome” from NONMEM. A significant ETA-
BAR is considered as an indication for a potential model
misspecification.

Methodology. Data sets were simulated from one com-
partment intravenous bolus model (model 1) and one
compartment model with first order absorption (model 4) to
study this diagnostic. The simulated datasets comprised two
and three samples each for models 1 and 2, respectively. Two
conditions were studied: (1) dependence of ηCL ETABAR on
the time of the last sample in model 1 and (2) dependence of
the ηka ETABAR on the time of the first sample in model 2.
For condition 1, seven (7) MC simulation–estimation studies
were performed using different study designs in which the last
sample was positioned at the time equal to the 0.67, 1, 2, 3, 4,
6, and 8 of the disposition half-life (t1/2=3 h) for seven MC
studies. Similarly, for condition 2, eight MC simulation–
estimation studies was performed in which the first samples
was positioned to be equal to the 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5,
and 4 absorption half-lives (t1/2abs=1 h). Each MC involved
100 replicates of simulated datasets. The true model was
fitted to the simulated data using First Order Conditional
Estimation method (FOCE) in NONMEM VI.

3. EBE versus EBE plots

Description. This diagnostic is often used for inspection
of the correlation between individual parameter estimates. If
the plot indicates a markedly non-zero correlation for a
model where the population correlation value was fixed to
zero, the correlation is generally tested in the model for its
significance. If the plot indicates zero correlation for a model
where the population correlation value was also zero, the
correlation is often not tested for its significance.

Methodology. Two conditions were studied: the value of
EBEs to (1) indicate correlation if it is truly present and/or
(2) correctly determining when the correlation is not present.
Condition 1 was studied using model 1, in which the true
correlation between individual parameters of ηCL and ηV was
0.75. Datasets were simulated using this model and different
study designs. For each design, ten replicates were simulated.
The model with true parameter estimates but no correlation
was used to estimate EBEs. The expectation is that EBE
versus EBE plot will indicate parameter correlation. Corre-
lation between EBEs values for ηCL and ηV was computed for
each EBE versus EBE plot. Condition 2 was studied using
model 4 and model 9 (an Emax model). In these models, the
true correlation between all individual parameters was zero.
All study conditions were equivalent to the study described
above; however, the true model with no correlation was used
to estimate EBEs.

4. EBE versus covariate plots

Description. This diagnostic is used for inspection of
relationships between parameters and covariates. When a
large number of covariates are available, this diagnostic
enables a quick screening of relationships. Only indicated
relationships are often subsequently estimated directly in the
population model. EBEs are also used in automated proce-
dures such as the generalized additive modeling (13) and to
investigate the shape of the covariate-parameter relationship.

Methodology. The utility of EBEs to correctly indicate
the EBE-covariate relationship when (1) it is truly present
and (2) when the covariate relationship is not present were
studied using model 4. A direct relationship between typical

Table I. Summary of Models used for Simulations

Model
indexing Model description

Model 1 One compartment i.v. bolus model
Model 2 One compartment i.v. bolus model with

Michaelis–Menten elimination
Model 3 Two compartment i.v. bolus model
Model 4 One compartment model with first order absorption
Model 5 One compartment model with zero order absorption
Model 6 One compartment model with transit

compartment absorption
Model 7 Two compartment model with first order absorption
Model 8 Emax model
Model 9 Sigmoidal Emax model
Model 10 Indirect response model

i.v. intravenous
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value of volume of distribution and weight was used for
simulations. Multiple datasets were simulated under different
study designs, where early observations were censored
sequentially. A model with no covariate relationship was
fitted to the data and used to estimate EBEs which were
subsequently plotted versus the covariate (weight). Correla-
tion between EBEs and weight as well as the slope of EBE
versus weight relationships were calculated for each data set.

5. Dependent variable (DV) versus IPRED plot

Description. This is a commonly used diagnostic for
detection of (structural) model misspecification. Its useful-
ness, compared to the DV versus population prediction
(PRED) plot, comes from separating different sources of
variability.

Methodology. A range of models was used to simulate
multiple datasets, which were subsequently analyzed with
structurally misspecified models. The examples involve the
following pairs of models (first model in a pair is used for
simulation, second for estimation): (1) sigmoidal Emax
model–Emax model (models 9 and 8), (2) transit compart-
ment absorption model–first order absorption model (model
6 and 4), (3) two compartment model–one compartment
model (models 3 and 1), (4) one compartment model with
first order absorption–one compartment model with zero
order absorption (models 4 and 5), and (5) one compartment
model with Michaelis–Menten elimination–one compartment
model with linear elimination (models 2 and 1). For each
condition, multiple datasets with different number of obser-
vations were simulated. IPREDs were derived from the
misspecified model.

6. |IWRES| versus IPRED plot

Description. This is a commonly used diagnostic for
assessing the residual error model. An appropriate residual
error model should be associated with a horizontal regression
line with no slope.

Methodology. Multiple datasets based on different study
designs where observations were censored randomly were
simulated using model 8 with combined proportional and
additive error model and subsequently fitted with the
misspecified model containing proportional error model only.
Absolute values of IWRES were plotted versus IPRED for
determination of residual model misspecification. The expect-
ation was that IWRES values would indicate model mis-
specification visualized as a linear regression line being not
horizontal (e.g., having slope different than 0). The slope of
this regression line was calculated for each case.

Relationship between η- and ε-Shrinkage

Relationship between η- and ε-shrinkage was studies
using model 7. First, rich datasets were simulated (number of
observations=25). Then, sparse datasets were created by
censoring observations within subjects either randomly or
uniformly (same observation deleted for all subjects), keeping
the total number of observations the same for all subjects.
This procedure was repeated until two observations per

subject remained. For each dataset, EBEs were estimated
using the true model and true parameter estimates. η- and ε-
shrinkage were calculated and inspected for relationships.

RESULTS

In general, in the absence of shrinkage, all EBE-based
diagnostics are powerful model evaluation tools. These
diagnostics separate different sources of variability, thus
graphs become easier to interpret. However, in the presence
of shrinkage, all the discussed diagnostics begin losing their
informativeness and could potentially become misleading as
indicated in our detailed evaluation of (1) consequences of η-
shrinkage, (2) consequences of ε-shrinkage, and (3) relation-
ship between η- and ε-shrinkage.

Consequences of η-Shrinkage

EBEs may, in addition to shrinkage, show non-normal
distribution even when the true underlying η distribution is
normal. A pattern of increasing deviations from normality in
the qq-plot with increasing shrinkage, exemplified in Fig. 1
(left panels) for EBE of ηCL, was evident for all parameters
of the studied model (model 4). The larger the shrinkage, the
larger are the observed deviations from normality.

As a result of asymmetric η-shrinkage, mean values of
EBEs (“ETABAR”) may be significantly different from zero,
even for a correctly specified model. The relationship
between ETABAR for ηka and ηCL distributions and the
time of the first or last sample, respectively, is shown in Fig. 2.
For ηka, when the first sample is taken early enough, i.e.,
informative on this parameter, ETABAR is close to zero, as
expected. If the first sample is taken later in time, this sample
is not particularly informative for individuals that have fast
absorption because their absorption process is essentially
complete by that time, but it will still be informative for
individuals that have slow absorption; thus, shrinkage is
expected to happen mainly for individuals with high ka
values, which leads to asymmetric shrinkage resulting in
ETABAR values significantly different from zero. A similar
phenomenon is evident for the ηCL EBE distribution (right
panel of Fig. 2).

When EBEs are used for inspections for parameter
correlations, they can indicate correlation when correlation
truly does not exist (upper panel of Fig. 3), and oppositely,
correlation when truly present would sometimes not been
detected by EBEs (lower panel of Fig. 3). The upper-left
corner and lower-left corner panels of Fig. 3 represent the
true parameter relationships, while other panels show rela-
tionships based on the EBEs estimated under the true model
for different study designs. As Fig. 4 indicates, commonly
induced correlations include those between ηEC50∼η Emax

and ηka∼ηV. The quantitative relationship between shrinkage
extent and informativeness of these plots is shown in Fig. 4.
Both phenomena, induced and hidden correlations, become
apparent when shrinkage is higher than 20–30%.

Similarly, when EBEs are used for a search of significant
covariates, they can obscure relationships, show distorted
shape, or even in certain circumstances falsely indicate
relationship, when relationship truly does not exist (Figs. 5
and 6). The left panel of Fig. 6 shows falsely induced
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Fig. 1. Deviation of empirical Bayes estimates (EBE) and individual weighted residual (IWRES) distribution from normality due to η- and ε-
shrinkage, respectively, shown as a qq-plot (upper panels) and sum of squared distances from the true distributions (lower panels). This is a
representative example of three simulations. EBE and IWRES were estimated using the true model

Fig. 2. Dependence of ETABAR on the time of the first and last sample for ηka and ηCL distribution, respectively. Deviations of ETABAR
from zero is a result of asymmetric empirical Bayes estimates shrinkage
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relationship between ηka and weight, when the true covariate
relationship was between volume and weight. The right panel of
Fig. 6 shows how an existing relationship betweenweight and ηV
is less evident, the higher the shrinkage in ηV. The observed
pattern appears due to induced correlation between ηka and ηV.

Consequences of ε-Shrinkage

The IWRES distribution may in the presence of ε-
shrinkage show non-normal distribution even when the
underlying model is correct (Fig. 1, right panel).

Fig. 3. Empirical Bayes estimates (EBE) versus EBE plot indicating parameter correlation due to η-shrinkage when
correlation is not truly present (upper panel) and hiding parameter correlation when correlation is truly present (lower
panel)

Fig. 4. Left panel: relationship between (induced) correlation between ηEmax and ηEC50, ηka–ηV and ηka–ηCL, and η-shrinkage. Right panel:
disappearance of correlation between empirical Bayes estimates with increased shrinkage. The average of the shrinkage in two studied
parameters (e.g., ηEmax and ηEC50) is shown on the x-axes. Each symbol represents mean (SE) based on ten simulation–estimation procedures
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The power of IPREDs to detect model misspecification
is reduced in the presence of ε-shrinkage. Figure 7 shows the
DV versus IPRED diagnostic when a misspecified model
(zero order absorption, model 5) was applied to data
simulated with first order absorption (model 5) in two
scenarios: with rich data resulting with low ε-shrinkage and
with sparse data resulting in high η- and ε-shrinkage. When
ε-shrinkage is low, the plot clearly indicates the model
misspecification; however, when shrinkage is substantial,
signs of model misspecification are absent, and the plot

indicates a perfect fit. Similar phenomena were observed
with all other scenarios tested. Already, at the ε-shrinkage
extent of 20–30%, it was hard to visually detect model
misspecification.

The power of IWRES to detect residual model mis-
specification diminishes with an increase in ε-shrinkage.
Figure 8 (left panel) shows IWRES diagnostics produced
based on misspecified model (proportional residual error
only) fitted to the data simulated with the model that had
combined error model (additive + proportional residual

Fig. 5. Empirical Bayes estimates versus covariate plot indicating parameter-covariate relationship due to
η-shrinkage when relationship is not truly present

Fig. 6. Relationship between shrinkage extent and induced covariate (left panel) and hidden covariate relationship (right panel). The average
of the ηka- and ηV-shrinkage is shown on the x-axes of the left panel

564 Savic and Karlsson



error). A quantitative relationship between ε-shrinkage and
model misspecification indication, expressed as the slope of
the regression line for |IWRES| versus IPRED, is shown in
Fig. 8 (right panel).

Relationship between η- and ε-Shrinkage

Relationships between η- and ε-shrinkage are shown in
Fig. 9. As expected, these two terms are positively correlated.

Fig. 7. Individual prediction versus dependent variable plot for detection of structural model misspecification

Fig. 8. Power of individual weighted residual (|IWRES|) versus individual prediction (IPRED) to detect residual model misspecification. In
absence of shrinkage, the regression line of |IWRES| versus IPRED clearly indicates residual model misspecification (left panel). With
increased shrinkage, the slope of the regression line is diminishing (right panel)
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The shape of this relationship is however different for
different study designs.

DISCUSSION

In this paper, we have evaluated the usefulness of EBE-
based diagnostics in different circumstances and their depend-
encies on the information content in the datasets. These
diagnostics are powerful when the individual’s data provide a
substantial amount of information on the model parameters.
However, with decreased information content per individual,
these diagnostics become not only uninformative but poten-
tially also misleading. The EBE-based diagnosis is a central
part of the model building process, but if a modeler would
accept such diagnostics without considering shrinkage, it may
impede decision-making, increase time for data analysis,
decrease trust in adequate models, and accept inappropriate
models.

Although it is difficult to give a rule of thumb at what
shrinkage extent diagnostics becomes misleading, we
observed in our examples that already at a level of 20–30%
for both, η- and ε-shrinkage, EBE-based diagnostics generally
lost their power, and false indications started to appear.
Therefore, it seems rational to provide values for shrinkage
whenever EBE-based diagnostics are used for communicating
model quality. It is important to clarify that all mentioned
patterns are associated with the graphical diagnostics solely.
When both models were tested directly in NONMEM, correct
and misspecified, the correct model would be selected for
every example, based on standard model building procedures
using the objective function values. Thus, significant shrink-
age in most of the cases does not indicate any problem with
the dataset or with the model; it only affects the diagnostics
based on EBE. Thus, whenever shrinkage is present, a model
building process involving more direct testing and less or no
reliance on EBE-based diagnostics should be used. Addition-
ally, other types of diagnostics ought to be used in these cases,
for example simulation-based diagnostic (10) or conditional
weighted residuals (14).

An interesting finding was that EBEs may in the
presence of shrinkage indicate false relationships or hide true
relationships when used for covariate screening. Here, this
was a consequence of the induced correlation between two
parameters, ηka and ηV. (in general, sign of such an induced
correlation may depend on the design). This finding is of
special interest when EBEs are used for selection of
covariates that will be further tested in the model for their
significance. If only certain parameters are screened for
covariates, it may happen that EBEs would indicate false
parameter-covariate relationships, which may even turn out
to be significant when tested directly in the model, while the
covariate was truly related to other parameter. Therefore,
whenever this is the case (i.e., single parameter is screened
for covariate relationships and a certain covariate appears to
be significant), the modeler should also test the relationship
between the significant covariate and other parameters in
order to determine the appropriate relationship.

We have observed that η- and ε-shrinkages are corre-
lated, which is intuitive. However, while η-shrinkage may
appear substantial even when observations per subject are
numerous, ε-shrinkage remains low in these circumstances. ε-
Shrinkage becomes substantial when the number of observa-
tions is equal or less than the number of random effects. As a
general principle, the lower the residual variability, the more
informative are observations, and the lower will the η-
shrinkage be. Also, as a general principle, a higher number
of between-subject random effect and higher variability in
these will lead to a higher flexibility in the individual model to
approach to observed values and therefore lead to higher ε-
shrinkage.

We have so far only discussed shrinkage magnitudes
between zero and one. Based on theoretical considerations,
η- and ε-shrinkage should, in the absence of model mis-
specification, be positive (15). Indeed, whenever the shrink-
age was computed under the correct model, shrinkage values
were in this range. For a number of scenarios when data were
simulated and model parameters re-estimated with misspeci-
fications of the parameter distribution, shrinkage was non-
negative. However, shrinkage may also take negative values

Fig. 9. Relationship between η- and ε-shrinkage under different study designs
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in certain circumstances; we found negative shrinkage in
some real data examples, typically with rich data and a small
number of subjects. Also, in situations where a parameter
variance is fixed to a lower value than the true value, negative
shrinkage may occur. Thus, negative shrinkage may be a
useful signal for possible model misspecification.

This exercise was performed on simulation examples,
and one can argue that such scenarios would not occur often
in model building processes using data from real clinical trials.
However, when inspecting 29 published PK and PD models,
we identified that shrinkage was present in all of them
(Table II). Substantial shrinkage is often present in PD
parameters and PK parameters describing absorption and
distribution. Even the most well-informed parameter, clear-
ance (CL), showed shrinkage above 20% in about one third
of the PK studies. A large number of observations do not
guarantee the absence of η-shrinkage as it can occur even in
cases when the number of samples is as large as 20
observations per individual. This is simply because the studies
are not designed to provide perfect information on all model
parameters. In this work, we explored implications of EBE
shrinkage for model diagnostics. However, EBEs are also
used in other aspects of non-linear mixed effect analysis, for
example, in FOCE, sequential PK-PD analysis or nonpara-
metric estimation in NONMEM (14,16,17). Shrinkage would
affect these estimation procedures too; however, this is
outside the scope of the present investigation.

In conclusion, when shrinkage is higher than about 20–
30%, EBE-based diagnostics lack informativeness and may be
misleading. Therefore, it is desirable to report the extent of ε-
and η-shrinkage to assess the relevance of diagnostics employ-
ing EBEs, IPRED, and IWRES. When shrinkage is high,
other diagnostics and more direct population model estima-
tion need to be employed in model building and evaluation.
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