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The association between ultrafiltration volume and change 

in fluid overload was reflected well by the method (median 

 8  SD = 0.015  8  0.8 litres). The predictive value of fluid over-

load on mortality underlines forcefully the clinical relevance 

of the normohydration target, being secondary only to the 

presence of diabetes. The objective normohydration target 

could be achieved in prevalent haemodialysis patients lead-

ing to an improvement in hypertension and reduction of ad-

verse events.  Conclusion:  Whole-body bioimpedance spec-

troscopy in combination with a physiologic tissue model 

provides for the first time an objective and relevant target 

for clinical dry weight assessment. 

 Copyright © 2009 S. Karger AG, Basel 

 Introduction 

 Chronic volume overload causes left ventricular hy-
pertrophy  [1] , while dehydration can cause intradialytic 
adverse events; both are linked to an increased morbidity 
 [2]  in haemodialysis patients. The task of fluid manage-
ment in end-stage renal disease patients is to guide the 
patient on the narrow but safe path between the deleteri-
ous effects of volume overload and dehydration. Without 
the availability of an objective target  [2] , this task is dif-
ficult and can be very time-consuming when reliant on 
trial-and-error methods  [3–5] . As volume overload and 
dehydration both influence the extracellular water vol-
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 Abstract 

  Introduction:  Achieving normohydration remains a non-

trivial issue in haemodialysis therapy. Preventing the delete-

rious effects of fluid overload and dehydration is difficult to 

achieve. Objective and clinically applicable methods for the 

determination of a target representing normohydration are 

needed.  Methods:  Whole-body bioimpedance spectrosco-

py (50 frequencies, 5–1,000 kHz) in combination with a phys-

iologic tissue model can provide an objective target for nor-

mohydration based on the concept of excess extracellular 

volume. We review the efficacy of this approach in a number 

of recent clinical applications. The accuracy to determine flu-

id volumes (e.g. extracellular water), body composition (e.g. 

fat mass) and fluid overload was evaluated in more than 

1,000 healthy individuals and patients against available gold 

standard reference methods (e.g. bromide, deuterium, dual-

energy X-ray absorptiometry, air displacement plethysmog-

raphy, clinical assessment).  Results:  The comparison with 

gold standard methods showed excellent accordance

[e.g. R 2  (total body water) = 0.88; median  8  SD (total body 

water) = –0.17  8  2.7 litres]. Agreement with high-quality 

clinical assessment of fluid status was demonstrated in sev-

eral hundred patients (median  8  SD = –0.23  8  1.5 litres). 
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ume (ECW), it is reasonable that this essential target 
could be based on the concept of an individual, normal 
extracellular volume (normohydration). The absolute 
quantity of extracellular water is not only influenced by 
the hydration status, but also by the underlying body 
composition  [6] . Measures of body composition such as 
intracellular water, fat mass or body weight  [7]  thus must 
also be taken into account for the determination of a nor-
mohydration target. The lack of clearly defined end-
points limits to a large extent the possibility to obtain 
objective measures with methods for fluid status assess-
ment such as clinical assessment, inferior vena cava di-
ameter, echocardiography measurements or chest X-rays. 
Several authors have discussed the possible application of 
bioimpedance spectroscopy for fluid management  [8, 9] . 
However, several bioimpedance-based methods are avail-
able. Single-frequency bioimpedance has been the main-
stay for several decades and the empirical equations used 
depend on assumed population constants. Bioimpedance 
spectroscopy by contrast offers the possibility to deter-
mine intra- and extracellular volume independently  [10] . 
This is especially important to calculate the body compo-
sition irrespectively of the fluid overload. Segmental 
methods  [11]  and some whole-body methods  [12]  have 
focussed solely on intradialytic monitoring of the patient, 
which aim to indicate when the patient achieves dry 
weight by continual titration. By contrast, interdialytic 
whole-body monitoring allows the determination of a 
normohydration target in a single measurement step, 
which is the ideal basis for a mid-term fluid management 
strategy (several dialysis treatments). Determining a tar-
get and thus the objective comparison between patients 
or patient groups is therefore only possible with interdia-
lytic whole-body bioimpedance spectroscopy.

  Methods 

 Measuring Device and Body Composition Model 
 A method for calculating normal hydration status (normohy-

dration)  [13]  has been presented recently. This method is based on 
the hypothesis of constant tissue hydration properties  [14]  and the 
assumption that fluid overload in dialysis patients is primarily 
expressed in an expanded extracellular volume. A normal ECW 
then represents the normohydration goal. However, normal ECW 
in healthy adults ranges from 13 to more than 21 litres. Besides 
the obvious influence of body weight, this wide range is also 
strongly dependent on body composition (weight, muscle and fat 
content). Thus, any method to determine normal ECW in patients 
with an impaired hydration status must take into account body 
composition.

  Fluid overload can be calculated from the difference between 
the normal expected ECW and the actual measured ECW. The 
normohydration target is thus defined as the difference between 
the weight at the time of the measurement and the fluid over-
load.

  A new device, the body composition monitor (BCM; Fresenius 
Medical Care, Bad Homburg, Germany), provides a convenient 
method to obtain ECW and total body water precisely ( table 1 ). 
These volumes are determined by measurement of whole-body 
bioimpedance spectroscopy at 50 frequencies via electrodes placed 
on the wrist and ankle. The inbuilt body composition model cal-
culates not only the fluid overload but also normally hydrated lean 
tissue mass and normally hydrated adipose mass. Although pa-
tients’ plasma fluid contains minerals and other solutes, the dif-
ference in volume between pure water and fluid is negligible for all 
practical purposes  [13] . Therefore, the terms fluid status and hy-
dration status may be used interchangeably in this context.

  Findings from Clinical Studies 

 Validity of the Target/Validity of the Whole-Body 
Bioimpedance Spectroscopy Results 
 The BCM model has been validated in multicentre 

studies against the respective gold standards in healthy 
subjects and in haemodialysis patients as shown in  ta-
ble 1 . Dilution methods are considered as gold standard 
for measuring extracellular (sodium bromide) and total 
body (deuterium, tritium) volumes (total body water), 
whereas the total body potassium method is used to de-
termine intracellular volume. The calculated body com-
position has been validated in more than 500 healthy 
 subjects and patients against the reference methods dual-
energy X-ray absorptiometry, air displacement plethys-
mography  [15]  and 4-compartment modelling  [16] . The 
validity of the calculated fluid overload has been demon-
strated via clinical assessment in several hundred haemo-
dialysis patients  [17, 18]  and additionally via the with-
drawn ultrafiltration volume  [19] . A very good agreement 
in all gold standard comparisons was achieved ( table 1 ).

  Clinical Relevance of the Normohydration Target 
 The impact of fluid overload on mortality demon-

strates the clinical relevance of the normohydration tar-
get. In a recent study by Wizemann [unpubl. data], the 
3.5-year mortality of 269 haemodialysis patients was an-
alysed. The cut-off for the fluid overload was set to 2.5 
litres above the normohydration target. The Cox adjusted 
hazard ratios (HR) revealed that age (HR = 1.051/year;
p  !  0.001), systolic blood pressure (HR = 0.9861/mm Hg; 
p = 0.014), diabetes (HR = 2.766; p  !  0.001), peripheral 
vascular disease (HR = 1.68; p = 0.045) and relative fluid 
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overload (fluid overload normalized to ECW; HR = 2.102; 
p = 0.003) were the only significant predictors of mortal-
ity in the analysed patient population. Wizemann [un-
publ. data] concluded that fluid overload is an important 
and independent predictor of mortality in chronic hae-
modialysis patients secondary only to the presence of di-
abetes. In a recent paper, Chen et al.  [20]  showed that the 
ratio of ECW to intracellular water assessed with bio-
impedance spectroscopy was a strong predictor of sur-
vival in peritoneal dialysis patients. It would be very in-
teresting to reassess these results using the method to cal-
culate the normal hydration status and to compare these 
results to the work of Wizemann.

  Percentage of Fluid Overload Patients 
 An analysis of 1,500 prevalent European haemodialy-

sis patients (mean age: 64  8  14 years; mean BMI: 26.8  8  
5.4; mean systolic blood pressure: 141  8  24 mm Hg) from 
22 European haemodialysis centres revealed that 25% of 
patients are more than 2.5 litres above the normohydra-
tion target before the treatment [unpubl. data]. Of these 
grossly fluid-overloaded patients 38% presented normal 

blood pressure ( ! 140 mm Hg) despite fluid overload be-
ing present.

  Achieving the Target of Normohydration 
 Machek et al.  [21]  adjusted the fluid status of the com-

plete patient population of one dialysis centre towards 
the normohydration target over one year. The fluid sta-
tus was assessed frequently (at least monthly) in all pa-
tients (n = 62) with the BCM. Attempts were made to 
achieve a target of a predialytic volume overload of no 
more than 2.5 litres above the normohydration target. 
Where possible the target for the end of the dialysis ses-
sion was set between –1.1 and 1.1 litres. To analyse the 
impact of the fluid status change, the patient population 
was divided into three groups: the hyperhydrated group 
(fluid overload  1 3 litres; n = 12), the adverse event group 
(patients with more than 16% adverse events in the pre-
vious 4 weeks; n = 12) and the remaining patients (n = 
32). In the hyperhydrated group, fluid overload was re-
duced by 2.2 litres (p  !  0.001) without increasing the oc-
currence of adverse events. This resulted in a reduction 
in systolic blood pressure of 20 mm Hg (p = 0.029). Ad-

Table 1. Overview of the available validation data (n >1,000) for the combination of whole-body spectroscopy technology and the 
physiologic tissue model described

Gold standard method Number R2 Mean8SD Reference

ECW bromide 120 healthy subjects
32 HD patients

0.76 –0.181.8 litres 32

ICW total body potassium 0.78 0.282.3 litres

TBW deuterium 0.88 –0.282.3 litres

tritium 42 healthy subjects 0.94 –1.0681.9 litres

Fat dual-energy X-ray absorptiometry 41 HD patients
19 liver patients

130 cancer patients
321 healthy subjects

0.82 –1.184.2 kg 15

air displacement plethysmography 25 HD patients
19 liver patients

141 healthy subjects

0.84 1.084.1 kg

FFM 4-compartment modelling [33] 25 HD patients
141 healthy subjects

0.9 SEE = 3.4%
–0.283.5 kg

16

dual-energy X-ray absorptiometry 22 HD patients
222 healthy subjects

0.89 –0.983.7 kg

Fluid overload clinical assessment 370 HD patients n.a. –0.2381.51 litres 17

ultrafiltration volume 55 HD patients R = 0.76 0.01580.8 litres 19

HD = Haemodialysis; ICW = intracellular water volume; TBW = total body water; FFM = fat-free mass; SEE = standard error of 
the estimate.
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ditionally, a 37.5% reduction in antihypertensive medi-
cation (p = 0.031) was achieved. In the adverse event 
group, the fluid status was increased by 1.3 litres (p = 
0.004) resulting in a 73% reduction in intradialytic ad-
verse events (p  !  0.001) without increasing the blood 
pressure as reported in  table 2 .

  Discussion 

 Whole-body bioimpedance spectroscopy has been 
shown to be as precise as the gold standard reference 
methods. The combination of this technology with the 

BCM model described in Chamney et al.  [13]  allows for 
the first time a target normohydration to be calculated. 
This target has the potential to bring about dramatic im-
provements to haemodialysis patients.

  At least 25% of the haemodialysis patients are likely to 
be more than 2.5 litres away from the normohydration 
target  [22] .

  When aiming for the normohydration target it is pos-
sible to reduce the fluid overload safely whilst avoiding 
dehydration. It is necessary to approach the target slowly, 
but without loosing sight of the target. It may take more 
than 1 month or in extreme cases even 4–5 months to 
reach normohydration  [23, 24] . The studies reviewed to 

Table 2. Following the target of normohydration in all haemodialysis patients in one centre (data from Machek et al. [21])

Hyperhydrated patients Adverse event patients

start after fluid adjustment start after fluid adjustment

Fluid overload before dialysis, litres 4.280.6 280.8 (p < 0.001) 0.480.8 1.780.8 (p = 0.004)
Fluid overload after dialysis, litres 281.1 –0.781.2 (p < 0.001) –2.381.2 –180.7 (p = 0.010)
Blood pressure before dialysis, mm Hg 153817

89810
133831 (p = 0.042)

70825 
155827

82815
159819

7789
Antihypertensive medication 1.681.5 181.2 (p = 0.031) 0.580.8 0.2580.45
Adverse events (in previous 4 weeks), % 0.782.4 0.782.4 25.7810 6.987.8 (p < 0.001)

The hyperhydrated patients presented with more than 3 litres fluid overload at the time of the first BCM measurement. Patients 
with more than 16% adverse events in the 4 weeks prior to the BCM measurement were categorized as adverse event patients.
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  Fig. 1.  Achieving the normohydration target in a patient with cardiac problems. The slow reduction in fluid 
overload targeted by the whole-body spectroscopy method improves the patient status dramatically. Shown are 
the fluid overload ( a ) and the systolic blood pressure ( b ) both measured before treatment.   



 Fluid Management with Whole-Body 
Bioimpedance Spectroscopy  

Blood Purif 2009;27:75–80 79

date indicate that a gradual change in fluid status is suc-
cessful in improving hypertension control without caus-
ing additional adverse events, reducing antihypertensive 
medication and improving the well-being of the patient 
as reported in  table 2 .

  To illustrate these experiences a patient case is shown 
in  figure 1 . This patient suffered from severe cardiac dys-
function, was prone to intradialytic adverse events and 
presented a high fluid overload of 7 litres above the nor-
mohydration target combined with a predialytic systolic 
blood pressure below 100 mm Hg. The patient was no 
longer able to walk and had lost his appetite. The clinical 
staff approached the normohydration target very slowly 
giving his circulatory system time to adjust to the reduc-
tion in fluid status. In the first 6 months, the fluid status 
was reduced by around 1 l/month. This rate of reduction 
was further reduced to 500 ml/month once a predialytic 
fluid overload of 2 litres was achieved.

  During the entire dry weight reduction period the pa-
tient did not present any intradialytic adverse events. His 
quality of life improved significantly, he regained his ap-
petite and could recommence everyday activities. To-
gether with the reduction in fluid status, the systolic 
blood pressure rose towards normal ranges, very similar 
to a congestive heart failure patient described by Ronco 
et al.  [25] .

  The ‘U-shape’ relationship  [26]  of mortality and blood 
pressure has attracted ongoing discussion  [27] . It has 
been concluded that cardiovascular risk is increased 
when systolic blood pressure is lower than 110 mm Hg. It 
is possible that most patients with low systolic blood pres-
sures who run the highest mortality risk are actually se-
verely volume-overloaded patients such as the example 
presented in  figure 1 . D’Amico and Locatelli  [28]  hypoth-
esized that the association between low systolic pressure 
and increasing mortality is attributed to cardiac failure 
as a consequence of long-term hypertension. Further-

more, Li et al.  [29]  associated steadily falling systolic 
blood pressure over months with a high mortality risk. 
Levin  [30]  has suggested that blood pressure should be 
controlled as early as possible before cardiomyopathy 
leads to permanent hypotension and certain early death. 
Wabel et al.  [22]  showed that at least 10% of haemodialy-
sis patients can be expected to have high fluid overload 
and low blood pressure – a situation that often remains 
undetected. As the BCM is invaluable for the objective 
assessment of fluid overload it is likely to bring further 
insight into the discussion of the ‘U-shaped’ mortality 
and blood pressure relationship.

  The normohydration target is a reference against 
which individual targets can be set. In some centres  [31] , 
attempts are made to achieve normohydration before di-
alysis, which implies some dehydration after dialysis. 
However, there may be multimorbid haemodialysis pa-
tients with, for example, cardiac output failure where the 
individual target may need to be set above the normohy-
dration target. In situations where cardiac dysfunction 
might be indicated, further confirmation should be 
sought with additional investigations such as echocar-
diography measurements.

  Conclusion 

 Whole-body bioimpedance spectroscopy in combina-
tion with a physiologic tissue model provides for the first 
time an objective target which can be used for clinical 
management of fluid balance. These preliminary studies 
indicate that achieving optimal fluid status is likely to 
have a profound impact on reducing mortality. Less in-
tradialytic adverse events and better hypertension con-
trol can be achieved even against the background of a 
history of long-term fluid overload.
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