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This paper examines the role of technological change and spillovers within the 
context of a climate policy in a long-term scenario of the global energy system. We use 
the energy-systems optimization model MESSAGE considering endogenous learning 
for various technologies, such that they experience cost reductions as a function 
of accumulated capacity installations. We find that the existence of technological 
learning while reducing overall energy system costs becomes particularly important 
in the context of a long-term climate policy. Diversity in technological portfolios 
is emphasized and results indicate deployment of a range of energy technologies 
in reducing emissions. An important finding is that technological learning by itself 
is not sufficient for climate stabilization and that climate policies are an absolute 
necessary complimentary element. Under a climate constraint, spillovers across 
technologies and regions due to learning results in increased upfront investments 
and hence lower costs of carbon free technologies, thus resulting in technology 
deployment and emissions reductions, especially in developing countries. We 
conclude that learning and spillover effects can lead to technologically advanced 
cost-effective global energy transition pathways. We suggest that coordinated climate 
stabilization policies can serve as important institutional mechanisms that facilitate 
the required technological investments, especially in developing countries and thus 
ensure long-term cost reductions.

1. InTroduCTIon

Technological change forms one of the cornerstones of any analysis 
involving long-term scenario development, particularly for climate change. It is an 
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important factor in understanding the dynamics of the system and in formulating 
subsequent policy conclusions with respect to emission reduction strategies. The 
assessment of opportunities for new technologies in shaping future energy systems 
is a complex task involving the interaction of a number of technical, economic, 
environmental and social driving forces, but the understanding of such complex 
dynamics of technology is a central issue in policy decisions, concerning the 
definition of future sustainable trajectories for the energy systems (Kemp, 1997).

The rate of technological change in an economy and its energy system depends 
on the diffusion of innovations and the dynamics of their adoption (Nakicenovic, 
1996). In this regard, capital turnover rates are one of the critical drivers of the process 
as by definition they embody technological change i.e., investments are required into 
physical plant and equipment capital. This link between technological change and 
investment (rates) is captured by the well known “experience” or “learning” curve 
that is well documented in manufacturing industries (Argote and Epple, 1990). R&D 
mechanisms are another important driver of technological change and can influence 
cost reductions and performance improvements particularly in the early stages of 
development of a technology (Barreto and Kypreos, 2004).

Incorporation of technological change (or learning) is central for 
understanding the potential interplay between continuous experiences in order to 
stimulate the development of new technologies. It thus helps to identify promising 
technologies and related investment needs to make environmentally more benign 
technologies competitive, essential information for policy makers and private 
investors alike. On the other hand, policy mechanisms themselves often have 
an important role to play in accelerating technological progress. In order to 
achieve the necessary cost improvements, technologies require policy measures 
to support their learning processes, i.e. to cover the “learning investments” and 
thus sustained efforts in research, development, demonstration and deployment 
activities are required (Riahi et al., 2004). 

It is clear that complying with any long-term global climate policy will 
involve a large-scale transformation of the energy system. While there is debate on 
the exact costs and benefits of climate stabilization, the inclusion of technological 
learning can be expected to have a significant impact on such costs. In addition, 
technological and regional spillovers play a central role in systems with learning 
and can have significant impacts on broadening the range of technological options 
and their improvement rates. For instance, within the framework of a long-
term climate policy, learning and spillover rates will be critical in determining 
availability and economics of low-emission technologies that will be affordable 
to developing countries to reduce greenhouse gas (GHG) emissions. Thus 
spillovers emphasize the potential benefits of international cooperation between 
industrialized and developing regions on research, development, demonstration 
and deployment of clean energy technologies (Barreto and Klaassen, 2004). 
This can serve as an incentive to cooperation of these countries in international 
climate negotiations and provide incentives to adopt technologies that could lead 
to climate-friendly and sustainable futures. 
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In this study, we mainly focus on the dynamics of ‘learning by doing’ 
in the energy system, treating the complex processes governing technological 
innovation and diffusion as a simplified ‘black box’ with a focus on the link 
between technological change and investments as well as the impact of learning 
and spillover effects on the adoption of technologies and the implications this 
in turn has for the costs and development of a climate policy. In the following 
sections we first examine the overall treatment of technological change in the 
energy systems models and then present our methodology and results using the 
MESSAGE model. 

2. TeChnoLogICaL Change In energy SySTemS modeLS

As stated in Nakicenovic and Riahi (2001), technological change in 
energy scenarios is of two kinds, one in which technologies change incrementally 
over the time horizon (cost reductions, efficiency improvements, etc.) and the 
other is the more radical introduction of completely new technologies at some 
points in the future. Both kinds of change usually co-exist in energy systems as 
well as in energy models. However the models differ with respect to the type of 
representation of technological change.

There are basically three major ways in which technological change is 
treated in energy systems models:
1.  The first is a so-called ‘static’ approach that treats the costs and technological 

parameters of a given technology (or technologies) as constant, i.e., it does 
not include any improvements in cost or performance. Such an approach is 
inflexible with regard to switching between technologies and is at odds with 
both historical and current experience in the energy sector.

2.  The second is representing technological change ‘exogenously’ whereby costs 
decline and technical performance improvements in the analysis are exogenously 
predefined over time. This is the most common treatment of technical change in 
bottom-up energy systems models. The rates of improvement of the technology 
are usually determined depending on the basis of the scenario being analyzed 
and the state of the future world in such a scenario. The main critique of such 
an approach (see for example Grübler and Messner, 1998) in intertemporal 
optimization models is that it ignores the fact that early investments in 
expensive technologies are necessary in the first place in order to enable the 
system to adopt these technologies. Technology cost declines do not happen 
automatically but depend on the accumulated investments made in them in the 
previous time periods.

3.  The third approach is the most sophisticated and involves explicit treatment of 
elements of ‘endogenous’ technological change models. For instance the link 
between technological change and investments is explored via a learning curve 
approach in which technological improvement rates are modeled as a function of 
accumulated experience. This is the commonly referred to ‘learning by doing’ 
approach. This method has successfully been applied and tested in many types 
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of models. In energy systems models, the cumulative capacity of a technology is 
usually taken as explanatory variable of experience and cost reductions (see for 
example Messner 1997). The inclusion of endogenous technological progress 
typically leads to earlier investments in energy technologies, a different mix of 
technologies and a lower level of overall discounted investments, as compared 
to the case of exogenous technological progress (Messner, 1997; van der Zwaan 
et al., 2002).

3. SCenarIo deveLoPmenT

For our illustrative analysis, we choose the B2 scenario from the IPCC 
SRES family (IPCC, 2000). The B2 scenario is characterized by a world that places 
emphasis on community-based solutions and places a high priority on environmental 
issues at the regional level. Economic growth and population changes in this scenario 
are also relatively ‘middle of the road’ compared to the other SRES scenarios. World 
GDP increases with a long-term average growth rate of 2.2% to around US$235 
trillion by 2100, while population increases over the course of the century to around 
10.4 billion. The advances in energy technologies in the B2 scenario are ‘dynamics 
as usual’ i.e., long-term rates of technological change1 do not deviate substantially 
from historical experience (Riahi and Roehrl 2000). Technological innovation and 
diffusion at the regional level in the future can be quite rapid even though they 
usually translate into more modest aggregate global rates. 

We develop two variants of the B2 scenario:
a. B2-Fixed (B2-F): This scenario assumes that costs and technical 

parameters like efficiency stay constant for the energy system. It is 
hence a static scenario with no technological change.

b. B2-Learning (B2-L): The B2-L scenario maintains basically the 
same assumptions of the original B2 world but assumes endogenous 
technological learning for a range of technologies. 

Since our goal here is to highlight the importance of technological change 
per se, we compare and contrast two such extreme scenarios and do not include 
here a comparison to the original SRES B2 scenario with exogenous learning 
rates. We further impose a long-term (2000-2100) CO

2
 concentration constraint 

of 500 parts per million by volume (ppmv) on both the B2-F and B2-L scenarios 
and label these B2-F-500 and B2-L-500 respectively.

The learning rates as stated earlier are based on past experience and do 
not assume any further acceleration in the future. The learning rates for existing 
technologies are based on various studies that have examined historical learning for 
energy technologies (for example IEA, 2000; Nakicenovic et al., 1998; Rabitsch, 
2001; McDonald and Schrattenholzer, 2002). For new technologies like carbon 
scrubbers, we use Riahi et al., (2004) to indicate possible rates of technological 
progress. We acknowledge that the choice of the learning rate can greatly influence 

1. The original SRES B2 scenario included exogenous technological change 
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the performance of a technology. Overestimation of the learning rate represents 
a risk as investments in a given technology may turn out to be more costly than 
expected, affecting the competitiveness of the actors involved. Underestimation, on 
the other hand, will alter their profitability margins (Grübler and Gritsevskyi, 1997). 
For sensitivity analysis and cost assessment of alternative assumptions concerning 
technological change using MESSAGE see Roehrl and Riahi (2000).

In total, a range of 18 technologies are assumed to undergo learning, i.e., 
have the potential for cost reductions as a function of accumulated capacity. Table 
1 presents the scenario’s investment costs of fossil power generation technologies 
for the years 2000 and 2100. In the scenarios that consider endogenous 
learning, the costs of fossil power plants decrease in line with the deployment 
of the respective technology and the increase in cumulative installed capacity. 
The assumed learning portfolio is diverse and is not biased towards any one 
individual technology or particular groups of technologies. This is important to 
recall especially to avoid policy misinterpretation that may occur if any type of 
technology is assumed to learn while another set assumed to remain static. Also, 
we include learning for both existing high GHG emitting technologies like coal-
fired power plants as well as cleaner renewable technologies.

Table 1. Learning rates and Investments of main groups of Technologies
    Investment cost in  
   Initial invest-         2100, $/kW 
 Learning ment cost in  
 rate 2000, $/kW B2-L  B2-L-500 

Subcritical coal power plants 0% 1000-1300 1000-1300 1000-1300  
Supercritical coal power plants 5% 1650 1650 1650  
IGCC 10% 1400 332-366 414  
Single cycle gas PPL 0% 710 710 710  
NGCC 8% 730 411 411-453  
Solar photovoltaics 15% 5100 540 540  
Solar thermal PPL 7% 2900 1174-2900 1100-2900  
Wind power 7% 1400 1400 1400  
Conventional biomass PPL 4% 1600 1370 1370  
Advanced biomass PPL 5% 1800 1033 985-1033  
Renewable H2 10% 985-3200 985-3200 985-3200  
Fossil H2 Ex.* 462-1206 320-850 320-850  
Ethanol 10% 1580 534 534  
Methanol Ex*. 676-1328 480-1150 480-1150  
Carbon capture and storage 13% 509-940 509-940 281-940 

Exogenous learning rates assumed in the range of 3-5%, according to the B2 scenario

In our analysis, the learning rates are assumed to be constant throughout 
the century. It is of course debatable whether the rates of improvement assumed are 
sustainable in the long-term till the end of the century and it can well be expected 
that there will be some deviation from past or current trends. Hence the learning 



30  /  The Energy Journal

rates assumed here constitute yet another important scenario uncertainty which 
explains the interest to explore also model formulations in which learning rates 
are treated as uncertain (stochastic) variables (e.g., Gritsevskii and Nakicenovic, 
2000). Schrattenholzer (1998) illustrates the variability of the progress ratio using 
the example of several energy technologies and finds that some technologies 
experience declining learning rates over time. The uncertainty inherent to the 
progress ratio highlights the need to provide, if possible, a stochastic treatment 
for this parameter.

We also use the idea of ‘technology clusters’ which has been applied 
in several modeling approaches (Seebregts et al., 2000; Riahi et al., 2005). 
Technology clusters are shaped when related technologies interact and enhance 
each other, contributing to their mutual development (Nakicenovic, 1997). 
Technological spillovers can occur within a cluster (for example: carbon capture 
technologies, centralized and decentralized solar PV) but not from outside the 
cluster (for example: improvements in the semi-conductor industry). Thus, in the 
language of our model, technologies within a cluster form a common ‘technology’ 
in terms of a common learning curve.

The learning process for technology improvements in our analysis is 
assumed to take place on a global scale. Although this might not necessarily be 
consistent with the existence of trade barriers, regional economic blocks or the 
importance of localized learning, we have retained this simplifying assumption 
here, mainly to reduce computational complexity.

4. meThodoLogy

We use the MESSAGE model (Model for Energy Supply Strategy 
Alternatives and their General Environmental Impact) for our analysis. MESSAGE 
is a systems-engineering optimization model used for medium-to long-term 
energy system planning, energy policy analysis and scenario development 
(Messner and Strubegger, 1995). The model maps the entire energy system 
with all its interdependencies from resource extraction, imports and exports, 
conversion, transport and distribution to end-use services. The model’s current 
version, MESSAGE IV, provides global and sub-regional information on the 
utilization of domestic resources, energy imports and exports and trade-related 
monetary flows, investment requirements, the types of production or conversion 
technologies selected (technology substitution), pollutant emissions, inter-fuel 
substitution processes, as well as temporal trajectories for primary, secondary, 
final, and useful energy. It is a long-term global model with a time horizon of a 
century (1990-2100). 

Implementation of endogenous learning as learning rates in linear 
programming models leads to a non-linear and non-convex optimization 
problems, thus posing significant difficulties in implementation. Such problems 
possess several local optima and a global optimum solution is not guaranteed 
even with standard non-linear solvers. Following Messner (1997), a piece-wise 
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linear approximation of the learning curve is implemented in the MESSAGE 
model as shown in Figure 1 and mixed integer programming (MIP) techniques 
are applied to obtain an optimum solution . For more details on the approach see 
also Riahi et al., (2004). 

Figure 1. example of Linear-approximation of Learning Curve

For this study, we also use MACRO, a top-down macroeconomic 
equilibrium model (Manne and Richels, 1992). The capital stock, available labor, 
and energy inputs determine the total output of an economy according to a nested 
constant elasticity of substitution (CES) production function. MESSAGE and 
MACRO are linked iteratively to include the impact of policies on energy costs, 
GDP and on energy demand. The linking of a bottom-up technology-rich model 
and a top-down macroeconomic model results in a fully consistent evolution 
of energy demand quantities, prices, and macroeconomic indicators (such as 
GDP, investments and savings). MACRO’s outputs include internally consistent 
projections of world and regional realized GDP (i.e., taking into account the 
feedback that changing energy and other costs have on economic growth) 
including the disaggregation of total production into macroeconomic investment, 
overall consumption, and energy costs. A detailed description of the link between 
the two models can be found in Messner and Schrattenholzer (2000).2

2. By linking bottom-up and top-down models, our approach permits to give a detailed account 
of imputed systems engineering costs as well as macroeconomic welfare losses (including producer 
and consumer surplus). Our macroeconomic model though adopts a coarse view of the economy 
outside the energy system. I.e., heterogeneous categories outside the energy sector (e.g., agricultural 
goods, medical services, IT, etc.) are all aggregated into a single representative category. Clearly, this 
would be inappropriate if we were dealing with short-term balance-of-payments issues for individual 
countries. Our approach is also less adept to account for costs due to market inefficiencies and shares 
with the vast majority of the integrated assessment models a more generic representation of other 
intangible costs due to e.g., institutional barriers, inefficient legal frameworks, transaction costs, or 
potential free-rider behavior of geopolitical agents. 
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We further use the MAGICC climate model version 4.0 (Wigley et al., 
2000). A MESSAGE-MAGICC iterative linkage is established whereby the GHG 
emissions and initial concentrations (to achieve stabilization) from MESSAGE are 
fed to MAGICC. The new concentrations from MAGICC are now iterated back to 
MESSAGE and the process repeated until the concentration target is achieved.

5. reSuLTS

Assumptions on technological change lead to differences in baseline 
emissions. As Figure 2 shows, the B2-L scenario with endogenous learning 
leads to a somewhat lower carbon future as compared to the static costs B2-F 
case. However, the carbon reductions achieved due to technological learning 
are seen to be insufficient to achieve climate stabilization. This highlights the 
important finding that while endogenous technological change is an important 
part of analyzing carbon mitigation options, it has to be coupled with a stringent 
environmental constraint to achieve the necessary long-term climate goals. 

This conclusion can be considered robust in all cases without asymmetrical 
technological change. As there is little theoretical or empirical reason to assume3 
for instance that biomass-gas fired gas turbines are subject to technological 
learning, whereas fossil fuel based gas turbines are not, we consider the present 
illustrative scenario as, if not more, plausible than alternative scenarios assuming 
ex ante asymmetrical technological learning rates among different (clusters of) 
technologies. Note however, that this conclusion only holds in cases assuming 
comparatively modest learning rates (as done in the simulations reported here). 
Earlier studies using the MESSAGE model (Roehrl and Riahi, 2000; Nakicenovic 
and Riahi, 2001) have investigated the sensitivit y of scenario results to alternative 
assumptions for technological change. Their analysis has shown that alternative 
parameterizations of technological change have significant implications for the 
technology portfolio as well as associated costs. The difference in the results is 
seen to be more pronounced for baselines as compared to climate stabilization 
scenarios. For example, Roehrl and Riahi (2000) note an increase in emissions 
intensity of the baseline by a factor of two in case of asymmetric technological 
change and less favorable assumptions for learning of renewable technologies. By 
the same token, more optimistic assumptions for the learning rates of renewable 
technologies are seen to lead to considerable reductions in emissions in the long 
term even in absence of climate policies. The corresponding uncertainty range 
(assuming everything else being equal) would translate into 7 to 30 GtC of CO

2
 

emissions by 2100, compared to about 15 GtC in the baseline scenario with 
balanced learning rates analyzed here. The difference in parameterization of 
technological change is also seen to have significant implications for the long-term 
energy systems costs. Most interestingly, emissions intensive baselines are seen 

3. Evidently this statement only holds in the absence of a convincing theory that can explain the 
wide variations in extent and rates of learning phenomena observed in the empirical literature.
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to be more costly due to the ‘lock-in’ in mature energy infrastructures and lack of 
increasing returns to scale of advanced technologies. Adopting the results from 
Roehrl and Riahi (2000) for our analysis suggests that the variation of learning 
assumptions would lead to a range of energy expenditures over the course of the 
century of about 35.9 to 41.3 trillion US$.4 5 This compares to 39.7 trillion US$ for 
the central case with endogenous learning presented here.6 It is, thus, important 
to keep in mind that our scenario results presented here are mainly representative 
for intermediate or ‘middle of the road’ learning assumptions. 

Figure 2. Co2 emissions in B2-F and B2-L Scenarios

We now examine the contribution of main mitigation measures for 
achieving the stabilization of CO

2
 under both dynamic and static technology 

assumptions. While the total carbon emissions profiles of the 500-ppmv 
stabilization cases did not deviate significantly in the learning and static cases, 
the profile of technologies used for carbon mitigation is very different in these 
two scenarios as seen in Figure 3. The B2-F-500 mitigation profile exhibits a 
dominant share of deployment of carbon capture and sequestration technologies. 
This is caused by the relative inflexibility in a static system where moving to low 
carbon alternatives is not cost effective due to the relatively high investment costs 
of such technologies. This leads to a further ‘lock-in’ to fossil fuel technologies 
and the system is meets the climate constraint by mainly scrubbing carbon from 
fossil fuels. In contrast, the B2-L-500 is a more balanced mix of mitigation 
technologies. The energy system with a balanced learning technology portfolio 

4. Note that in order to enhance comparability between the scenarios, results from Roehrl and Riahi 
(2000) were normalized using the same energy demand assumptions as for the scenarios presented in 
this paper. 

5. A discount rate of 5 percent was used to calculate the net present value of energy expenditures.
6. Similarly, alternative parameterizations of learning have also implications for the costs of 

mitigation. Roehrl and Riahi (2000) report an uncertainty range for the net present value of mitigation 
– measured as the increase in energy expenditures over the course of the century compared to the 
baseline – between 0.01 and 4.9 percent. This compares to 0.2 and 1 percent for our stabilization 
scenarios with and without endogenous learning.
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adopts a diverse mix of technological options to achieve the same climate 
constraint. Also important to consider is that price-induced demand changes due 
to the MESSAGE-MACRO iteration have a role in mitigation, especially in the 
B2-F_500.

Figure 3. Sources of Co2 mitigation in B2-F-500 and B2-L-500 Scenarios

The shadow prices in the static B2-F_500 and the learning B2-L_500 
scenarios are shown in Figure 4. As seen, incorporation of learning leads to 
significantly cheaper mitigation profiles as compared to the static case in the long 
run. This again illustrates the result that the static costs scenario has to invest 
heavily into expensive technologies in order to achieve climate stabilization. 
In contrast, the learning case benefits from the fact that many low-carbon 
technologies have already experienced significant learning in the baseline and 
hence the options for mitigation in the constrained case are not as expensive.

As mentioned earlier, an iterative approach was used between the 
MESSAGE and MACRO models to calculate the price-induced reductions in 
GDP and energy that result from the imposition of a climate constraint on the 
system. MACRO balances changes in prices with resulting changes in energy 
demand as well as the impacts of rising energy and carbon prices on GDP. The 
macroeconomic implications (costs) of climate stabilization include the costs 
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of carbon emission reduction in a direct, narrow sense (e.g., through carbon 
sequestration and disposal), the costs of switching to more expensive alternative 
energy sources, the costs of energy conservation, as well as the macroeconomic 
costs (or benefits) of the resource transfers that go along with emission trading7 
(Nakicenovic and Riahi 2003). Thus, the coupling of a technology-rich engineering 
model with a macroeconomic model results in a more balanced view of the macro-
economic costs of climate stabilization at challenging low levels. Table 2 shows 
the percentage GDP and demand reductions that result in the B2-L_500 and B2_
F_500 as compared to the B2-L and B2-F baselines respectively. GDP losses and 
demand reductions are substantially higher in the static technology case.

Table 2. Percentage reductions in gdP and energy demand
 B2-F-500 B2-L-500 

 % gdP % demand % gdP % demand 
  loss  reduction  loss  reduction 

2000 0.0 0.0 0.0 0.0  
2050 0.8 1.7 0.01 0.1  
2100 1.5 9.5 0.1 0.7 

An important aspect of the learning process is the investment patterns. 
Figure 5a shows that in the cumulative long run investments in the different 
scenarios. The B2-L scenario displays a reduction in long-term costs due to 
cost-effective low-carbon technologies becoming available.8 The existence 
of technological learning while reducing overall costs becomes particularly 
important under the existence of environmental constraints. The B2-F-500 is 
the most expensive case due to inflexibility in the system and the high cost of 

7. We do not consider emission trading costs here
8. Demand changes due to such reduced costs are accounted for by the MACRO iterations. 

Figure 4. Shadow Prices ($/tC) in B2-F_500 and B2-L_500 Scenarios
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mitigation. In contrast, the B2-L-500 is cheaper due to learning of mitigation 
technologies and corresponding reductions in costs. Technological change can 
thus significantly soften the economic burdens of meeting environmental targets. 
This is particularly important because given the substantial uncertainties on the 
stringency of ultimate climate constraints, investments into low carbon intensive 
technologies due to technological learning, can constitute an important risk 
minimizing element in climate mitigation policies. 

Figure 5a. Cumulative Investments in the different Scenarios (2000-2100)

Figure 5b. Cumulative Investments in the different Scenarios (2000-2030)

 

Figure 5b illustrates the changes in investment patterns in the learning 
cases compared to the static one. Both the B2-L and B2-L_500 indicate higher 
short term investments compared to the B2-F case. In the longer term, this trend is 
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reversed with lower investments in both learning cases, a typical picture portrayed 
by all scenarios exploring technological learning phenomena. The exact nature 
of this ‘investment shift’ is a function of both the learning rates assumed in the 
model simulations (see Table 1) as well as of the discount rate assumed in the 
model calculations (5% in our case). This highlights the fact that, from a long-
term perspective, it could be sensible to invest today on the ‘buy-down’ process of 
promising technologies that could become competitive in the long run (Riahi et 
al., 2004). This emphasizes the need for early R&D efforts and creation of niche 
markets for advanced (carbon free) technologies in order to bring down their costs 
in the long-run. We further observe that the presence of a clearly defined and 
structured climate policy serves as a significant incentive for inducing innovation 
and diffusion of such technologies. 

The illustrative model simulations reported here assume perfect temporal 
and spatial flexibility typical for social planner models with perfect foresight. It is 
therefore important to discuss the implications of ‘who learns when’ in scenarios 
in which technology dynamics result from perfect regional spillovers9 in the cost 
lowering investment effects of technological learning. Figures 6a and 6b present 
cumulative regional investments in developing countries to 2030 as regional 
totals and shares in global investments as well as a break-out of investments into 
renewable technologies by macro-region. 

Figure 6a. Cumulative Investments  Figure 6b. Shares of Investments 
(shares) in 2030 in   in renewable Technologies in 
developing Countries (bln)$  B2-L_500 

Figure 6a shows that in the B2-L learning scenario total cumulative 
investments by 2030 in developing countries10 increase compared to the B2-F 

9. Under global learning, the deployment of a technology in a given region affects its investment 
costs in all of them and, as a consequence, may render it more attractive also in other regions (Riahi 
et al., 2004).

10. Investment size in developing countries and their share in global investments are first of all 
determined by the underlying demand scenario (B2), which in accordance to the vast majority of 
recent energy demand scenarios (cf. the review in IPCC 2000) projects much more vigorous demand 
growth in developing countries.
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and the imposition of the climate constraint in the B2-L_500 leads to further 
increase in such investments. The possibility of learning effect, especially when 
combined with climate constraints increases the early deployment of new energy 
technologies in developing countries thus increasing investments. This shift in 
early investments towards the rapidly growing energy markets of the ‘South’, 
results from the global cost minimum criterion underlying the objective function 
of the model that assumes a strict separation of economic efficiency and equity.

As Figure 6b indicates, under the climate constraint, investments into 
renewable technologies are initially higher in industrialized countries but already 
by 2030, more than half of the global investment into such technologies move to 
developing regions and by the end of the century, these regions dominate the share 
of such investments. This indicates the existence of large potentials and markets for 
such carbon-free technologies in these regions. In developing countries, where much 
less infrastructure is available and energy demands are likely to grow, the system 
could move more readily into a renewable path, using leapfrogging techniques, 
where efficient technologies and infrastructures are preferred to large-scale fossil 
based systems (Barreto et al., 2003). However the results presuppose the existence 
of perfectly functioning capital markets in which in addition the issues of who 
performs early investments for ‘cost buy down’ of new technologies is separated 
from the issue of who actually pays for such investments. In the terminology of 
climate policy the modeling results illustrate the importance of instruments such as 
CDM and associated emission reduction credits that would need to be developed 
vigorously in order to enable global cost minimal solutions such as those reported 
here. In case of capital constraints in developing countries or lack of such institutional 
arrangements the costs of technological learning and of meeting climate constraints 
would be substantially higher. A quantification of this important effect however 
awaits further model improvements such as the representation of capital markets 
and the representation of alternative burden sharing mechanisms underlying a 
particular global climate constraint. A global perspective of technological learning 
without considerations of the critical issue of ‘who learns when and how’ risks 
of projecting an overoptimistic picture that might not necessarily stand the test 
of reality of capital constraints in developing countries and of insufficient global 
coordination mechanisms necessary in a scenario of technological learning. 

Importantly, early investments into new energy technologies in developing 
countries under the assumptions of technological change and climate constraints 
indicate the potential of substantial synergies between meeting short-term 
development needs in these countries and the need for accelerated deployment of 
climate friendly technologies. For example, connecting the poor to the electricity 
grid and providing every individual in the world with electricity would require 
cumulative investments of 600 billion US$ in 2020 (WEC 2000). The spillover 
effects due to a climate policy could play an important role in making available 
such investments in these countries and ensure that they embark on technological 
pathways that fulfill their growing development needs and simultaneously ensure 
a long-term climate friendly future.
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6. ConCLuSIon

In this paper we explore the implications of a representation of a 
stylized mechanism of endogenous technological change in the energy system 
under the learning by doing hypothesis. We confirm earlier findings about the 
general importance of this effect in lowering long-term energy systems costs. We 
find that technological diversity in the learning portfolio is important to avoid 
technological ‘lock-in’ effects. This in turn implies that it is necessary to invest 
in a wide range of technologies and create niche markets to ensure that learning 
effects can lead to long-term cost reductions.

An important finding is that technological learning by itself is not 
sufficient for climate stabilization and that climate policies are an absolute 
necessary complimentary element. Without inducement mechanisms in place, 
any model of endogenous technological change is unlikely to yield the substantial 
emissions reductions required in the long-term for climate stabilization. Under a 
climate constraint, the costs of the energy system are substantially reduced over 
the very long-term through upfront investments into carbon free technologies in 
the short and medium term. However it is important to acknowledge that the large 
magnitude of the ‘upfront shift’ in investments, especially in developing countries 
(which have the largest long-term market potential for new technologies) may 
be difficult due to constraints of capital unavailability, imperfect markets and 
insufficiently developed institutions.

Under a climate constraint, spillovers across technologies and regions 
due to learning results in increased upfront investments and hence lower costs of 
carbon free technologies, thus resulting in technology deployment and emissions 
reductions, especially in developing countries. Thus learning and spillover effects 
can lead to cost-effective, climate-friendly and technologically advanced global 
energy transition pathways. An added bonus might be that these accelerated 
early investments could also provide the much needed access to modern energy 
services of the poor in developing countries. In fact our results suggest that such 
mechanisms are an integral part of global cost-effective solutions to climate 
change. But the realization of such cost lowering effects presupposes the existence 
of appropriate institutional mechanisms that bridge the gap between where early, 
upfront investments yield the largest return in terms of technological learning 
(incl. developing countries) and where the capital for funding such upfront 
investments (predominantly in the industrialized countries) is available. This 
highlights the importance of mechanisms like CDM and of globally coordinated 
climate stabilization policies. Under existing fragmented institutional and policy 
frameworks the substantial economic benefits of perspectives such as outlined 
here are unlikely to be realized.

We conclude with some methodological observations. First, in order 
to better understand the inherent linkages between climate regimes and their 
inducement mechanisms on technological change such as represented under a 
learning-by-doing hypothesis and perfect international technology spillover 
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effects, it is necessary to represent capital markets and resulting capital flows 
between regions explicitly in energy and climate policy models. Secondly, a better 
representation of (imperfect) spillover effects across technologies and regions is 
needed to remediate the rather optimistic assumption of perfect global spillovers 
underlying the model calculations reported here. Finally, the inherent uncertainty 
in technological learning rates imputes both risks and additional opportunities. 
The use of stochastic approaches and limited foresight in modeling technological 
learning can help explore this critical issue more deeply.
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