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ABSTRACT

IMPORTANCE RESAMPLING FOR GLOBAL ILLUMINATION

Justin F. Talbot

Department of Computer Science

Master of Science

This thesis develops a generalized form of Monte Carlo integration called Resampled

Importance Sampling. It is based on the importance resampling sample generation

technique. Resampled Importance Sampling can lead to significant variance reduction

over standard Monte Carlo integration for common rendering problems. We show how

to select the importance resampling parameters for near optimal variance reduction.

We also combine RIS with stratification and with Multiple Importance Sampling for

further variance reduction. We demonstrate the robustness of this technique on the

direct lighting problem and achieve up to a 33% variance reduction over standard

techniques. We also suggest using RIS as a default BRDF sampling technique.
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Chapter 1

Introduction

Global illumination is the process of turning a virtual scene into a realistic image

by simulated light transport. This is a very difficult problem to solve using stan-

dard numerical techniques. Instead, current approaches are based on Monte Carlo

integration, which allows for very general solutions. In exchange for this generality,

the random nature of Monte Carlo integration introduces variance into the solution,

which shows up as unacceptable noise in the image. In this thesis we seek robust

methods that reduce the variance without compromising the generality of Monte

Carlo integration.

We use the word robust to refer to a method that works reasonably well on a

general class of problems without any information on the specific problem being

solved. Robust variance reduction techniques are important in global illumination

on two levels. First, the global illumination problem is high-dimensional, and the

shape of the integrand is complex and discontinuous. Thus, it is impractical to apply

variance reduction techniques that place restrictions on the shape of the integrand or

the number of dimensions. Second, we are typically interested in finding algorithms

that work across a wide variety of scenes without modification. Without this type of

1



2 CHAPTER 1. INTRODUCTION

robustness, significant time and expense must be spent implementing a multitude of

special cases, without any guarantee that the resulting “conglomarithm” will work on

the user’s input. Many existing variance reduction techniques do not fit this definition

of robust and as a consequence are of limited usefulness in global illumination.

The goal of this thesis is to develop a robust variance reduction technique for

global illumination. We achieve our goal by developing a generalization of Monte

Carlo integration, called Resampled Importance Sampling (RIS), that results in lower

variance estimates for the types of problems that are commonly encountered in global

illumination. The new method makes few assumptions about the integrand and can

be applied nearly everywhere that standard Monte Carlo integration can be used.

In the following sections we discuss the global illumination problem and the ne-

cessity of robust variance reduction methods. Then, in Section 1.2, we summarize

the contributions of this thesis. Finally, in Section 1.3 we outline the organization of

this thesis.

1.1 Global Illumination

Global illumination is an application of light transport. The goal of light transport

is to compute how light propagates from light emitters through a scene consisting of

reflectors and absorbers. In global illumination, this information is used to create an

image that corresponds to what an observer or camera would see if placed in that

scene.

Light transport was first introduced into graphics as a recursive integral by Immel

et al. [13] and independently, by Kajiya [15]. Kajiya invented the name, “Rendering

Equation,” by which the light transport equation is commonly known today. More

recently, Veach [27] reformulated this equation as a non-recursive integral over light

paths, which is a form more suitable for current global illumination approaches.

The rendering equation (in either form) is noted for its generality. It can eas-
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ily incorporate difficult scene geometries, surface reflectance properties, illumination

conditions, and camera properties. It has recently been extended to account for

participating media [17], subsurface scattering [21, 14], and polarization and fluores-

cence [30] effects.

Integrating such a general equation is a very difficult problem. Currently, only one

integration approach is capable of solving the completely general rendering equation,

Monte Carlo integration. Unfortunately, Monte Carlo integration is a probabilistic

process and is subject to variance, which appears as noise in the rendered image.

This noise can be reduced in one of two ways. First, the number of samples used for

the Monte Carlo estimate can be increased. This reduces the variance, though slowly,

and at increased computation cost. Second, a number of different variance reduction

techniques can be applied. These techniques use statistical “tricks” to achieve faster

variance reduction than is achieved by increasing the number of samples. Chapter 3

discusses Monte Carlo integration and some variance reduction techniques in more

detail.

We can define our requirement for robust variance reduction in terms of the re-

quired a priori knowledge. If a variance reduction method requires that certain

properties of the integrand be known, this limits its application to only those inte-

grands where the properties are easily available. In general, the more knowledge a

method requires, the less robust it is.

1.2 Summary of Original Contributions

Resampled Importance Sampling. We present a novel variance reduction

technique for Monte Carlo integration called Resampled Importance Sampling (RIS).

It is based on the sampling technique Sampling Importance Resampling (SIR). To

estimate the integral we first generate samples from a proposal distribution. These

samples are then filtered using a resampling step. The resulting samples are used in
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a modified Monte Carlo integration estimator. We prove that the result is unbiased

and derive an expression for its variance. We derive expressions for the optimal values

of the RIS parameters. When computing the optimal value is impractical, we also

find robust approximations. We discuss conditions under which RIS can be expected

to give improvement over standard importance sampling.

Resampled Importance Sampling has the following important properties:

1. It is unbiased.

2. It is a true generalization of standard importance sampling and can be used as

a direct replacement.

3. It requires no precomputation.

4. It does not rely on any specific properties of the function being integrated.

5. The sampling density does not have to be sampled or normalized.

These properties distiguish RIS from previous attempts to improve importance sam-

pling.

Stratification for RIS. Stratification is an important variance reduction tech-

nique that is commonly used with standard importance sampling. Using stratifica-

tion with the filtering process of Resampled Importance Sampling presents interesting

challenges. We show theoretically how to correctly apply stratification in RIS. We

propose a practical method that is computationally inexpensive. We also demonstrate

that some stratification is necessary for RIS to be a true generalization of Monte Carlo

integration.

Multiple Importance Sampling for RIS. The variance of RIS can be further

reduced by combination with Multiple Importance Sampling (MIS). Multiple Impor-

tance Sampling reduces variance by using multiple proposal distributions to weight
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the Monte Carlo samples. We show how to apply MIS both before and after the

filtering step of RIS.

Application to Global Illumination problems. Resampled Importance Sam-

pling is a general variance reduction technique. We demonstrate its use on global

illumination problems, including BRDF sampling and direct lighting computation.

We also show how it can be used to simplify adaptive sampling schemes.

1.3 Thesis Organization

In Chapters 2 and 3 we discuss relevant background material for this thesis. We

first summarize methods used for generating samples from distributions. We include

a brief summary of basic probability results that we will use in the thesis. We then

give an introduction to Monte Carlo integration and common variance reduction

techniques. We pay special attention to their application to global illumination.

In Chapter 4 we derive the Resampled Importance Sampling estimator. We show

how to apply stratification and Multiple Importance Sampling to improve its variance

reduction. We derive heuristics that indicate when RIS will perform better than

standard Monte Carlo integration. We also find robust approximations for the RIS

parameters and prove their robustness.

In Chapter 5 we apply RIS to problems in global illumination. We show how it can

reduce variance in BRDF sampling and direct lighting applications. We demonstrate

the effectiveness of the stratification and Multiple Importance Sampling approaches

suggested in Chapter 4 and we give numerical results on amount of variance reduction.

Some of the material in this thesis has appeared previously as:

Justin F. Talbot, David Cline, and Parris K. Egbert. Importance resam-

pling for global illumination. In Kavita Bala and Philip Dutré, editors,

Rendering Techniques 2005 Eurographics Symposium on Rendering, pages

139–146, Aire-la-Ville, Switzerland, 2005. Eurographics Association.
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Chapter 2

Sample Generation Techniques

In this thesis we depend upon the ability to generate samples with a given distribution.

This is a basic requirement for Monte Carlo integration and for the variance reduction

techniques that will be presented in Chapter 3.

In this chapter, we first summarize some basic probability results and notation in

Section 2.1. In Sections 2.2 through 2.4 we describe how to generate samples from

some special case distributions. In Section 2.5 we cover a number of techniques for

generating samples from general distributions.

2.1 Basic Probability

Probability is the formalized study of uncertainty and randomness. In this section

we cover some basic probability definitions and results that we will rely on in this

thesis. Monte Carlo integration is based on the common probability results which we

describe here. We will also use the results to verify the correctness of our algorithms

and to quantify the inevitable error that arises from using a random process.

2.1.1 Random Variables and Samples

Theoretically, random variables are functions that map the outcome of a random

process to the n-dimensional real space, R
n

. In practice, we can think of them as

7
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variables that do not hold a single value, but a distribution of values. The distribution

can be expressed as a function relating possible values to probabilites. If the function

is discrete, it is called a probability mass function (pmf). If it is continuous, it is called

a probability density function (pdf). In the rest of this discussion we will assume that

we are using pdfs, although similar results also hold for discrete distributions.

By definition a pdf, p, must comply with two requirements:

∀x : p(x) ≥ 0

and
∫

Ω

p(x)dx = 1

Note that although a pdf refers to a normalized function, in this thesis we will use

the term unnormalized pdf to refer to a real-valued function that can be tranformed

to a pdf by dividing out the appropriate normalizing constant, C. We will use the

nonstandard notation p̂ to represent an unnormalized pdf (p̂ = Cp). This will be

used to emphasize the fact that the given algorithms do not rely on knowledge of the

normalizing constant to work correctly.

A common transformation of the pdf is the cumulative density function (CDF):

F (x) =

∫ x

−∞

p(x′)dx′

This transformation will be used in the inversion method for generating samples from

a distribution (see Section 2.5.1). Importantly, there is a one-to-one relationship

between pdfs and CDFs.

Unlike random variables, a sample is a variable that only holds a single value.

However, we can speak of a sample as having a distribution or being drawn from a
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distribution if it is generated by a probabilistic process that could have produced a dif-

ferent result. Thus, the distribution of a sample describes what could have happened,

while the value of the sample tells us what actually did happen.

2.1.2 Expected Value and Variance

Random variables have two important properties that we will use extensively in

this thesis. The expected value of a random variable is the average value of the variable

and is defined for continuous variables as

E (X) =

∫

Ω

x p(x)dx (2.1)

The expected value is also known as the mean.

The variance measures how widely the random variable can deviate from the

expected value. It is defined as:

V (X) = E
(

X2
)

− E (X)2

In global illumination applications, variance is unwanted because it appears as noise

in the image. We will be interested in choosing random variables that have minimum

variance.

2.1.3 Biasedness, Consistency

Estimators are functions of samples drawn from a distribution. As the name

implies, these functions are used to estimate certain values using only samples from

that distribution. For example, we can estimate the expected value of a random

variable, X, using the following estimator:

f (x1, ..., xN ) =
1

N

N
∑

i=1

xi ≈ E (X) (2.2)
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where {x1, ..., xN} are samples drawn from the distribution of X.

We call an estimator unbiased if the expected value of the estimator is equal to the

value that is being estimated. Intuitively, an unbiased estimator is correct on average.

Otherwise it is called biased. An estimator is called consistent if its variance and bias

approach zero as the number of samples in the sample set approaches infinity.

To be useful in global illumination, the estimator must be at least consistent.

Additionally, we prefer estimators that are also unbiased for the reasons given in

Veach’s thesis [27].

2.2 Uniform Samples

We use the Greek letter ξ (‘xi’) to represent draws from the uniform distribution

between 0 and 1, i.e.:

ξ ∼ U(0, 1)

Uniform samples are commonly used to produce samples from other distributions.

Because of this, in the following sections we assume that uniform samples are readily

available. Pseudo-random uniform samples are easily generated in most programming

languages and in other scientific software. True uniform random variables can be

generated using a variety of physical phenomena.

2.3 Sampling Discrete Distributions

Sampling discrete distributions is a common task in global illumination algorithms.

In this thesis we will use a common technique which treats the discrete distribution

as a piecewise constant continuous function then uses the CDF inversion technique

described in Section 2.5.1

A second technique for generating samples from discrete distributions, the Alias

method, has some advantages over the inversion method if many samples are being
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drawn from the same distribution. The Alias method is described in a global illumi-

nation context by Burke [4].

2.4 Sampling Mixture Distributions

Mixture distributions have a probability density function that is a weighted sum

of other densities:

q̂ (θ) =
N
∑

i=0

αip̂i (θ)

Samples can easily be generated from the distribution with pdf q̂ in a two-step

process. First, we choose i by sampling from a discrete distribution with probability

proportional to αi. We then produce a sample from the distribution with pdf p̂i using

an appropriate sample generation technique.

Evaluating q̂ (θ) requires evaluating all p̂i(θ) even if the actual sample was not

produced from that distribution.

2.5 Sampling General Distributions

Sampling general distributions is more difficult. The most common techniques,

presented below, all use a two-stage sampling method. First, initial samples are

generated from a distribution. Second, those samples are modified in some fashion

to produce samples that have the desired distribution (or an approximation). The

initial samples are usually taken from a uniform distribution, since such samples are

readily available.

The first two techniques discussed here produce samples that have the exact de-

sired distribution. This property is nice, since the samples can be used directly in

unbiased Monte Carlo integration. However, it comes at the expense of requiring

significant knowledge of the shape of the desired distribution.

The final three sampling techniques relax this requirement, but at the cost of

exactness. The resulting distributions will only be approximations to the desired
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distribution. Although they are approximations, it is still possible to use them in

unbiased Monte Carlo integration if proper weighting of the samples is performed.

2.5.1 CDF Inversion

CDF inversion is the most common sampling technique used in global illumination.

It permits exact sampling from the desired distribution.

Remember, the CDF is the integral of the pdf:

F (x) =

∫ x

−∞

q(x′)dx′

CDF inversion takes advantage a of special property of the CDF; F (x) is uniformly

distributed between 0 and 1. This implies:

ξ = F (x)

If we solve this equation for x,

x = F−1(ξ)

we get a simple, efficient method for producing samples, x, from the pdf q. The

downside is that it requires a normalized pdf, a closed form integral, and an invertible

CDF. These are available in some important, fundamental applications in global

illumination. However, these limitations mean that CDF inversion cannot be applied

to more difficult, more general global illumination problems.

2.5.2 Rejection Sampling

Rejection Sampling can be used to generate samples from a distribution with

density q̂(θ). To use Rejection Sampling, we must be able to evaluate q̂(θ) and we

must be able to find a pdf p̂(θ) that bounds q̂ (i.e the ratio q̂(θ)
p̂(θ)

must have a known

finite bound, M , for all θ).
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We generate a sample in two steps. First, we generate a sample according to p̂

using some other sample generation technique. Second, if

ξ <
q̂

p̂M

we accept the sample; otherwise, the sample is rejected. These two steps are repeated

until a sample is accepted.

Rejection Sampling can be understood as a dart throwing process. Conceptually,

we first generate samples uniformly in the area underneath the scaled distribution p̂M .

Then, those samples that fall within the area underneath the curve q̂ are accepted,

while those above are rejected. To be efficient, p̂M should bound q̂ as tightly as

possible.

The difficulty in using Rejection Sampling arises from the need to find bounding

distributions. It typically requires a great deal of a priori knowledge about the shape

of q̂(θ) in order to choose a distribution that will bound it tightly. Also note that

finding M requires knowledge of the relative scale between q̂ and p̂, which is not always

available. Although it is simple to extend the Rejection Sampling idea into higher

dimensions, finding efficient bounding distributions becomes increasingly difficult as

the dimensionality grows.

Finally, in application to Monte Carlo integration, Rejection Sampling is never

better than other available sampling techniques [6].

2.5.3 Sampling Importance Resampling

Sampling Importance Resampling (or more simply, importance resampling) is a

common method in computational statistics for generating samples from difficult

distributions. It is commonly used in sequential importance sampling and particle
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filtering [9]. It can also be used to generate samples from Bayesian posterior distri-

butions [10]. Importance resampling was first described by Rubin [23].

Importance resampling can generate samples that approximately have the distri-

bution q̂

C
= q. To do so, we generate a set of “proposal” samples from a source

distribution, p, weight these samples appropriately, then resample these samples by

drawing samples from them with probability proportional to their weights. This

algorithm is given below.

Importance Resampling

1. Generate M proposals (M ≥ 1) from the source distribution p,

{x1, . . . , xM}.

2. Compute a weight for each proposal, w(xj).

3. Draw N samples (N ≤ M), {y1, . . . , yN}, with replacement from

the proposals with probability proportional to their weights.

If we choose w(xj) =
q̂(xj)

p(xj)
, then the resulting samples will be approximately

distributed according to q̂. The effect of the resampling step is to take proposals from

the source density, p, and “filter” them, so that the samples have a distribution that

approximates q.

We can view M , the number of proposals, as a distribution interpolation variable.

When M = 1, the samples are marginally distributed according to p. As M → ∞,

the distribution of each sample approaches q. As an example, Figure 2.1 shows the

distribution of a SIR-generated sample for various values of M when p is uniform and

q̂ = cos (θ) + sin4 (6θ).

Importance resampling has been used informally in the global illumination liter-

ature. Lafortune et al. [16] used importance resampling to decrease the number of
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Figure 2.1: Marginal distribution of a sample resulting from importance resampling
for different values of M . At M = 1, the distribution is p. At M = ∞, the distribution
is q. For other values of M , the distribution interpolates between p and q, though the
exact manner of interpolation is unknown. The low values on the left side for M = 2
and M = 8 are artifacts of the density estimation method.

visibility tests necessary in bidirectional path tracing. Shirley et al. [24] used resam-

pling to improve direct lighting computations. Burke [4] used importance resampling

to sample the distribution of the product of a Phong BRDF model and an illuminating

environment map. Chapter 5 formalizes these techniques.

One of the contributions of this thesis is to show how to weight the samples

generated by Sampling Importance Resampling to produce an unbiased Monte Carlo

integration estimate.

2.5.4 Metropolis Sampling

Metropolis sampling [19] generates a Markov chain with a stationary distribution

that is equal to the desired sampling distribution, q̂. The advantage of Metropolis
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sampling is its generality. It can be used to generate samples from even the most

complex distributions. It is very computationally efficient if a large number of samples

are desired from the same distribution. Metropolis sampling was first used in global

illumination by Veach and Guibas [28].

The Markov chain is formed by proposing a new sample, x′, from a distribution,

called the transition function, T , which is conditioned on the current sample, x. The

proposed sample becomes the current sample if

ξ < min

(

1,
q̂(x′)T (x|x′)

q̂(x)T (x′|x)

)

otherwise the old sample is retained as the current sample.

Like the previous technique, Metropolis sampling generates samples that are only

approximately distributed according to the desired distribution, q̂. As the Markov

chain runs, the quality of the approximation improves. Thus, it is common to throw

out the initial samples (the “burn-in” period), when the approximation is bad, and

only use the subsequent samples, when the approximation is hopefully good. This

typically works in practice, although determining an appropriate length of the “burn-

in” is difficult. Additionally, the result is still an approximation. Perfect sampling

with Metropolis can be achieved using the Coupling from the Past method introduced

by Propp and Wilson [22].

Fortunately, when Metropolis is applied to Monte Carlo integration, it turns out

that we often do not need perfect sampling. Veach and Guibas [28] showed that with

appropriate weighting, the integration estimate will be unbiased, even though the

samples are only approximately distributed.
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2.5.5 Gibbs Sampling

Gibbs sampling [11], also known as successive substitution Markov Chain Monte

Carlo (MCMC), is a special case of Metropolis. During each step of the Markov

chain, only a single dimension of the parameter vector is updated. Its new value is

proposed using the complete conditional, the distribution of the free dimension con-

ditioned on keeping all the other dimensions constant. In comparison with standard

Metropolis, Gibbs sampling can be more efficient because the proposals come from a

more informed distribution, which can lead to a higher acceptance rate.

Gibbs sampling has not yet been applied to Global Illumination. This is largely

due to the fact that finding the complete conditionals is too difficult for most global

illumination problems. Additionally, Gibbs sampling, due to its single component

update strategy, tends to build the Markov chain along axis aligned directions in

the primary sampling space. If the integrand is not aligned with an axis, proposing

samples only along axis directions leads to a high rejection rate and higher variance.

In some cases it can lead to severe bias in the resulting samples if the chain is not (or

is nearly not) ergodic.

2.6 Summary

In this chapter we have summarized some basic probability results that will be

used in this thesis. We have also discussed different sample generation techniques

and their use in global illumination.



18 CHAPTER 2. SAMPLE GENERATION TECHNIQUES



Chapter 3

Monte Carlo Integration

Monte Carlo integration is a probabilistic method for integrating difficult functions. It

is commonly used in Global Illumination, in preference to more standard integration

techniques like numerical quadrature, due to its generality, ease of use, and robustness

in high dimensions and to discontinuous functions.

As a probabilistic method, Monte Carlo integration is subject to variance. In

Global Illumination, this shows up as undesireable noise in the resulting images (see

Figure 3.1). A large number of techniques have been developed to try to reduce the

variance of the estimate without increasing the number of samples that have to be

taken and thus without increasing the computational cost of the integration.

In this chapter we first discuss Monte Carlo integration in Section 3.1. We then

discuss some commonly used variance reduction techniques in Global Illumination. In

Section 3.2.1 we describe importance sampling. In Section 3.2.2 we discuss stratified

sampling. Finally, in Section 3.2.3 we discuss correlated sampling. A more complete

discussion of variance reduction techniques in the context of Global Illumination can

be found in Veach’s thesis [27].
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Figure 3.1: This simple image demonstrates the typical speckled noise that is asso-
ciated with Monte Carlo solutions to the Global Illumination problem.

3.1 Basic Monte Carlo Integration

Monte Carlo integration is based on the fact that the integral of f can be approx-

imated with the following estimator:

∫

Ω

f (ω) dω ≈
1

N

N
∑

i=1

f (xi)

q (xi)
(3.1)

where the samples {x1, ..., xN} are drawn from the sampling distribution with pdf q.

Note that q must be normalized. This expression follows from Equations 2.1 and 2.2.

This estimator provides an unbiased estimate of the integral. Also, the estimator

works for general, non-continuous, high dimensional integrals. It only requires that

f be evaluated. This generality makes Monte Carlo integration ideal for Global

Illumination where the integrands are seldom well-behaved and are almost always

high-dimensional.
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3.2 Variance Reduction

The variance of the Monte Carlo integration estimator is

V

(

N
∑

i=1

f (xi)

q (xi)

)

=
1

N
V

(

f (ω)

q (ω)

)

(3.2)

This implies that as long as V
(

f(ω)
q(ω)

)

is finite, then the estimator is also consistent,

since the variance will go to zero as N → ∞. This condition is met if q(ω) > 0

whenever f(ω) 6= 0.

This variance expression implies that the error of the estimate only decreases

with O(N
1

2 ). This convergence is quite slow. To remedy this, a number of variance

reduction techniques have been developed to increase the convergence rate.

In the following sections we discuss a few variance reduction techniques that have

been applied in Global Illumination.

3.2.1 Importance Sampling

From examination of Equation 3.2, we see that the variance of the Monte Carlo

integration estimator is dependent on the variance of the ratio f(ω)
q(ω)

. If the variance

of this ratio can be decreased, the overall variance can be reduced without increasing

the number of samples.

Importance sampling refers to the technique of choosing the sampling distribution

q to minimize the variance of the ratio. Ideally, if q ∝ f , then the ratio is a constant

for all ω. In this case, the variance is zero and there is no error in the estimate.

Unfortunately, finding such a q is typically impractical, since it requires integrating

f , which is the very problem we are trying to solve. Instead, we try to find a sampling

distribution that mimics f . We are greatly limited in our choices of distributions since

the distribution must be normalized and it must be easy to generate samples from

the distribution. In practice, we generally choose a simple function that has a known
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sampling method. If the integrand is a product function, the distribution is typically

chosen to match a few of the terms, but seldom all since the complexity of the function

grows quickly in the number of terms.

If a specific integrand, f , is going to be integrated repeatedly (possibly with slight

variations), it may be worthwhile to dedicate some computation time upfront to find

a good q. This approach proceeds in two steps. First, a functional form must be de-

veloped that is sufficiently flexible to allow q to closely match f , while still remaining

normalized and easy to sample. Second, a method for precomputing the functional

parameters must be derived that is fast enough to make the precomputation worth-

while. Some recent examples in global illumination include Structured Importance

Sampling by Agarwal et al. [1], a factored BRDF representation by Lawrence et

al. [18], and Wavelet Importance Sampling by Clarberg et al. [7].

Although importance sampling can achieve remarkable results, it suffers from a

major shortcoming: the sampling density, q, must be chosen specifically for each f .

This means that, according to our definition, importance sampling is not robust.

3.2.1.1 Defensive Importance Sampling

Note that although importance sampling will typically decrease the variance, it

is also possible to increase the variance if q is chosen poorly. This happens in global

illumination since the exact form of f is unknown a priori.

There are two cases that can increase the variance. First, if q is very small where

f is relatively large, then the ratio f

q
will be extremely large. Second, if q is large

where f is relatively small, the ratio will be very small. This wide variation in the

ratio leads to increased variance in the Monte Carlo estimator. Typically, the first

case is the more problematic of the two. In the second case, the ratio can get no

smaller than 0, but in the first case the ratio can approach infinity.

Defensive importance sampling [12] refers to a technique used to reduce the pos-
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sibility of producing a very small q where f is large. This is done by replacing q with

a mixture distribution that includes a uniform density, u(ω), over the domain:

q′ (ω) = αq (ω) + (1 − α)u(ω)

This approaches guarantees that the new sampling distribution, q′, will never be

smaller than (1−α)u(ω). For an integrand, f , with an upper bound U , the following

inequality holds:

f(ω)

q′(ω)
≤

U

(1 − α)u(ω)

This bound on the ratio places an upper bound on the variance of the estimator and

greatly improves its robustness. In general, there is not a clear choice for α, although

Veach [27] defends 0.5 as a reasonable default.

3.2.1.2 Multiple Importance Sampling

The defensive importance sampling strategy can be generalized. Veach [27] noted

that often we know that f could be mimicked well by any one of a set of sampling

distributions {q1, ..., qK}. However, a priori, we don’t which one is the best match.

In this case we can combine all the distributions into a single density:

q′ (ω) =
K
∑

i=1

αiqi (ω)

When using this mixture density, the qi which does match f will bound the ratio f

q′

and limit the variance. Although this approach will not always reduce the variance,

in general it greatly increases the robustness of Monte Carlo integration.

Veach presents Multiple Importance Sampling in a more general framework where

samples are weighted using heuristics that are designed to reduce variance. The

mixture distribution approach given here corresponds to the balance heuristic.
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Veach also proposed a power and maximum heuristics that do not correspond to

a standard Monte Carlo estimate. Instead, they can be represented as a weighted

Monte Carlo estimate:

∫

Ω

f (ω) dω ≈
1

N

N
∑

i=1

w (xi)
f (xi)

q (xi)

With some suitable restrictions on w, this estimate is also unbiased. See Chaper 9 of

Veach’s thesis [27] for more information.

Multiple Importance Sampling has been generalized by Csonka et al. [8] to se-

quences of integrals. Owen and Zhou [20] demonstrate that defensive and multiple

importance sampling can perform poorly under some circumstances and suggest com-

bining multiple importance sampling with control variates to bound the variance.

They also show how to use multiple importance sampling with mixed sign functions.

3.2.1.3 Weighted Importance Sampling

Weighted Importance Sampling modifies the Monte Carlo estimate to use a second

probability density function, g.

∫

Ω

f (ω) dω ≈

1
N

∑N

i=1
f(xi)
q(xi)

1
N

∑N

i=1
g(xi)
q(xi)

If g mimics f well, then the numerator and the denominator will fluctuate jointly

and the variance of the ratio will be reduced. To see any improvement, g must mimic

f better than q. Since g does not have to be sampled we have a wider variety of

functions to choose from than when choosing the sampling distribution q. However,

g must still be normalized which makes finding an effective density difficult.

Additionally, weighted importance sampling is consistent, but not unbiased. Thus,

for small sample sizes the estimate will be noticably incorrect on average.
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Weighted Importance Sampling has been used for some global illumination prob-

lems. However, the normalization requirement has restricted its use to simple appli-

cations where g can be found in closed form. Bekaert et al. [3] use it in a Monte Carlo

radiosity application and Balázs et al. [2] describe its use in Monte Carlo radiance

shooting algorithms.

3.2.2 Stratified Sampling

The goal of stratified sampling is to improve the uniformity of the sample distri-

bution. It can be shown that if the samples are, in some sense, more evenly spaced

in the integrand’s domain, the variance will be reduced. Intuitively, there is a higher

chance of capturing the important information in the integrand if the samples cover

the entire domain than if they are tightly clustered in a small portion of the domain.

Stratified sampling works by dividing the domain, Ω into a set of regions, {Ω1, ...ΩN}

and then taking samples from each region. In the special, but common case, where a

single sample is taken from each region, the stratified Monte Carlo estimator is

∫

Ω

f(w)dw ≈

N
∑

i=1

f(xi)

pi(xi)

where pi is a probability density with support only in region Ωi.

3.2.3 Correlated Sampling

Correlated Sampling works by finding a second function g, which approximates f ,

such that f − g is nearly constant. The integral of f is then approximated as:

∫

Ω

f (ω) dω ≈
1

N

N
∑

i=1

f (xi) − g (xi)

q (xi)
+

∫

Ω

g(ω)dω

Using Correlated Sampling requires finding g, a closed form approximation of the

integrand that can be easily integrated. In general this is difficult to do for global
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illumination problems. Szecsi et al. [25] use correlated sampling to improve direct

lighting calculations for the limited case of polygonal diffuse lights and phong BRDFs

since an approximation can easily be found. A generalization to more complex lights

and BRDFs is not readily apparent. Szecsi et al. also demonstrate how to combine

correlated sampling and importance sampling in a pseudo-optimal manner.

3.3 Summary

In this chapter we briefly described Monte Carlo integration and its application

to Global Illumination. We noted that noisy results, due to variance, are the main

problem in Monte Carlo algorithms. We discussed the various variance reduction

techniques that have been derived for Monte Carlo integration and their use in Global

Illumination.



Chapter 4

Resampled Importance Sampling

In this chapter, we introduce a robust variance reduction technique called resampled

importance sampling (RIS). This technique results from using Sampling Importance

Resampling to generate samples for Monte Carlo integration.

Importantly, resampled importance sampling requires no a priori knowledge of the

integrand to achieve substantial variance reduction. This makes it significantly more

robust than standard importance sampling, and allows it to be applied to a wider

range of problems.

In Section 4.1 we introduce the basic resampled importance sampling estimate.

Then, in Section 4.2 we analyze its variance and discuss conditions under which we

can expect RIS to give improvements over standard Monte Carlo integration. In Sec-

tions 4.3 and 4.4 we show how to choose the RIS parameters in a robust fashion. We

apply stratification and Multiple Importance Sampling to RIS in Sections 4.5 and 4.6

respectively. Finally, in Section 4.7 we compare RIS to previous work using resam-

pling in global illumination.

27
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4.1 Resampled Importance Sampling

We want to find the integral I of a function f (x):

I =

∫

Ω

f (x) dµ (x)

using Monte Carlo integration:

I ≈ ÎMC =
1

N

N
∑

i=1

f (yi)

q̂ (yi)

This will only work correctly if q̂ happens to be normalized and easy to sample

perfectly, i.e. using rejection sampling or CDF inversion. To overcome this restriction

we must modify the Monte Carlo estimator.

First, we use Sampling Importance Resampling (SIR) to generate samples from q̂.

Recall that SIR can be used even if q̂ is unnormalized or cannot be sampled perfectly.

Second, since the samples generated by SIR are only approximately distributed ac-

cording to q̂, to maintain unbiasedness we must add a weighting term to the standard

Monte Carlo estimator. For generality, we allow the weighting term to be a function

of both the proposals, {x1, . . . , xM}, and the resulting samples, {y1, . . . , yN}:

Îris =
1

N

N
∑

i=1

f (yi)

q̂ (yi)
· w∗ (x1, . . . , xM , y1, . . . , yN)

The weighting function w∗ must be chosen to correct for both the fact that q̂ is

unnormalized and for the fact that the density of the samples yi only approximates q̂.

The appropriate choice of w∗ is surprisingly simple. It is the average of the weights
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computed in the resampling step:

w∗ (x1, . . . , xM , y1, . . . , yN) =
1

M

M
∑

j=1

w(xj)

Combining these two equations gives the basic RIS estimator:

Îris =
1

N

N
∑

i=1

(

f (yi)

q̂ (yi)

)

·
1

M

M
∑

j=1

w(xj) (4.1)

For the RIS estimate to be unbiased, two conditions must hold. First, q̂, the sampling

density, and p, the proposal density, must be greater than zero everywhere that f is

non-zero. Second, M and N must be greater than zero. The proof of unbiasedness is

given in Appendix A.1.

We can now give the entire Resampled Importance Sampling algorithm.

Resampled Importance Sampling

1. Generate M proposals (M ≥ 1) from the source distribution p,

{x1, . . . , xM}.

2. Compute a weight for each proposal, w(xj) =
q̂(xj)

p(xj)
.

3. Draw N samples, {y1, . . . , yN}, with replacement from the pro-

posals with probability proportional to the proposal weights.

4. Estimate the integral, I, using Equation (4.1).

The basic RIS estimator has a problem. When performing the Sampling Impor-

tance Resampling, there is some chance of choosing proposals multiple times, resulting

in repeated samples. This is undesirable in an integration application since repeated

samples do not provide any additional information, and are, essentially, wasted. One
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major implication of this problem is that when M = N , basic RIS does not reduce to

standard Monte Carlo integration since the effective sample size is smaller than N .

One possible solution to this problem is to design a resampling procedure that

uses sampling without replacement. Unfortunately, it is difficult to derive an unbiased

estimator using this approach.

A much easier approach is to stratify the proposals. If each proposal belongs to

a single stratum, and a single sample is drawn from each stratum then no sample

will be replicated. In Section 4.5 we show how to stratify RIS to avoid the sample

replication problem.

4.2 Variance Analysis

Since the RIS estimator is unbiased, the only error in the estimate is due to the

variance:

V
(

Îris

)

=
1

M
V

(

f(X)

p(X)

)

+

(

1 −
1

M

)

1

N
V

(

f(Y )

q(Y )

)

(4.2)

where X is a random variable with density p and Y is a random variable with density

q = q̂
R

q̂
. The variance term is derived in Appendix A.2.

RIS variance is a combination of two standard Monte Carlo variance terms. The

left-hand term is the variance of Monte Carlo integration using p as the sampling

density. The right-hand term is the variance resulting from using q as a sampling

density, divided by the number of samples. The reciprocal of the number of proposals,

M , blends between them. Note that as M → ∞, the contribution of the first term goes

to zero. This is due to the fact that as M → ∞, Sampling Importance Resampling

produces samples that have the density q.

Compared to standard Monte Carlo integration, the Resampled Importance Sam-

pling estimator adds an additional degree of freedom, the number of proposals, M .

This extra flexibility can lead to additional variance reduction when two conditions
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are met. First, the following equation must be true:

V

(

f(Y )

q(Y )

)

< V

(

f(X)

p(X)

)

This condition holds when q is a better importance sampling density than p, i.e. q̂

mimics f better. Otherwise, there will be no advantage to performing the resampling

step. Second, computing proposals must be more computationally efficient than eval-

uating the samples. If not, we would be better off simply computing more samples,

rather than wasting time generating proposals.

4.3 Robust Parameter Selection

When using RIS we can freely choose p, q̂, M , and N within the unbiasedness

constraints given in Section 4.1. Clearly some choices will lead to lower variance than

others. In this section we briefly discuss choosing q̂ and p. We then formally show how

to find efficiency optimal (minimizing variance in a fixed computation time) values of

M and N , for given choices of q̂ and p.

From the discussion in the previous section we derive three guidelines for choosing

q̂ and p.

1. We should minimize V
(

f(X)
p(X)

)

and V
(

f(Y )
q(Y )

)

. This means choosing p and q̂ to

be as proportional to f as possible.

2. V
(

f(Y )
q(Y )

)

should be less than V
(

f(X)
p(X)

)

. If this is not true, then RIS will not be

better than standard Monte Carlo integration.

3. Proposals should be computationally inexpensive. This implies that q̂ and p

should be cheap to evaluate and p should be easy to sample.

We now derive a heuristic for choosing efficiency optimal values for M and N .
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The values are chosen to minimize the overall variance of the RIS estimate under a

fixed computation time constraint and given fixed choices of p and q̂.

If the total execution time available for computing Îris is Ttotal, then we have the

following constraint:

Ttotal = M T1 + N T2

where T1 is the time necessary to perform steps 1 and 2 of Resampled Importance

Sampling and T2 is the time necessary to perform steps 3 and 4.

We would like to choose values of M and N that minimize Equation (4.2) given the

above time constraint. We minimize the variance by substitution to find an optimal

value of K = M
N

:

K =
T2

T1

√

√

√

√

√

Ttotal

T2

V
(

f(X)
p(X)

)

− V
(

f(Y )
q(Y )

)

Ttotal

T1

V
(

f(Y )
q(Y )

)

− V
(

f(Y )
q(Y )

) (4.3)

As should be expected, the optimal ratio of M and N is a function of the variance

and the execution time of the proposals and the samples. This equation is derived in

Appendix A.3.

The following equations compute the optimal values, Mopt and Nopt from K. The

initial clamping operation ensures that Mopt ≥ Nopt ≥ 1, which is necessary for the

resampling process. The floor operations produce integer values for Mopt and Nopt.

As before, ξ is a uniform random number between 0 and 1.

K̃ = max

(

min

(

K,
T − T2

T1

)

, 1

)

Nopt =

⌊

Ttotal

K̃T1 + T2

+ ξ

⌋

Mopt =
⌊

NoptK̃ + ξ
⌋
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4.4 Robust Approximations of M and N

In practice, the true optimal values of M and N cannot be computed since Equa-

tion (4.3) relies on unknown parameters–the computation times and the variances.

Since computing the variances can be difficult, in this section we introduce a robust

approximation of Equation (4.3) that only requires estimates for T1 and T2. These

times are very simple to estimate in global illumination and other applications.

Using only T1 and T2, a simple approximation for K is

K∗ =
T2

T1

(4.4)

Using K∗ results in assigning equal amounts of computation time to evaluating pro-

posals and to evaluating samples. Intuitively, we cannot expect to do much better

than this since we could at most double the number of samples or double the number

of proposals.

Not only is K∗ simple and intuitive, it is provably robust. We can show that using

K∗ instead of the true optimal value, K, will at most double the variance. This is

shown rigorously in Appendix A.4.

We have found that this approximation works very well. It is very cheap to

compute, and it avoids the necessity of computing Monte Carlo estimates of V
(

f(X)
p(X)

)

and V
(

f(Y )
q(Y )

)

. In practice, the slightly larger variance is worth (in an efficiency sense)

the reduced computation.

4.5 Stratified Resampled Importance Sampling

In this section, we first briefly discuss stratifying the RIS propsals. We then

describe how to stratify the RIS samples. We derive a new stratified RIS estimator and

its variance. We use the variance expression to derive heuristics for good stratification.
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We describe two simple algorithms for stratifying the samples that attempt to meet

some of the heuristic requirements.

4.5.1 Stratifying Proposals

In RIS, the proposals have two purposes: 1) to estimate the normalizing constant

of q̂ and 2) to provide a discrete approximation of q̂ from which the samples will

be drawn. For a low-dimensional, smooth q̂, stratification of the proposals will im-

prove the estimator’s performance greatly. Since the proposals are drawn from p, a

normalized continuous pdf, standard stratification techniques can be used.

4.5.2 Stratifying Samples

As noted previously, the basic RIS estimator can result in duplicated samples

which leads to effective sample sizes smaller than N . This problem can be avoided

by stratifying the proposals, such that a single sample is drawn from each stratum.

In this manner, no sample will be repeated.

To effect the stratification, we modify the standard RIS algorithm as follows:

Stratified Resampled Importance Sampling

1. Generate M proposals (M ≥ 1) from the source distribution p,

{x1, . . . , xM}.

2. Compute a weight for each proposal, w(xj) =
q̂(xj)

p(xj)
.

3. Divide the proposals into N strata of size mi, where
∑N

i=1 mi =

M .

4. Draw N samples, {y1, . . . , yN}, one from each stratum, with prob-

ability proportional to the proposal weights.

5. Estimate the integral, I, using Equation (4.5).
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The stratified RIS estimator is

Îris2
=

N
∑

i=1

(

f (yi)

q̂ (yi)
·

1

M

mi
∑

j=1

w(xij)

)

(4.5)

where mi is the number of proposals in stratum i and xij is the jth proposal in the

ith stratum. Importantly, since sample yi will be selected from just the mi samples in

stratum i, if all the mi = 1, this estimate reduces to standard importance sampling,

unlike the basic RIS estimate given in Equation (4.1).

The variance of the stratified estimator is

V
(

Îris2

)

=
N
∑

i=1

[

1

mi

V

(

fi(Xi)

pi(Xi)

)

+

(

1 −
1

mi

)

V

(

fi(Yi)

qi(Yi)

)]

(4.6)

where Xi is a random variable with density pi and Yi is a random variable with

density qi = q̂i
R

q̂i
. This is very similar to the variance equation of standard RIS

(Equation (4.2)).

For a given stratification, the variance of stratified RIS is guaranteed to be less

than or equal to the variance of stratified importance sampling as long as V
(

f(Y )
q(Y )

)

<

V
(

f(X)
p(X)

)

. This is a main advantage of stratified RIS over standard RIS.

Stratification is the task of dividing the proposals {x1, ..., xM} into N strata.

The stratification should ensure that each proposal is placed in a single stratum and

that no stratum is empty. Within these constraints, there is considerable flexibility

on how to choose the stratification. Ideally, we would like to choose strata that

minimize Equation (4.6). Finding such optimal strata would require an expensive

search through the space of possible stratifications.

Instead, we derive three heuristics from Equation (4.6) that should lead to lower
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variance. These heuristics guide the design of the stratification algorithms presented

in this section.

Heuristic 1: Make
∑mi

j=1 wij constant for all i. Variation in the total weight

in each strata increases the variance.

Heuristic 2: Minimize the areas of the strata w.r.t. the domain of f . We

would like to minimize the variance of fi

qi
. However, we have no information on this

variance when performing the stratification. Instead, we make the general assumption

that f is locally constant. When this assumption is true, minimizing the area of the

strata will reduce V
(

fi

qi

)

.

Heuristic 3: Minimize V
(

qi

pi

)

. In regions where qi is a good approximation

of fi, this heuristic will reduce the variance of fi

pi
, thus decreasing the first term

of Equation (4.6). This heuristic is met by placing proposals with similar weights

(w(x) = q̂(x)
p(x)

) into the same stratum.

In addition to these heuristics it is also necessary that the stratification process

be computationally inexpensive. In the following sections we describe two simple

stratification techniques that partially satisfy these heuristics.

4.5.2.1 Equal-proposals Stratification

Equal-proposals stratification is the simplest technique. We simply divide the

proposals into N strata with M
N

proposals in each. (If M
N

is not an integer, the

strata are made as equal in size as possible.) If we assume that the order of the

proposals indicates some form of spatial locality, then to fulfill heuristic 2 we should

not reorder the proposals during stratification. Despite its simplicity, equal-proposals

stratification works reasonably well. It has the important property that its variance is
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guaranteed to be less than or equal to the variance of standard importance sampling

for a fixed number of samples, N .

4.5.2.2 Equal-weights Stratification

Equal-weights stratification is designed to meet the first heuristic. Proposals are

divided into strata, such that the sum of the weights in each stratum is nearly equal.

Again, for simplicity and to follow the second heuristic, we do not allow rearrangement

of the proposals.

To effect this stratification we first compute the weight

wmax =

∑N

i=1 wi

N

that should be in each stratum. We then greedily create strata by stepping through

the propsals in order. The first proposal is placed in the first stratum. Then, as

long as the total weight in the current stratum, wtotal is less than wmax, we continue

adding proposals to the current stratum. If adding the next proposal, x, will make

the total weight in the stratum larger than wmax, then we add the proposal to the

current stratum with probability

wtotal + w(x) − wmax

w(x)

Otherwise, we create a new stratum and add x to the new stratum.

The resulting strata from this approach will, in general, have more equal weight

sums than the strata created by uniform stratification. The algorithm also guar-

antees that each stratum will have at least one proposal. We have found that this

stratification leads to effective variance reduction.
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4.6 RIS with Multiple Distributions

In this section we describe how to use multiple distributions with Resampled

Importance Sampling. It is often the case that we can generate proposals from a

number of different distributions. If so, we can increase the robustness of the estimate,

and in many cases reduce the variance, by using Multiple Importance Sampling.

If the proposals are all generated in the same domain, or can be easily transformed

into a common domain, then we can apply MIS to weight the proposals. This method

produces very good results. If the transformation into a common domain is difficult

(computationally expensive), then it is not efficient to use MIS on the proposals.

However, we can still apply MIS to improve the weighting of the samples.

4.6.1 Multiple Importance Sampling applied to Proposals

Assume we have a set of K proposal densities, {p1, ..., pK} and a sampling density

q̂ which is defined over a common domain. Instead of drawing all proposals from a

single density, we draw mi proposals from density pi. We then use an MIS heuristic

to modify the weight, w(x) computed for each of the proposals. For example, with

the balance heuristic, the weight for a proposal, xj, drawn from density, pi, would be

w(xj) =
mipi(xj)

∑K

k=1 mkpk(xj)

q̂(xj)

pi(xj)

Any MIS heuristic could be used in this context. This new weight is used in all

subsequent steps of Resampled Importance Sampling. When performing the resam-

pling step it is not necessary to consider the original proposal densities. Thus, a

single sample may be drawn from a set of proposals that initially came from different

densities.
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4.6.2 Multiple Importance Sampling applied to Samples

If the proposals cannot be easily transformed into the same domain, then we

cannot use a common sampling density, q̂, and MIS cannot be applied to the proposals.

However, we can still apply MIS to the samples.

In this case, we have a set of sampling densities, {q̂1, ...q̂K}, each defined on a

different domain. We implement MIS by generating samples from each of the sampling

densities, then weighting the samples.

Since the samples are not in the same domain they must be generated from inde-

pendent sets of proposals. This implies that we must repeat the RIS process K times,

once for each density. To do so, we divide the total number of proposals, M , and

samples, N , between the K repetitions. Thus, each repetition generates ni samples

from q̂i using mi proposals, where
∑K

i=1 mi = M and
∑K

i=1 ni = N . The samples can

then be combined using any of the MIS heuristics. Importantly, the MIS weights are

computed using the sampling densities, {q̂1, ...q̂K}, not the proposal densities.

4.7 Comparison to Related Work

In this section we compare Resampled Importance Sampling to Bidirectional Im-

portance Sampling (BIS) a similar technique developed independently by Burke [4, 5].

Burke suggests two forms of BIS, one based on rejection sampling, the second based

on Sampling-Importance Resampling. We only compare RIS to the latter.

The primary differences between our algorithm and Burke’s are scope and formal-

ity. BIS is seen primarily as a method for improving Monte Carlo integration when

applied to product functions. Specifically, it is developed in the context of the direct

lighting problem in global illumination. The use of the term “Bidirectional” derives

from this application.

We see RIS as a general Monte Carlo variance reduction technique that can be

applied to a wide range of problems, not just to global illumination or to product
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functions. To emphasize this generality, we derive the RIS estimate and related

results independent of any global illumination application. Also, for this reason we

consider Resampled Importance Sampling to be a more appropriate name, since it

does not refer to any specific problem type.

This generality also allows us to be more formal. Most importantly we are able

to prove that RIS is unbiased and derive an expression of its variance. Addition-

ally, we show how to robustly choose the RIS parameters with bounds on the re-

sulting variance. We also combine RIS with stratification and Multiple Importance

Sampling—other variance reduction techniques.

Finally, RIS is unbiased in general. BIS, as proposed by Burke, is biased if the

range of the integrand is multi-dimensional. Specifically, this is a problem when

applied to global illumination problems where the range of the integrand is over

multi-dimensional colors.

4.8 Summary

In this chapter we presented Resampled Importance Sampling, a novel variance

reduction technique that uses Sampling Importance Resampling as the sample gen-

eration technique. We showed that it is unbiased and derived a variance expression

for it. We also showed how to combine RIS with MIS and stratification to improve

the variance reduction.

The variance reduction from RIS results from reducing the number of samples to

increase the number of proposals taken. If q̂ is a better approximation to f than p,

then computing more proposals will reduce the variance. However, it is only efficient

to do so if the computation time for proposals is less than the computation time for

samples.

Since RIS places no restrictions on q̂ it is often quite easy to find a q̂ that is

much better than the best available p. The requirement that proposals must be much
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cheaper to compute than samples is more difficult to fulfill. This serves as an indicator

as to which problems will benefit from RIS.
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Chapter 5

Results

In this chapter we validate the algorithms derived in the previous chapter by applying

them to global illumination problems. We show that RIS can lead to robust variance

reduction.

In Sections 5.1 through 5.4 we use RIS to improve the direct lighting calculations

in global illumination. We use this application to explore the practical implication

of the theories discussed in the previous chapter. Importantly, we demonstrate that

the approximate optimal values of M and N derived in Section 4.4 lead to effective

variance reduction over standard importance sampling. We also show that the strat-

ification and multiple importance sampling strategies introduced lead to additional

variance reduction.

In Section 5.5 we apply RIS to the problem of sampling Bidirectional Reflectance

Distribution Functions (BRDFs). In this section we demonstrate that RIS is signifi-

cantly more robust than standard importance sampling. Although, in this case, RIS

cannot outperform specialized implementations of standard importance sampling, we

suggest using RIS as a default sampling strategy when a specialized implementation

is not yet available.

43
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5.1 Direct Lighting

In general, the direct lighting problem refers to finding the total light that arrives

at a point, x′ directly from light sources (without bouncing off intermediate surfaces).

Often, in global illumination, we’re interested in a more specific form of the problem.

We want to know how much direct light is reflected from the point, x′, in the direction

of a second point, x′′. Thus, after leaving point x′, the light will have bounced exactly

one time. We can express this form of the direct lighting problem as an integral over

all the points on light sources.

Lo(x
′ → x′′) =

∫

fs(x → x′ → x′′)G(x ↔ x′)V (x ↔ x′)Le(x → x′)dx

where fs is a reflectance term, G is a geometry term, V is a binary visibility term,

and Le is the emitted light. The variable of integration, x, is a point on a light source.

When evaluating this equation in a Monte Carlo path tracer, x′ and x′′ are already

known. Thus the Monte Carlo integration process involves randomly picking sample

points, xi, on light sources and evaluating the Monte Carlo integration estimate

Lo(x
′ → x′′) ≈

1

N

N
∑

i=1

fs(xi → x′ → x′′)G(xi ↔ x′)V (xi ↔ x′)Le(xi → x′)

p(xi)

To apply RIS to this problem we need to choose a sampling density q̂. As discussed

in Section 4.3 the sampling density should be similar to the function that we are

integrating and it should be relatively cheap to compute.

The visibility function is usually the most expensive part of the direct lighting

equation, so a reasonable choice for q̂ is

q̂ = |fs(x → x′ → x′′)G(x ↔ x′)Le(x → x′)|
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Since the range of the integrand is typically n-component color values, we must use a

length function to convert the color to a scalar value. We simply use the luminance of

the color. Note that because of the length function, q̂ will scale, but not completely

cancel out the terms of the integrand.

In the RIS framework we can see that it would be equally valid to approximate

the integrand in many other ways. For example, as the computational expense of

evaluating fs or Le increases, due to more physically realistic surface models or to

the calculation of these terms in complex shader programs, it may be more efficient

to use

q̂ = |f ′

s(x → x′ → x′′)G(x ↔ x′)V (x ↔ x′)L′

e(x → x′)|

where f ′

s and L′

e are computationally inexpensive approximations to the true terms.

5.2 Choosing the Number of Samples and Proposals

As we discussed in the previous chapter, the variance reduction from RIS results

from reducing the number of samples that are taken in order to increase the number

of proposals. If q̂ is a good match for f , then computing more proposals can decrease

the variance over standard importance sampling.

Figure 5.1 demonstrates the effect of trading of samples for proposals. In the left

image, M = N , corresponding to standard importance sampling. In the right image,

only a single sample is taken, the rest are traded to increase the number of proposals.

The right image looks superior to the left in non-shadow regions. This is because

q̂ = f in these areas. In the shadow regions, however, the right image looks worse.

This is because the visibility is only computed once (for the sample), thus its variance

is high.

By measuring the variances V
(

f(Y )
q(Y )

)

and V
(

f(X)
p(X)

)

, we can apply Equation (4.3)

to determine the optimal ratio of M and N for each pixel (see Figure 5.2). However,
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Figure 5.1: Dragon sampled with a single primary ray and using RIS with different
values of M and N to compute direct lighting (in equal time). On the left, N = 20,
M = 20 and on the right N = 1, M = 60. The right image has less variance except
where visibility is a major component of the variance.

as noted earlier, estimating the variances is very computationally expensive. Instead,

we use the approximation given by Equation (4.4). As described in Section 4.4, we

must first approximate T1 and T2. To do this, we cast a few thousand primary rays.

We then track the time necessary to compute the direct lighting at the first hit point.

T1 is the average time necessary to sample the light source and compute q̂. T2 is the

average time to check the visibility. The time necessary to estimate these values is

negligible.

Across scenes of similar complexity, the values of T1 and T2 will probably be quite

stable. Thus, these values could be precomputed for a particular renderer implemen-

tation. If precomputed, robust RIS would require absolutely no extra computation

time over standard importance sampling.

The images in Figure 5.3 show a Thai statue lit by an environment map. The left

image uses standard Monte Carlo integration. The right uses the robust values of M
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Figure 5.2: The optimal ratio of M and N . Green (lighter) pixels correspond to
larger M , red (darker) pixels to larger N .

and N computed from estimated T1 and T2 values. In this scene we achieve a 33%

reduction in overall variance compared to just using standard Monte Carlo.

5.3 Stratification

This section applies the stratification techniques discussed in Section 4.5 to the

direct lighting problem. We show that stratification results in additional variance

reduction. For comparison, the top-left image in Figure 5.4 is rendered using RIS

without any stratification.

We first stratify the proposals using the standard Latin Hypercube technique.

This will directly improve the placement of the proposals in the domain, but will only

indirectly improve the placement of the samples. The top-right image in Figure 5.4

shows the results of only stratifying the proposals. The variance in the directly lit

areas is reduced significantly. However, the variance in shadowed regions is not largely

effected. This is because the evaluation of the proposals does not include the visibility

test, so stratifying the proposals does not directly reduce the variance due to visibility.

We can improve the result further by stratifying the samples. This should reduce
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Figure 5.3: Direct lighting comparison of RIS and standard Monte Carlo. Both
images are rendered using 10 primary rays and approximately equal computation
times. The left image uses standard Monte Carlo with 100 shadow rays. The right
image uses RIS with the computed robust values from Equation (4.4), M = 229,
N = 64. There is a 33% reduction in variance.

the variance in the shadowed regions. The bottom images in Figure 5.4 were rendered

using Latin Hypercube stratification for the proposals with some form of stratification

for the samples. The bottom-left image uses the equal-proposals stratification. The

bottom-right image uses the equal-weights stratification. Note that both techniques

produce additional variance reduction over just stratifying the proposals, especially

in the shadow regions.
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Figure 5.4: Stratification for RIS. Top-left: no stratification. Top-right: proposals
stratified using Latin Hypercube (34% variance reduction). Bottom-left image: pro-
posals stratified using Latin Hypercube, samples stratified using equal-proposals strat-
ification (37% variance reduction). Bottom-right: proposals stratified using Latin Hy-
percube, samples stratified using equal-weights technique (42% variance reduction).
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5.4 Multiple Importance Sampling

In this section we apply the Multiple Importance Sampling variance reduction

technique to the RIS proposals as described in Section 4.6. The results are similar to

those achieved when MIS is applied to standard Monte Carlo integration with some

additional variance reduction due to RIS.

Figure 5.5 demonstrates the effectiveness of MIS in a direct lighting application.

When combining RIS with MIS (the lower-right image), half of the proposals are

generated proportional to the BRDF and half are generated proportional to the en-

vironment map. To compute the proposal weights (which included q̂), we must place

them all in the same domain. To do this we trace a ray in the direction sampled from

the BRDF, but only intersect the ray with light sources. Since the number of light

sources in a scene will almost always be significantly less than the total number of

possible occluders this is reasonably fast. Once we find the nearest light source, we

can easily transform the BRDF proposal into the light source domain. This allows

us to compute the same q̂ for all the proposals.

Samples are then drawn from this set of weighted proposals using the equal-weights

stratification method. Each stratum may be made up of proposals from either or both

proposal distributions.

In Figure 5.5, notice that the MIS images have lower overall variance than either

the BRDF sampling or the light source sampling. The difference between the images

with and without RIS is not as drastic. However, RIS reduces the variance in the

BRDF sampling case by 60%, in the light source sampling case by 5%, and in the

MIS case by 30%.

5.5 Robust Sampling of BRDFs

In the previous sections we showed that RIS can produce better results than

standard importance sampling. In this section we demonstrate that RIS can be more
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Without RIS With RIS

BRDF
sampling

Environment
map sampling

MIS

Figure 5.5: Multiple Importance Sampling for RIS proposals. Multiple Importance
Sampling, when applied to the RIS proposals, produces similar variance reduction
and increased robustness as when applied to standard Monte Carlo integration.
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robust than importance sampling. Specifically, we show that RIS can be applied to

a wide class of integration problems without change. Importance sampling, on the

other hand, requires a special case for each specific problem. We use the example of

Bidirectional Reflectance Distribution Function (BRDF) sampling to demonstrate.

BRDFs represent the relationship between incident and exitant light at a surface.

Traditionally, BRDFs have been sampled with special case distributions developed

for each specific BRDF model. Implementing all of these in a global illumination

renderer can be very time consuming. This approach can also become unwieldy when

the parameters of the BRDF are allowed to vary spatially (as in Bidirectional Tex-

ture Distribution Functions). Furthermore, if the BRDF is specified using a shading

language, automatically creating a distribution would be difficult.

We would like to find a more robust solution. Ideally, it will improve the sampling

of any BRDF model whether or not a good distribution is available for importance

sampling. Resampled Importance Sampling can do this.

When sampling BRDFs, we want to sample

f = fs (x, ωi → ωo) Li(x, ωi) |ωi · Nx|

where fs is the value of the BRDF at point x and Li is the light arriving at point x

from direction ωi.

To use RIS we need to choose a sampling density q̂ that is both closely proportional

to f and is inexpensive to compute. Here we will take a common approach and choose

q̂ =
∣

∣fs (x, ωi → ωo) |ωi · Nx|
∣

∣

We have dropped the Li term since it is computationally expensive.
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Note that in choosing q̂ we have only assumed that the BRDF can be evaluated,

which is required for Monte Carlo integration anyway. We did not have to condition

the choice on the specific BRDF that is being sampled. Since this choice of q̂ works

for any BRDF, we can implement RIS once for all BRDF sampling.

In the following example, we recognize that standard Monte Carlo integration with

importance sampling could perform much better than the results we show. However,

that would require a specialized sampling distribution for each BRDF. Our goal is to

show that RIS is more robust since a single implementation can dramatically improve

the sampling of very different BRDF models.

Figure 5.6 shows two pairs of spheres each sampled with p equal to a uniform dis-

tribution over the hemisphere. The first two spheres have a diffuse BRDF. Our chosen

p matches the BRDF exactly, but does not take into account the cosine of the angle

with the normal. RIS reduces the variance significantly. The second two spheres have

a Cook-Torrance BRDF. In this case, p is a very poor sampling density. Nevertheless,

RIS still manages to dramatically improve the sampling quality. We emphasize that

no changes are made to the RIS implementation for either BRDF. Achieving similar

results with standard importance sampling would require a sampling density selected

specifically for each BRDF.

This example suggests another possible use for Resampled Importance Sampling.

Since RIS will improve BRDF sampling for any BRDF, it can be used as a default

sampling strategy when a specialized BRDF sampling technique is not available. This

can greatly improve image quality for a very small implementation cost.

In these examples we used a uniform distribution for p for simplicity. In practice,

a better default density would be a cosine-weighted hemisphere with lobes in the

reflective and retroreflective directions.
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Figure 5.6: Uniformly-lit spheres sampled with a uniform hemispherical distribution.
The first two are perfectly diffuse and the second two use a Cook-Torrance BRDF.
The first sphere in each pair is rendered without resampling (N = 1,M = 1). The
second sphere in each pair is rendered with RIS (N = 1,M = 20). RIS greatly
reduces the variance independent of the BRDF model used.

5.6 Summary

In this chapter we applied Resampled Importance Sampling to two problems in

global illumination, direct lighting and BRDF sampling. We showed that, in the

case of direct lighting, Resampled Importance Sampling leads to significant variance

reduction. We also suggested that, in specific cases where RIS does not do better

than standard importance sampling, RIS can serve as an easy to implement default

variance reduction technique. This is especially true in cases where a specialized

importance sampling density is not generally available.



Chapter 6

Conclusions

We have presented a simple explanation of importance resampling. We have shown

how to use importance resampling as the sample generation technique for Monte

Carlo integration. The resulting variance reduction technique, Resampled Importance

Sampling, is a generalization of standard importance sampling.

We have shown how to compute the optimal resampling parameters, M and N ,

and how to choose robust approximations of M and N that require significantly less

computation time. We have shown how to combine RIS with stratified sampling and

with Multiple Importance Sampling.

We have shown that RIS increases the robustness of importance sampling when

used in some global illumination problems and we have achieved up to a 33% variance

reduction for the direct lighting problem in complex scenes. We have suggested using

RIS as a default variance reduction technique when more specialized techniques are

not available.

RIS is especially useful when applied to problems that can be factored into two

portions that differ greatly in computational cost. The cheaper portion of the problem

is evaluated using the proposals. The more expensive portion is evaluated using the
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samples. In such problems, computing fewer samples, in order to compute more

proposals, makes sense.

Further work needs to be done to find other applications of RIS in Global Illumi-

nation. Also, since RIS is a general variance reduction technique, it may find even

better uses on problems outside of Global Illumination.

More work needs to be done to find good choices for q̂ and p. Unexpectedly, draw-

ing proposals from p accounts for the majority of time to compute the proposals. A

lot of work has gone into speeding up visibility computations [29], but not much work

has gone into finding faster sample generation techniques. Since RIS uses multiple

proposals at a time, techniques that generate proposals in parallel (perhaps using

SSE) could be very useful.

Although we have found that our approximate value for the optimal ratio of

proposals to samples, K∗, works well, it could be profitable to try to improve the

approximation through an adaptive process.



Appendix A

Proofs

A.1 Proof of RIS Unbiasedness

In this section we prove that the RIS estimator, Equation (4.1), is unbiased. Using

the identity

EXY (XY ) = EX (EY (Y |X) · X) (A.1)

we find that

E
(

Îris

)

= E

[

E

(

1

N

N
∑

i=1

f (Yi)

q̂ (Yi)

∣

∣

∣

∣

∣

X1, .., XM

)

·
1

M

M
∑

j=1

w(Xj)

]

Since the samples Yi are identically distributed we can pull the sum out of the con-

ditional expectation.

E
(

Îris

)

= E

[

E

(

f (Y )

q̂ (Y )

∣

∣

∣

∣

X1, .., XM

)

·
1

M

M
∑

j=1

w(Xj)

]
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The sample Y is drawn from a discrete distribution over the proposals, {X1, ..., XM}

so we can expand the conditional expectation as a sum:

E
(

Îris

)

= E

[

M
∑

k=1

(

f (Xk)

q̂ (Xk)
·

w(Xk)
∑M

j=1 w(Xj)

)

·
1

M

M
∑

j=1

w(Xj)

]

= E

[

1

M

M
∑

k=1

(

f (Xk)

q̂ (Xk)
· w(Xk)

)

]

= E

(

f (X)

q̂ (X)
· w(X)

)

Using our chosen weighting function w(X) = q̂(X)
p(X)

and the fact that the proposals are

distributed with density p we can trivially show unbiasedness.

A.2 Proof of RIS Variance

To prove Equation (4.2) we use Equation A.1 and the basic definition of variance:

V (XY ) = E
(

X2Y 2
)

− E (XY )2

to derive

V (Îris) = V

(

1

N

N
∑

i=1

f (Yi)

q̂ (Yi)
·

1

M

M
∑

j=1

w(Xj)

)

= E







E





(

1

N

N
∑

i=1

f (Yi)

q̂ (Yi)

)2
∣

∣

∣

∣

∣

∣

X1, ..., XM



 ·

(

1

M

M
∑

j=1

w(Xj)

)2






− E

{

E

(

1

N

N
∑

i=1

f (Yi)

q̂ (Yi)

∣

∣

∣

∣

∣

X1, ..., XM

)

·

(

1

M

M
∑

j=1

w(Xj)

)}2

Note that since the Yi are correlated we cannot directly simplify the variance term.

We will reduce the two portions of this equation separately. To reduce the first part
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we use the identity

E





(

1

N

N
∑

i=1

Xi

)2


 =
1

N
E
(

X2
)

+
(N − 1)

N
E (X)2

to expand the square inside the conditional expectation. We can then replace the

resulting expectations with summations.

E







E





(

1

N

N
∑

i=1

f (Yi)

q̂ (Yi)

)2
∣

∣

∣

∣

∣

∣

X1, ..., XM



 ·

(

1

M

M
∑

j=1

w(Xj)

)2






= E

{(

1

N
E

(

f (Y )2

q̂ (Y )2

∣

∣

∣

∣

∣

X1, ..., XM

)

+
(N − 1)

N
E

(

f (Y )

q̂ (Y )

∣

∣

∣

∣

X1, ..., XM

)2
)

·

(

1

M

M
∑

j=1

w(Xj)

)2






= E











1

N

M
∑

k=1

(

f (Xk)
2

q̂ (Xk)
2

w(Xk)
∑M

j=1 w(Xj)

)

+
(N − 1)

N

(

M
∑

k=1

f (Xk)

q̂ (Xk)

w(Xk)
∑M

j=1 w(Xj)

)2




·

(

1

M

M
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j=1

w(Xj)

)2



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=
1

M2N
E

(

M
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f (Xk)
2

q̂ (Xk)
2 w(Xk) ·

M
∑
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w(Xj)

)

+
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M2N
E




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M
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q̂ (Xk)
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



=
1

M2N

(

ME

(

f(X)2

q̂(X)2
w(X)2

)

+ M(M − 1)E

(

f(X)2

q̂(X)2
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)

E (w(X))
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+
(N − 1)

M2N

(

ME

(
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w(X)2

)
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(
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)

=
1

MN

[

E

(

f(X)2

p(X)2
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(
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E

(
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p(X)

)

+(N − 1)E

(

f(X)2

p(X)2

)

+ (M − 1)(N − 1)E

(

f(X)

p(X)

)2
]

The final step results from substituting for the weight function, w(x) = q̂(x)
p(x)

.
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The second part of the variance equation can be reduced easily using the result

of Appendix A.1:

E

{

E

(

1

N

N
∑

i=1

f (Yi)

q̂ (Yi)

∣

∣

∣

∣

∣

X1, ..., XM

)

·

(

1

M

M
∑

j=1

w(Xj)

)}2

= E

(

f(X)

p(X)

)2

Combining the two parts of the equation gives us

V (Îris) =
1

MN

[

E

(

f(X)2

p(X)2

)

+ (M − 1)E

(

f(X)2

q̂(X)p(X)
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E

(

q̂(X)

p(X)

)

+ (N − 1)E

(

f(X)2

p(X)2

)

+(M − 1)(N − 1)E

(

f(X)

p(X)

)2

− MNE

(

f(X)

p(X)

)2
]

By rearranging and combining terms we can simplify this.

V (Îris) =
1

MN

[

NV

(

f(X)

p(X)

)

+ (M − 1)

(

E

(

f(X)2

q̂(X)2p(X)2

)

E

(

q̂(X)

p(X)

)

− E

(

f(X)

p(X)

)2
)]

To reduce this further it is necessary to recognize that

E

(

q̂(X)

p(X)

)

=

∫

q̂

and

E

(

f (X)2

q̂ (X) p (X)

)

=

∫

f 2

q̂

Thus,

E

(

f (X)2

q̂ (X) p (X)

)

E

(

q̂(X)

p(X)

)

=

∫

f 2

q̂
R

q̂

= E

(

f(Y )2

q(Y )2

)
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and,

E

(

f(X)

p(X)

)

=

∫

f

= E

(

f(Y )

q(Y )

)

where Y is a random variable with density q = q̂
R

q̂
. Therefore we can express the

variance as a function of two random variables, X and Y with densities p and q

respectively.

1

MN

[

NV

(

f(X)

p(X)

)

+ (M − 1)V

(

f(Y )

q(Y )

)]

A little more rearranging produces the form given in Equation (4.2).

A.3 Proof of Optimal K

In this section we prove Equation (4.3) by minimizing the RIS variance (Equa-

tion 4.2)

V
(

Îris

)

=
1

M
V

(

f(X)

p(X)

)

+

(

1 −
1

M

)

1

N
V

(

f(Y )

q(Y )

)

under the constraint that

Ttotal = M T1 + N T2

To simplify this process we make the substitution

K =
M

N

This leads to

V
(

Îris

)

=
1

M
V

(

f(X)

p(X)

)

+

(

1 −
1

M

)

K

M
V

(

f(Y )

q(Y )

)
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with the modified constraint that

Ttotal = M T1 +
M

K
T2

We solve for M in the constraint and directly substitute it into the variance expression

V
(

Îris

)

=
T1 + T2

K

T
V

(

f(X)

p(X)

)

+

(

1 −
T1 + T2

K

T

)

K
T1 + T2

K

T
V

(

f(Y )

q(Y )

)

We take the derivative and set it equal to zero to find the minimum.

−
T2

K2T
V

(

f(X)

p(X)

)

+

(

T1

T
−

T1
2

T 2
+

T2
2

K2T 2

)

V

(

f(Y )

q(Y )

)

set
= 0

⇐⇒ K2

(

T1

T
−

T1
2

T 2

)

V

(

f(Y )

q(Y )

)

=
T2

T
V

(

f(X)

p(X)

)

−
T2

2

T 2
V

(

f(Y )

q(Y )

)

⇐⇒ K2 =
T2

(

V
(

f(X)
p(X)

)

− T2

T
V
(

f(Y )
q(Y )

))

T1

(

V
(

f(Y )
q(Y )

)

− T1

T
V
(

f(Y )
q(Y )

))

This leads directly to Equation (4.3).

A.4 Proof of Variance Bound on K∗

In Section 4.4 we claimed that using K∗ instead of K would result in no more

than twice the variance. In this section we prove that result.

Using

K∗ =
T2

T1

results in evenly splitting the time between proposals and samples. Thus,

M∗ =
T
2

T1
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and

N∗ =
T
2

T2

Since decreasing M or N will not decrease the variance, we only consider the case of

increasing M or N . Within the overall time constraint the maximum possible values

for M and N are

Mmax = 2M∗

and

Nmax = 2N∗

This follows directly from the fact that M∗ and N∗ use half of the total time.

We will split the proof into two cases. First, we prove that using M∗ instead of

Mmax can no more than double the variance:

1

M∗
V

(

f(X)

p(X)

)
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1 −
1
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= 2

(

1
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(

1

2
−

1
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1

N
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(
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))

≤ 2

(

1
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V

(

f(X)

p(X)

)

+

(

1 −
1
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)

1

N
V

(

f(Y )

q(Y )

))

We follow a similar approach to show that using N∗ instead of Nmax will no more

than double the variance:
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M
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This concludes our proof.
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