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Importance of Understanding the Physical System in Selecting Separation of Variables 
Based Methods to Solve the Heat Conduction Partial Differential Equation 

Laurie A. Florio1 

DEVCOM Armaments Center, United States Army Armament Graduate School, Picatinny 

Arsenal, NJ 

Abstract: Separation of variables is a common method for producing an analytical based 
solution to partial differential equations.  Despite the wide application of this method, often 
the physical phenomena described by the differential equations are not adequately involved 
in the discourse over the appropriate methods to solve a given problem, particularly in 
mathematics curricula. However, as mathematics is the tool to better understanding of the 
physical world, the meaning of the differential equation, boundary conditions, and initial 
conditions cannot be detached from the methods used to solve the differential equations. 
Failure to recognize the physical conditions being studied can lead to solution methods that 
are invalid or unphysical. This paper demonstrates how awareness of the physical nature of 
the system being investigated and its relationship to the mathematics can guide the selection 
of the relevant solution methods. To illustrate the importance of the comprehension of the 
physical meaning behind the mathematical equations and representations and the need to 
avoid rote application a solution technique, the logic behind the selection of the appropriate 
solution techniques for the one-dimensional transient heat conduction equation is considered 
under different imposed conditions which lead to different trends in system operation. 
 Keywords: Separation of variables; superposition; heat conduction; diffusion; partial 
differential equations 
 
1 Introduction 

A major topic in analytical based solutions of partial differential equations is the use of 

separation of variables.  The conditions under which separation of variables can be implemented 

are limited by the form of the differential equation, the form of the boundary conditions, and 

the physical domain (Kreyzsig, 2011).  Several methods to manipulate the system so that 

separation of variables can be used as part of the solution process for a given problem are widely 

known (Arpaci, 1966).  The selection of the solution method combination best suited for a given 

problem must rely upon knowledge of both the mathematics and the physical phenomena being 

modeled. Without considering this interdependence, the mathematical solution reached may 

lead to unphysical predictions despite the ability to formulate a solution or the attempted 

solution method may reveal inconsistencies making a solution through the method impossible. 

The need for comprehension of the physical meaning behind the differential equation, boundary 
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conditions, and initial conditions in the determination of the solution techniques appropriate for 

a given problem is demonstrated through the discussion of the solution approaches for a set of 

examples of the heat conduction or diffusion equation using separation of variables-based 

techniques for various boundary and source conditions.   

When the needed conditions for solving a differential equation using separation of variables are 

not met, often the method of superposition is implemented, dividing the problem into sub-

problems typically involving a sub-set of the independent variables and then a sub-problem that 

involves a solution function of all of the independent variables where separation of variables 

can then be applied.  For many transient problems, the division commonly involves a steady 

state and a transient component of the solution.  However, not all systems achieve a steady state 

condition.  The boundary conditions and form of the differential equation, when understood in 

a physical context, dictate whether a specific superposition approach, including this common 

steady plus transient component solution, can generate a viable solution.  Hence, this 

superposition method cannot be applied in a rote manner and the selection of the solution 

method and form must be informed by knowledge of the physical phenomena being represented 

by the mathematical formulation. In this work, logical and critical thinking is used to link 

together the math and the physical system and assess the techniques appropriate for solving 

problems with superposition and separation of variables. 

2 Background 

In the discussion of the importance of the physical understanding of the system in yielding 

physically meaningful results, the diffusion or heat conduction equation as in Equation 1 is 

utilized merely as an example.   

∇2𝑢𝑢 + 𝑄𝑄(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) =
1
𝑐𝑐2
𝜕𝜕𝑢𝑢
𝜕𝜕𝑡𝑡

 Eq. (1) 

The general assumptions in this work are constant properties and a linear form of the differential 

equation.  Further, to focus on the solution method and the effect of the boundary conditions 

and the physical system, a one-dimensional transient rectangular system of a finite length is 

considered with a cross sectional area that does not vary along the length of the domain.   Thus, 

the reduced differential equation studied is of the form in Equation 2: 

∂2𝑢𝑢
𝜕𝜕𝑥𝑥2

+ 𝑄𝑄(𝑥𝑥, 𝑡𝑡) =
1
𝑐𝑐2
𝜕𝜕𝑢𝑢
𝜕𝜕𝑡𝑡

 Eq. (2) 
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Separation of variables assumes that the solution can be written as a product of functions of the 

independent variables or, for the one-dimensional transient problem: 

𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝑋𝑋(𝑥𝑥)𝑇𝑇(𝑡𝑡) Eq. (3) 

As a result, several limitations are placed on the systems to which this method can be applied 

(Kreyzsig, 2011). 

1. The differential equation must be linear and homogeneous and must fall into the 

Sturm-Liouville format. 

2. For a transient problem, the boundary conditions must be homogenous and be of the 

acceptable form of the Sturm-Liouville Problem boundary conditions, namely the 

homogeneous forms of the Dirichlet, Neumann, and Robin or mixed boundary 

conditions. 

3. The system domain must follow the coordinate axes.  For a system with independent 

variables x and t, the domain must be linear along the x axis such that the cross-

sectional area cannot vary. 

For some systems that do not meet these criteria, methods can be applied to manipulate the 

problem so that separation of variables can be used to solve a sub-problem that meets the 

separation of variables criteria.  To appropriately divide the problem, the physical system or 

events being modeled must be well understood. Among possible alternative methods are the 

following: 

1. A shift in the level of u, the dependent variable, may be used to remove a non-

homogeneous Dirichlet type boundary condition.  This method is beneficial if a flux 

boundary condition or the same boundary condition value is applied at the other 

boundary of a one-dimensional system, as the shift may yield a homogeneous 

boundary condition.    

𝑢𝑢∗(𝑥𝑥, 𝑡𝑡) = 𝑢𝑢(𝑥𝑥, 𝑡𝑡) − 𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟 Eq. (4) 

2. Non-homogeneous boundary conditions of any of the three allowed types can be 

handled using the principle of superposition. For each non-homogeneous boundary 

condition, the initial problem is divided into simpler problems, each involving a 

steady state problem with only one non-homogeneous boundary condition, and then, 

if applicable, a transient problem with all homogeneous boundary conditions can be 

solved. For example, for a two-dimensional transient problem with two non-

homogeneous boundary conditions, two steady problems, each carrying one of the 
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non-homogeneous boundary conditions can be formulated and potentially solved 

using separation of variables, leaving a transient problem with all homogenous 

boundary conditions that can be solved using separation of variables. Implicit in this 

form is the existence of a steady state solution due to the exponential decay in the 

transient term. 

𝑢𝑢(𝑥𝑥,𝑦𝑦, 𝑡𝑡) = 𝑢𝑢1(𝑥𝑥, 𝑦𝑦) + 𝑢𝑢2(𝑥𝑥,𝑦𝑦) + 𝑢𝑢3(𝑥𝑥,𝑦𝑦, 𝑡𝑡) Eq. (5) 

3. When a non-homogeneous term appears in the differential equation, in some cases, 

superposition in different forms may be implemented, where the linear equation 

and/or boundary conditions are broken into a series of simpler problems, at least one 

of which can be solved using separation of variables.  The sum of these problems 

returns the original differential equation and boundary conditions. The specific form 

of the superposition is dependent upon the boundary conditions, differential 

equation, and an understanding of the physical system being modeled.   

4. If transient boundary conditions or sources are applied or sources or functions of 

multi-dimensions that cannot be separated, then eigenfunction expansion methods 

might be used to find the solutions. 

The specific method implemented must be adequate to describe the system operation, both 

spatially and as a function of time, and be consistent with the differential equation, boundary 

conditions, initial conditions, and the physical phenomena being modeled. The critical role 

knowledge of the physical system being explored plays in the selection of the appropriate 

solution method can be demonstrated by examining the effects of changing the boundary 

conditions or source terms on the solution of a simple one-dimensional transient heat 

conduction problem. 

3 Solution form across different conditions 

3.1 Standard solution type: Solution with a function of x, t only with one Dirichlet and one 

Neumann boundary condition 

The one dimensional heat conduction equation, with the boundary and initial conditions shown 

below, can be solved using the principle of superposition for a domain where x[0,a].  

∂2𝑢𝑢
𝜕𝜕𝑥𝑥2

=
1
𝑐𝑐2
𝜕𝜕𝑢𝑢
𝜕𝜕𝑡𝑡

 Eq. (6a) 

where 



  TME, vol. 21, nos.1&2, p.305 

𝑢𝑢(𝑥𝑥, 0) = 𝑓𝑓(𝑥𝑥);𝑢𝑢(0, 𝑡𝑡) = 𝑢𝑢𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎 
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

(𝑎𝑎, 𝑡𝑡) = 0 Eq. (6b) 

Because of the non-homogeneous boundary condition, separation of variables cannot be used 

to solve the problem directly, but a division of the solution of this linear differential equation 

and the linear boundary conditions into a function of x and a function of x and t can be made.  

Applying superposition: 

𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝑢𝑢1(𝑥𝑥) + 𝑢𝑢2(𝑥𝑥, 𝑡𝑡) Eq. (7) 

When examining the transient form of the solution that results, this solution form implies a 

steady state solution to the problem exists or that the time variation of u will diminish after a 

given duration.  For this particular problem, no source terms are present in the differential 

equation, so the source terms cannot drive a continual change in the value of u. The boundary 

conditions are not transient. While a Neumann boundary condition is present, indicating a flux 

of u through a boundary, or a transfer of energy if u represents temperature, any continual 

change in the system condition that this flux might cause is tempered by the Dirichlet boundary 

condition at x=0, which limits the value of u.  As a result, the boundary conditions and 

differential equation, taken in a physical context, indicate the u value must remain bounded 

with time and the u function must have a steady state solution. The assumed form of the solution 

is consistent with the expected characteristics of the physical system.  

The differential equations for each of the solution component functions and the associated 

boundary conditions/initial conditions can be formulated.  For the steady state portion, the 

differential equation is shown in Equation 8a: 

∂2𝑢𝑢1
𝜕𝜕𝑥𝑥2

= 0 Eq. (8a) 

subject to: 

𝑢𝑢1(0) = 𝑢𝑢𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎 
𝜕𝜕𝑢𝑢1
𝜕𝜕𝑥𝑥

(𝑎𝑎) = 0 Eq. (8b) 

For the transient portion, the governing differential equation is shown in Equation 9a: 

∂2𝑢𝑢2
𝜕𝜕𝑥𝑥2

=
1
𝑐𝑐2
𝜕𝜕𝑢𝑢2
𝜕𝜕𝑡𝑡

 Eq. (9a) 

subject to: 

𝑢𝑢2(𝑥𝑥, 0) = 𝑓𝑓(𝑥𝑥) − 𝑢𝑢1(𝑥𝑥);𝑢𝑢2(0, 𝑡𝑡) = 0 𝑎𝑎𝑎𝑎𝑎𝑎 
𝜕𝜕𝑢𝑢2
𝜕𝜕𝑥𝑥

(𝑎𝑎, 𝑡𝑡) = 0 Eq. (9b) 



Florio p.306 

First, the solution to the steady portion can be found.  Integrating Equation 8a twice with respect 

to x and applying the two boundary conditions in Equation 8b, the solution for u1(x) is: 

𝑢𝑢1(𝑥𝑥) = 𝑢𝑢𝑜𝑜 Eq. (10) 

Finally, the transient part of the solution needs to be determined. Using separation of variables, 

for the solution for u2 in the form of Eq. 3, the product of a function of x, X(x), and a function 

of t, T(t), and noting that the boundary conditions indicate the eigenvalues, α2, are greater than 

zero, the two separated ordinary differential equations are:   

𝑋𝑋′′ + 𝛼𝛼2𝑋𝑋 = 0;        𝑇𝑇′ + (𝛼𝛼𝑐𝑐)2𝑇𝑇 = 0 Eq. (11a) 

where 

𝑋𝑋(0) = 0;𝑋𝑋′(𝑎𝑎) = 0 Eq. (11b) 

As zero is not an eigenvalue, the solution functions become: 

𝑋𝑋𝑛𝑛 = sin(𝛼𝛼𝑛𝑛𝑥𝑥) ; 𝛼𝛼𝑛𝑛 =
(2𝑎𝑎 + 1)𝜋𝜋

2𝑎𝑎
; 𝑎𝑎 = 0,1, … ;𝑇𝑇𝑛𝑛 = 𝑒𝑒𝑥𝑥𝑒𝑒(−(𝛼𝛼𝑛𝑛𝑐𝑐)2𝑡𝑡) Eq. (12) 

Applying the initial condition, the solution must take the form of a series: 

𝑢𝑢2(𝑥𝑥, 𝑡𝑡) = �𝐵𝐵𝑛𝑛 sin(𝛼𝛼𝑛𝑛𝑥𝑥)𝑒𝑒𝑥𝑥𝑒𝑒(−(𝛼𝛼𝑛𝑛𝑐𝑐)2𝑡𝑡)
∞

𝑛𝑛=0

 Eq. (13a) 

where 

𝐵𝐵𝑛𝑛 =
∫ sin(𝛼𝛼𝑛𝑛𝑥𝑥)(𝑓𝑓(𝑥𝑥) − 𝑢𝑢1(𝑥𝑥))𝑎𝑎𝑥𝑥𝑎𝑎
0

∫ sin2(𝛼𝛼𝑛𝑛𝑥𝑥)𝑎𝑎𝑥𝑥𝑎𝑎
0

 Eq. (13b) 

The final solution is then: 

𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝑢𝑢𝑜𝑜 + �𝐵𝐵𝑛𝑛 sin(𝛼𝛼𝑛𝑛𝑥𝑥)𝑒𝑒𝑥𝑥𝑒𝑒(−(𝛼𝛼𝑛𝑛𝑐𝑐)2𝑡𝑡)
∞

𝑛𝑛=0

 Eq. (14) 

The separation of variables solution for this differential equation, with positive, non-zero 

eigenvalues will yield a time varying T(t) that decays over time.  Examining the form of the 

transient part of the solution, clearly, as time increases this transient solution diminishes, 

leaving u1(x), the steady state solution.  Hence, this solution form effectively assumes that a 

steady state solution exists. 

Not all system boundaries and differential equations yield steady state conditions as time 

advances. For example, for the one-dimensional heat condition problem, unequal heat fluxes at 
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the boundaries for the system with a constant cross-sectional area, a system with an energy 

source, or a system with transient boundary conditions may generate conditions where the 

incoming energy flow and outgoing energy flow are not equal. Hence, the system will remain 

time varying, and a steady state condition is not physically realistic. Under such conditions, the 

solution methods must change from the standard steady and transient combination typically 

assumed. Instead, the solution approach must be reconciled with the physical conditions 

present. 

3.2 Attempt at solution with a function of x and t only with two unequal Neumann 

Boundary conditions, one of which is non-zero 

To illustrate how the system conditions and solution approach are interconnected, the problem 

is now modified by altering the boundary conditions to two Neumann boundary conditions, one 

of which is non-zero: 

∂2𝑢𝑢
𝜕𝜕𝑥𝑥2

=
1
𝑐𝑐2
𝜕𝜕𝑢𝑢
𝜕𝜕𝑡𝑡

 Eq. (15a) 

where 

𝑢𝑢(𝑥𝑥, 0) = 𝑓𝑓(𝑥𝑥);
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

(0, 𝑡𝑡) = 𝑞𝑞𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎 
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

(𝑎𝑎, 𝑡𝑡) = 0 Eq. (15b) 

Initially, the same solution method is attempted in the form of a steady and a transient solution, 

without regard to the physical meaning of the boundary conditions, so the solution form is taken 

as:  

𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝑢𝑢1(𝑥𝑥) + 𝑢𝑢2(𝑥𝑥, 𝑡𝑡) Eq. (16) 

The first issue encountered is in the solution of u1(x).  The differential equation for u1(x) is: 

∂2𝑢𝑢1
𝜕𝜕𝑥𝑥2

= 0 Eq. (17a) 

The boundary conditions for u1 are:  

𝜕𝜕𝑢𝑢1
𝜕𝜕𝑥𝑥

(0) = 𝑞𝑞𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎 
𝜕𝜕𝑢𝑢1
𝜕𝜕𝑥𝑥

(𝑎𝑎) = 0 Eq. (17b) 

Integrating Equation 17a once, the first derivative of u1 with respect to x is a constant.  This 

requirement is inconsistent with the boundary conditions as no constant can satisfy both 

boundary conditions. This issue stems from the inconsistency between the assumed form of the 

solution and the physical nature of the system with the prescribed boundary conditions.   
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The failure of the assumed solution form to represent the physical system can be understood 

from the boundary conditions. The boundary conditions indicate a non-zero u flux at the x=0 

boundary and zero flux at the x=a boundary. If u represents the temperature and the flux 

represents heat flow, then energy is carried into the system at the x=0 boundary, is not removed 

at x=a.  Net energy is input into the system and the system cannot reach a steady state solution, 

but will continually change with time.  This condition contradicts the basic form of the solution 

selected as the sum of a function of x and a function of x and t.  Therefore, an alternative solution 

form must be sought.  

3.3 Modified approach for a physically feasible solution 

For the constant flux boundary conditions of this type, a solution form as shown in Equation 

18, which that involves separate functions for x and t summed with a separation of variables-

based function of x and t, is adequate to find the solution for u.  

𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝑢𝑢1(𝑥𝑥) + 𝑢𝑢2(𝑡𝑡) + 𝑢𝑢3(𝑥𝑥, 𝑡𝑡) Eq. (18) 

For the u3(x,t), the governing equations and boundary and initial conditions become: 

∂2𝑢𝑢3
𝜕𝜕𝑥𝑥2

=
1
𝑐𝑐2
𝜕𝜕𝑢𝑢3
𝜕𝜕𝑡𝑡

 Eq. (19a) 

where in order for separation of variables to be applied, 

𝑢𝑢3(𝑥𝑥, 0) = 𝑓𝑓(𝑥𝑥) − 𝑢𝑢1(𝑥𝑥) − 𝑢𝑢2(0);   
𝜕𝜕𝑢𝑢3
𝜕𝜕𝑥𝑥

(0, 𝑡𝑡) = 0 𝑎𝑎𝑎𝑎𝑎𝑎 
𝜕𝜕𝑢𝑢3
𝜕𝜕𝑥𝑥

(𝑎𝑎, 𝑡𝑡) = 0 Eq. (19b) 

The remaining differential equation is then: 

∂2𝑢𝑢1
𝜕𝜕𝑥𝑥2

=
1
𝑐𝑐2
𝜕𝜕𝑢𝑢2
𝜕𝜕𝑡𝑡

 Eq. (20a) 

with the consistent boundary or initial conditions: 

𝑢𝑢2(0) = 𝑓𝑓(𝑥𝑥) − 𝑢𝑢1(𝑥𝑥) − 𝑢𝑢3(𝑥𝑥, 0);
𝜕𝜕𝑢𝑢1
𝜕𝜕𝑥𝑥

(0) = 𝑞𝑞𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎 
𝜕𝜕𝑢𝑢1
𝜕𝜕𝑥𝑥

(𝑎𝑎) = 0 Eq. (20b) 

Now, in Equation 20a, a function of x is equal to a function t and so these functions must be 

equal to a constant called B.  From this, the flux of u1 must vary at most linearly in the system 

if B is non-zero. 

∂2𝑢𝑢1
𝜕𝜕𝑥𝑥2

=
1
𝑐𝑐2
𝜕𝜕𝑢𝑢2
𝜕𝜕𝑡𝑡

= 𝐵𝐵  𝑎𝑎𝑎𝑎𝑎𝑎 
 ∂𝑢𝑢1
𝜕𝜕𝑥𝑥

= 𝐵𝐵𝑥𝑥 + 𝐷𝐷;  
1
𝑐𝑐2
𝜕𝜕𝑢𝑢2
𝜕𝜕𝑡𝑡

= 𝐵𝐵  Eq. (21a) 
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Physically, for the constant cross-section conditions, if the flux of u at the two boundaries is not 

equal, or B is not equal to zero, then the solution must be transient for all times as net energy 

flow into the system occurs as seen in Equation 21a.  The solutions for u1 and u2 are therefore 

of the form: 

𝑢𝑢1(𝑥𝑥) =
1
2
𝐵𝐵𝑥𝑥2 + 𝐶𝐶1𝑥𝑥 + 𝐶𝐶2;   𝑢𝑢2(𝑡𝑡) = 𝑐𝑐2𝐵𝐵𝑡𝑡 + 𝐶𝐶3   Eq.(21b) 

Now, applying the boundary conditions to u1(x), independently yields B and C1 so that: 

𝑢𝑢1(𝑥𝑥) = −
1
2
𝑞𝑞𝑜𝑜
𝑎𝑎
𝑥𝑥2 + 𝑞𝑞𝑜𝑜𝑥𝑥 + 𝐶𝐶2;   𝑢𝑢2(𝑡𝑡) = −𝑐𝑐2

𝑞𝑞𝑜𝑜
𝑎𝑎
𝑡𝑡 + 𝐶𝐶3   Eq. (21c) 

Because of the boundary condition type, this separate sum of the function of x and function 

solely of t is adequate to describe the system operation. Note, the two constants C2 and C3 

remain to be determined.  

Proceeding to the u3(x,t) solution, because of the two zero flux boundary conditions (Equation 

19b), zero is an eigenvalue for this problem. Additionally, an infinite set of positive eigenvalues 

is present.  The solution form is: 

𝑋𝑋′′ + 𝛼𝛼2𝑋𝑋 = 0;        𝑇𝑇′ + (𝛼𝛼𝑐𝑐)2𝑇𝑇 = 0 Eq. (22a) 

where 

𝑋𝑋′(0) = 0;𝑋𝑋′(𝑎𝑎) = 0 Eq. (22b) 

As zero is an eigenvalue, the solution becomes: 

𝑋𝑋𝑛𝑛 = cos(𝛼𝛼𝑛𝑛𝑥𝑥) ;  𝛼𝛼𝑛𝑛 = 𝑎𝑎𝜋𝜋;𝑎𝑎 = 0,1, … ;𝑇𝑇 = 𝑒𝑒𝑥𝑥𝑒𝑒(−(𝛼𝛼𝑛𝑛𝑐𝑐)2𝑡𝑡) Eq. (23) 

Then applying the initial condition: 

𝑢𝑢3(𝑥𝑥, 𝑡𝑡) = 𝐴𝐴𝑜𝑜 + �𝐴𝐴𝑛𝑛 cos(𝛼𝛼𝑛𝑛𝑥𝑥)𝑒𝑒𝑥𝑥𝑒𝑒(−(𝛼𝛼𝑛𝑛𝑐𝑐)2𝑡𝑡)
∞

𝑛𝑛=1

 Eq. (24a) 

where 

𝐴𝐴𝑛𝑛 =
∫ cos(𝛼𝛼𝑛𝑛𝑥𝑥)(𝑓𝑓(𝑥𝑥) − 𝑢𝑢1(𝑥𝑥) − 𝑢𝑢2(0))𝑎𝑎𝑥𝑥𝑎𝑎
0

∫ cos2(𝛼𝛼𝑛𝑛𝑥𝑥)𝑎𝑎𝑥𝑥𝑎𝑎
0

 Eq. (24b) 

u1(x) and u2(t) still contain the unknown C2 and C3 constants.  A constant is also present in 

u3(x,t) in the Ao.  Thus, the two constants in u1(x) and u2(t) are set equal to zero and absorbed 

into the Ao. These functions become: 
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𝑢𝑢1(𝑥𝑥) = −
1
2
𝑞𝑞𝑜𝑜
𝑎𝑎
𝑥𝑥2 + 𝑞𝑞𝑜𝑜𝑥𝑥;   𝑢𝑢2(𝑡𝑡) = −𝑐𝑐2

𝑞𝑞𝑜𝑜
𝑎𝑎
𝑡𝑡   Eq. (25) 

Then, Ao can be found (u2(0)=0), recognizing the orthogonality of the eigenfunctions:   

𝐴𝐴𝑜𝑜 =
∫ (1)�𝑓𝑓(𝑥𝑥) − 𝑢𝑢1(𝑥𝑥)�𝑎𝑎𝑥𝑥𝑎𝑎
0

∫ 1𝑎𝑎𝑥𝑥𝑎𝑎
0

 Eq. (26) 

The final solution is: 

𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝐴𝐴𝑜𝑜 + �𝐴𝐴𝑛𝑛 cos(𝛼𝛼𝑛𝑛𝑥𝑥)𝑒𝑒𝑥𝑥𝑒𝑒(−(𝛼𝛼𝑛𝑛𝑐𝑐)2𝑡𝑡)
∞

𝑛𝑛=0

−
1
2
𝑞𝑞𝑜𝑜
𝑎𝑎
𝑥𝑥2 + 𝑞𝑞𝑜𝑜𝑥𝑥−𝑐𝑐2

𝑞𝑞𝑜𝑜
𝑎𝑎
𝑡𝑡   Eq. (27) 

The form of u(x,t) in Equation 27 allows for the continual time variation of u and is appropriate 

for the boundary condition type. Again, the special form of the boundary condition type is 

adequately satisfied with independent functions of x and t added to the separation of variables-

based solution series.  This solution form, however, may not be adequate for any general type 

of source, boundary, or initial condition combination where net energy input might be present 

in a system and a transient solution that does not decay with time is needed. Two additional 

examples are presented.   

3.4 Constant source term with flux boundaries 

With at least one Dirichlet boundary condition, a limit on the u value will persist even with a 

constant source term type of problem and so a steady state solution. However, other boundary 

conditions such as two flux boundary conditions can result in sustained net energy input over 

time. Here, a two-flux boundary condition set with a constant source term is considered. A 

steady state is not possible for such a system unless the heat flux and the source properly 

balance. Without such a balance, the problem can be treated in a manner similar to the two-flux 

boundary condition with a minor modification. Suppose a system has a constant energy source 

following the differential equation below with the two-flux boundary condition so the solution 

will remain transient. 

∂2𝑢𝑢
𝜕𝜕𝑥𝑥2

+ 𝑄𝑄 =
1
𝑐𝑐2
𝜕𝜕𝑢𝑢
𝜕𝜕𝑡𝑡

 Eq. (28) 

Assume a solution of the form:  

𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝑢𝑢1(𝑥𝑥) + 𝑢𝑢2(𝑡𝑡) + 𝑢𝑢3(𝑥𝑥, 𝑡𝑡) Eq. (29) 

For the u3(x,t), the governing equations and boundary or initial conditions become: 
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∂2𝑢𝑢3
𝜕𝜕𝑥𝑥2

=
1
𝑐𝑐2
𝜕𝜕𝑢𝑢3
𝜕𝜕𝑡𝑡

 Eq. (30a) 

where 

𝑢𝑢3(𝑥𝑥, 0) = 𝑓𝑓(𝑥𝑥) − 𝑢𝑢1(𝑥𝑥) − 𝑢𝑢2(0);   
𝜕𝜕𝑢𝑢3
𝜕𝜕𝑥𝑥

(0, 𝑡𝑡) = 0 𝑎𝑎𝑎𝑎𝑎𝑎 
𝜕𝜕𝑢𝑢3
𝜕𝜕𝑥𝑥

(𝑎𝑎, 𝑡𝑡) = 0 Eq. (30b) 

The remaining equation is then: 

∂2𝑢𝑢1
𝜕𝜕𝑥𝑥2

=
1
𝑐𝑐2
𝜕𝜕𝑢𝑢2
𝜕𝜕𝑡𝑡

− 𝑄𝑄 Eq. (31a) 

where the remaining consistent boundary or initial conditions are: 

𝑢𝑢2(0) = 𝑓𝑓(𝑥𝑥) − 𝑢𝑢1(𝑥𝑥) − 𝑢𝑢3(𝑥𝑥, 0);
𝜕𝜕𝑢𝑢1
𝜕𝜕𝑥𝑥

(0) = 𝑞𝑞𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎 
𝜕𝜕𝑢𝑢1
𝜕𝜕𝑥𝑥

(𝑎𝑎) = 0 Eq. (31b) 

With Q as a constant, the left and right sides of equation 31a must be equal to a constant. As 

before, the flux of u1  with x may vary at most linearly in the system. 

∂2𝑢𝑢1
𝜕𝜕𝑥𝑥2

=
1
𝑐𝑐2
𝜕𝜕𝑢𝑢2
𝜕𝜕𝑡𝑡

= 𝐵𝐵  𝑎𝑎𝑎𝑎𝑎𝑎 
 ∂𝑢𝑢1
𝜕𝜕𝑥𝑥

= 𝐵𝐵𝑥𝑥 + 𝐶𝐶1;  
1
𝑐𝑐2
𝜕𝜕𝑢𝑢2
𝜕𝜕𝑡𝑡

− 𝑄𝑄 = 𝐵𝐵  Eq. (33a) 

Now, 

𝑢𝑢1(𝑥𝑥) =
1
2
𝐵𝐵𝑥𝑥2 + 𝐶𝐶1𝑥𝑥 + 𝐶𝐶2;   𝑢𝑢2(𝑡𝑡) = 𝑐𝑐2(𝐵𝐵 + 𝑄𝑄)𝑡𝑡 + 𝐶𝐶3   Eq.(33b) 

Applying the boundary conditions to u1(x), yields: 

𝑢𝑢1(𝑥𝑥) = −
1
2
𝑞𝑞𝑜𝑜
𝑎𝑎
𝑥𝑥2 + 𝑞𝑞𝑜𝑜𝑥𝑥 + 𝐶𝐶2;   𝑢𝑢2(𝑡𝑡) = 𝑐𝑐2 �−

𝑞𝑞𝑜𝑜
𝑎𝑎

+ 𝑄𝑄� 𝑡𝑡 + 𝐶𝐶3   Eq. (33c) 

Clearly Q cannot be a function of x or a function of t and be treated in the manner presented in 

Equation 29.  For a source that is a function of x alone, the time variation of u2 must be zero 

and the source must then balance with the energy flow from the boundaries. If Q were a function 

of time, then the second derivative of the u1 would be zero, two different fluxes at the boundaries 

could not be maintained, and the separation of variables method could not be used since the 

transient term would be present in the boundary conditions. 

3.5 Transient boundary conditions or an x and t varying source 

If transient boundary conditions or a transient source term are applied, the general separation 

of variables techniques cannot be implemented since the solution will necessitate functions 

where the x and t dependencies cannot be separated either through the separation of variables 

or through the sum of separate functions of the independent variables. In such cases, 
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eigenfunction expansion may be a viable means of determining the solutions for u. Here, a flux 

boundary condition will be assigned at each of the system boundaries, but other boundary 

conditions can utilize such a method.  

A solution of the form below assigns transient boundary conditions in a manner that will shift 

the transient portions into a source term. Let  

𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝑣𝑣(𝑥𝑥, 𝑡𝑡) + 𝑤𝑤(𝑥𝑥, 𝑡𝑡)  Eq. (34a) 

where the boundary condition at x=0 is 𝑣𝑣𝑥𝑥(0, 𝑡𝑡) = 𝐴𝐴(𝑡𝑡) and at x=L, 𝑣𝑣𝑥𝑥(𝐿𝐿, 𝑡𝑡) = 𝐵𝐵(𝑡𝑡). 

𝜕𝜕𝑣𝑣
𝜕𝜕𝑥𝑥

(𝑥𝑥, 𝑡𝑡) = 𝐵𝐵(𝑡𝑡)
𝑥𝑥
𝐿𝐿

+ �1 −
𝑥𝑥
𝐿𝐿
�𝐴𝐴(𝑡𝑡) Eq. (34a) 

Then, 

𝑣𝑣(𝑥𝑥, 𝑡𝑡) = 𝐵𝐵(𝑡𝑡)
𝑥𝑥2

2𝐿𝐿
+ �𝑥𝑥 −

𝑥𝑥2

2𝐿𝐿
�𝐴𝐴(𝑡𝑡) + 𝐷𝐷(𝑡𝑡) Eq. (34b) 

D(t) will be taken up by w(x,t), so D(t) can be set to zero. With this, the governing differential 

equation becomes: 

∂2𝑣𝑣
𝜕𝜕𝑥𝑥2

+
∂2𝑤𝑤
𝜕𝜕𝑥𝑥2

+ 𝑄𝑄(𝑥𝑥, 𝑡𝑡) =
1
𝑐𝑐2
𝜕𝜕𝑤𝑤
𝜕𝜕𝑡𝑡

+
1
𝑐𝑐2
𝜕𝜕𝑣𝑣
𝜕𝜕𝑡𝑡

 Eq. (35a) 

Making substitutions, where D(t)=0, yields: 

𝐵𝐵(𝑡𝑡)
𝐿𝐿

−
𝐴𝐴(𝑡𝑡)
𝐿𝐿

+
∂2𝑤𝑤
𝜕𝜕𝑥𝑥2

+ 𝑄𝑄(𝑥𝑥, 𝑡𝑡) =
1
𝑐𝑐2
𝜕𝜕𝑤𝑤
𝜕𝜕𝑡𝑡

+
1
𝑐𝑐2
�
𝜕𝜕𝐵𝐵
𝜕𝜕𝑡𝑡

𝑥𝑥2

2𝐿𝐿
+ �𝑥𝑥 −

𝑥𝑥2

2𝐿𝐿
�
𝜕𝜕𝐴𝐴
𝜕𝜕𝑡𝑡
� Eq. (35b) 

Now, grouping the non-w(x,t) terms under one source term: 

∂2𝑤𝑤
𝜕𝜕𝑥𝑥2

+ 𝑄𝑄∗(𝑥𝑥, 𝑡𝑡) =
1
𝑐𝑐2
𝜕𝜕𝑤𝑤
𝜕𝜕𝑡𝑡

 Eq. (36a) 

where: 

𝑄𝑄∗(𝑥𝑥, 𝑡𝑡) = 𝑄𝑄(𝑥𝑥, 𝑡𝑡) +
𝐵𝐵(𝑡𝑡)
𝐿𝐿

−
𝐴𝐴(𝑡𝑡)
𝐿𝐿

−
1
𝑐𝑐2
�
𝜕𝜕𝐵𝐵
𝜕𝜕𝑡𝑡

𝑥𝑥2

2𝐿𝐿
+ �𝑥𝑥 −

𝑥𝑥2

2𝐿𝐿
�
𝜕𝜕𝐴𝐴
𝜕𝜕𝑡𝑡
� Eq. (36b) 

The boundary and initial conditions for w(x,t) are then: 

𝑤𝑤𝑥𝑥(0, 𝑡𝑡) = 0; 𝑤𝑤𝑥𝑥(𝐿𝐿, 𝑡𝑡) = 0;𝑤𝑤(𝑥𝑥, 0) = 𝑢𝑢(𝑥𝑥, 0) − 𝑣𝑣(𝑥𝑥, 0); Eq. (37) 

Eigenfunction expansion with the solution of the form below can then be implemented where 

the Xn(x) functions are the eigenfunctions of the homogeneous form of the differential equation 

in Equation 36a. 



  TME, vol. 21, nos.1&2, p.313 

𝑤𝑤(𝑥𝑥, 𝑡𝑡) = �𝑏𝑏𝑛𝑛(𝑡𝑡)𝑋𝑋𝑛𝑛(𝑥𝑥)
∞

𝑛𝑛=0

 Eq. (38) 

Hence, again, knowledge of the physical system and the appropriate mathematical 

representation of the system are both needed in order to acquire a mathematically and physically 

feasible solution to the differential equation. 

4 CONCLUSIONS 

The set of examples presented associated with the solution of the heat conduction or diffusion 

equation for various types of boundary conditions and sources conditions has shown that the 

solution approach selection must consider the physical meaning of the differential equations 

and boundary conditions applied to a system. The ability to connect the physical meaning to 

the mathematical formulations and the development of the appropriate mathematical solution 

techniques is crucial to solving differential equations and is particularly critical to teaching the 

solution of differential equations in applied mathematics courses. Solution methods cannot be 

universally applied but must be appropriate for the specific problem considered. 
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