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Abstract 

 

To predict characteristic extreme traffic load effects, simulations are sometimes 

performed of bridge loading events. To generalize the truck weight data, statistical 

distributions are fitted to histograms of weight measurements. This paper is based on 

extensive WIM measurements from two European sites and shows the sensitivity of the 

characteristic traffic load effects to the fitting process. A semi-parametric fitting 

procedure is proposed: direct use of the measured histogram where there are sufficient 

data for this to be reliable and parametric fitting to a statistical distribution in the tail 

region where there are less data. Calculated characteristic load effects are shown to be 

highly sensitive to the fit in the tail region of the histogram. 

 

Keywords:  Bridge, assessment, traffic, load effect, loading, weigh-in-motion, WIM, 

simulation, tail, semi-parametric. 

 

Introduction 

 

The accurate estimation of the characteristic site-specific lifetime maximum loading for 

existing highway bridges can result in significant cost savings in bridge maintenance 

and repair. The application of full design or assessment code loadings is, in many cases, 

unduly conservative (Bailey 1996). One method of estimating the characteristic loading 

is to fit statistical distributions to load effects (such as bending moments) calculated 

from measured traffic, and to use these distributions directly to predict the lifetime 

maximum loading (Nowak 1993; Nowak 1994). An alternative method, which is used 
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in this study, is to run Monte Carlo simulation models for traffic which are 

representative of measured vehicle data for the site (Bruls et al. 1996, O'Connor and 

O'Brien 2005, Caprani et al. 2008). Measured traffic data include such parameters as 

Gross Vehicle Weight (GVW), number of axles, axle spacing, distribution of GVW 

between axles, and inter-vehicle spacing. 

 

To perform Monte Carlo simulation, it is necessary to fit statistical distributions to 

histograms of measured data. The quality of these fits is important and has a significant 

influence on the accuracy of the results. GVW is used to illustrate the problem as it has 

a particularly strong influence on the load effects of interest. Data are analyzed from 

weigh-in-motion (WIM) systems at two European sites: 650 000 trucks weighed over a 

20-week period in 2005 at Woerden in the Netherlands, and 750 000 trucks weighed 

over 19 months in 2005 and 2006 at Branisko in Slovakia. A notable feature is the 

significant number of extremely heavy vehicles, particularly in the Netherlands where 

892 vehicles weighed over 70 t [154 kips], with a maximum recorded weight of 165 t 

[364 kips]. In Slovakia, there were 78 trucks over 70 t and a recorded maximum of 117 t 

[258 kips]. 

 

Modeling GVW 

 

A critical bridge loading event may be caused by a single very heavy truck, or by a 

combination of trucks of different weights crossing the bridge at the same time. It is 

important, therefore, to model accurately the complete range of GVWs. Three different 

methods of modeling GVW are considered. All are based on histograms of the observed 

GVWs using a bin size of 1 t.  

 

Parametric fitting 

 

Perhaps the most widely used approach (O'Connor and O'Brien 2005) is to fit the 

“measured” histogram to a multimodal Normal (Gaussian) distribution, i.e., to a linear 

combination of a number of Normal distributions. This is similar to the approach used 

in reliability studies where heavy trucks (in this case the mode at 40 t in Fig. 1) are 
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modeled with a Normal distribution (Kennedy et al. 1992). Maximum likelihood 

estimation is used here to estimate the parameters for a trimodal Normal distribution. As 

can be seen in Fig. 1, this gives a moderately good fit for most of the GVW range, but 

significantly underestimates the probabilities in the critical upper tail. 

 

Non-parametric 

 

Non-parametric fitting uses the measured histogram directly as the basis for simulating 

GVW. A uniformly distributed random variable is generated in the range [0, fi] where 

fi is the measured frequency for interval (bin) i. The corresponding GVW is used in the 

simulation. This is a reasonable method for the range of commonly observed GVWs, 

but the method presents problems in the upper regions of the histogram where 

observations are few and there are gaps with no measured data (Fig. 1). If a particular 

GVW is not in the set of measured data, it will not appear in the simulation and, most 

significantly, this method will never simulate a GVW heavier than the maximum 

measured value.  

 

Fig. 1. GVW Histograms for Lane 3, Branisko, Slovakia with parametric and semi-

parametric fits (close ups of tail region inset) 
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Semi-parametric fitting 

 

A third method, proposed here, is to use the measured histogram in the lower GVW 

range where there are sufficient data, and to model the upper tail with a parametric fit. 

This ensures much greater accuracy of the probabilities in the tail region (Fig. 1), allows 

for interpolation between sparse data points and provides a non-zero probability of 

GVWs above the highest observed value. The curve chosen here is the tail of a Normal 

distribution which is asymptotic towards zero probability and has been found by the 

authors to fit well to extreme truck weight data.  

 

To apply the semi-parametric method, a threshold value for GVW must be selected. 

Below this threshold, the measured histogram is used, while above it, the parametric 

curve is used. The threshold must not be too large – it is necessary to have sufficient 

data to the left of it for the bin counts to be “reliable”, i.e., there should be sufficient 

data in each GVW bin for it to be repeatable, and for the histogram to be smooth. It is 

also important that the threshold not be too small to ensure that there is a good fit to the 

histogram in the important tail region. 

 

Reliability of Bin Counts 

 

Assuming that all observed data are drawn from the same distribution, this “parent” 

distribution (whether known or not) will give the expected value for the count in any bin 

for a given sample size. For each value observed there is a probability p  that it will fall 

into a particular bin and  p1  that it will not – a Binomial trial. The total number of 

values observed is N, and the expected (mean) number of values in the bin is Np. When 

N is large and 05.0p , which it typically is for 1 t GVW bins and certainly is in the 

upper tail,  then the Poisson distribution gives a good approximation to the distribution 

of the number of values observed in the bin (Scott 1992). The probability of k  observed 

values in the bin is: 

!

)(
)(

k

Np
ekp

k
k      (1) 

The variance is Np2  and the coefficient of variation is : 
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NpNp
COV

1



      (2) 

This gives a measure of how reliable a particular bin count is. For GVWs, the parent 

distribution is unknown, and hence p is unknown. The maximum likelihood estimate for 

Np is the mean observed number in the bin. As this is a single observation, the observed 

number is used as the best estimate available. 

 

To illustrate this, the theoretical COV based on the Poisson distribution is plotted in Fig. 

2 for a simple Normal distribution – 10,50  with 20 000 values binned using a bin size 

of 1. As can be seen, the COV is relatively low for the bulk of the distribution, but rises 

rapidly in the tail regions.  
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Fig. 2. Coefficient of Variation for a Normal distribution - 10,50  

 

The threshold value for GVW should be below the point where the COV gets 

excessively large, such as the 25% level indicated. 

 

Estimating characteristic GVW and bridge load effects 

 

GVW data from the Slovakian site are analyzed in Fig. 3. The weights are grouped 

randomly into blocks of 750, and the block maxima are plotted on Gumbel (Type 1) 

probability paper. If the parent distribution were a Normal distribution, this plot of 

extreme values would appear as a straight line. As can be seen, it has two distinct linear 

sections, suggesting that there is a mixture of two Gumbel distributions present, 

probably consisting of two different types of truck (for example, it would be reasonable 
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to speculate that the weights up to 65 t are 5- or 6-axle trucks while the data above this 

point consists of cranes and/or low-loaders). Fitting a Normal tail to the GVW 

histogram corresponds to fitting a straight line to the upper part of the block maximum 

data plotted on Gumbel probability paper. The point at which the extreme value curve 

begins to deviate significantly from this straight line gives a lower bound for the GVW 

threshold. The shape of this curve varies between the sites considered, but the upper 

portion has been found to be fairly linear which supports the choice of the Normal 

distribution for tail fitting. 
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Fig. 3. Block maximum GVWs, both lanes combined, Branisko, on Gumbel probability 

paper 

 

An examination of similar curves for each individual lane at Branisko and at Woerden 

suggests that a COV value of 25% is a good basis for selecting a threshold for GVWs. 

This corresponds to a minimum bin count of 16 data below the threshold. This 

recommendation is, within reason, independent of bin size – for a greater bin interval 

width, the threshold moves to the right as the histogram becomes smoother and more 

repeatable in the tail region. For a bin size of 1 t, there are typically about 100 observed 

values above the threshold.   

 

Extreme value theory (Castillo 1988, Coles 2001) is used to estimate characteristic 

bridge load effects. For the design of new bridges in accordance with Eurocode 1, this is 

the value with a 1000 year return period, i.e., 5% probability of being exceeded in a 50 

year lifetime (EC1 2003, Bruls et al. 1996, Flint and Jacob 1996).  
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Sample simulation results are presented in Fig. 4 for the fast lane at Woerden where the 

maximum observed GVW is 75 t. The simulations are run for 2000 days (the equivalent 

of 8 years excluding weekends, with a total of 1.1 million trucks in this lane), and the 

daily maximum bending moments are calculated. To estimate the 1000-year 

characteristic moment, which is the value that occurs once in 250 000 days, these curves 

need to be extrapolated to a value of 12.43 on the Y axis given by: 

43.12
250000

1
1lnln( 








      (3) 

This extrapolation is performed by fitting a Weibull extreme value distribution to the 

top n2  values, as suggested by Castillo (1988).  It can be seen that the parametric 

method gives a relatively low estimate of 5 386 kNm for the characteristic bending 

moment. The non-parametric curve gives a slightly higher value of 5 632 kNm, but is 

bounded in its upper region due to the fact that no GVWs greater than the observed 

maximum are simulated. The semi-parametric curve gives a significantly greater value 

of 7 477 kNm and is considered to provide a more realistic basis for extrapolation to the 

characteristic value.  
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Fig. 4. Daily maximum mid-span bending moments, simply supported 35 m span, single 

truck load, fast lane, Woerden. 
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Conclusions 

 

The problems surrounding the simulation of traffic loading scenarios and extrapolation 

to find the characteristic value are reviewed using WIM data from two European sites. 

The problems with both parametric and non-parametric fitting to histograms of 

measured data are identified and a semi-parametric approach is recommended. The 

implications of each assumption are illustrated using a simulation in which 

characteristic 1000-year bending moments are estimated. 
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