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Abstract

We provide a short overview of Importance Sampling – a popular sam-
pling tool used for Monte Carlo computing. We discuss its mathematical
foundation and properties that determine its accuracy in Monte Carlo
approximations. We review the fundamental developments in designing
efficient IS for practical use. This includes parametric approximation with
optimization based adaptation, sequential sampling with dynamic adap-
tation through resampling and population based approaches that make
use of Markov chain sampling.

keywords: Importance sampling, Monte Carlo approximation, sequen-
tial sampling, resampling, Markov chain sampling.

1 Introduction

Importance sampling (IS) refers to a collection of Monte Carlo methods
where a mathematical expectation with respect to a target distribution
is approximated by a weighted average of random draws from another
distribution. Together with Markov Chain Monte Carlo methods, IS has
provided a foundation for simulation-based approaches to numerical inte-
gration since its introduction as a variance reduction technique in statis-
tical physics (Hammersely and Morton 1954, Rosenbluth and Rosenbluth
1955). Nowadays, IS is used in a wide variety of application areas and
there have been recent developments involving adaptive versions of the
methodology.

The appeal of IS lies in a simple probability result. Let p(x) be a prob-
ability density for a random variable X and suppose we wish to compute
an expecation µf = Ep[f(X)], with

µf =

Z
f(x)p(x)dx.

Then for any probability density q(x) that satisfies q(x) > 0 whenever
f(x)p(x) 6= 0, one has

µf = Eq[w(X)f(X)] (1)

where w(x) = p(x)
q(x)

and now Eq[·] denotes the expectation with respect to

q(x). Therefore a sample of independent draws x(1), · · · , x(m) from q(x)
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can be used to estimate µf by

µ̂f =
1

m

mX
j=1

w(x(j))f(x(j)). (2)

In many applications the density p(x) is known only up to a normalizing
constant. Here one has w(x) = cw0(x) where w0(x) can be computed
exactly but the multiplicative constant c is unknown. In this case one
replaces µ̂f with the ratio estimate

µ̃f =

Pm
j=1 w(x(j))f(x(j))Pm

j=1 w(x(j))
. (3)

It follows from the strong law of large numbers that µ̂f → µ and µ̃f → µf
as n → ∞ almost surely; see Geweke (1989). Moreover a central limit
theorem yields that

√
m(µ̂f − µf ) and

√
m(µ̃f − µf ) are asymptotically

normal with mean zero and respective variances Eq[(w(X)f(X) − µf )2]
and Eq[w(X)2(f(X)−µf )2] – whenever these quantities are finite. These
asymptotic variances can be consistently estimated by re-using the sam-
pled x(j) values as 1

m

P
j [w(x(j))f(x(j))− µ̂f ]2 and

P
j [w(x(j))2(f(x(j))−

µ̃f )2]/[
P
j w(x(j))]2 respectively.

The approximation accuracy offered by IS depends critically on the
choice of the trial density q(x). Suppose f(x) = 1 for all x, and conse-
quently µf = 1, but we still want to estimate this by using IS with a trial
density q(x). In this case the variance of µ̂f is

Vp(µ̂f ) = Eq[(w(X)− 1)2]/m.

For IS to be accurate (with a limited number m of draws) this variance
must be small, which requires q(x) be approximately proportional to p(x)
for most x.

In a general Monte Carlo problem, where very little is known about
the structural properties of the target density p(x), it could be challenging
to identify a q(x) that is easy to sample from and yet provides a good ap-
proximation to p(x). Usually, this problem intensifies with the dimension
of x, as the relative volume of x where p(x) is high becomes extremely
small. There are, however, special cases where a reasonable choice of q(x),
or a class of such distributions, presents itself. This article provides an
overview of these cases and the related IS algorithms.

In many applications theoretical properties of p(x) are used to deter-
mine approximation within a family of q(x) indexed by a low-dimensional
vector-valued parameter. A final choice of q(x) from the chosen family is
made by numerically optimizing some pre-specified measure of efficiency.
Evaluating this measure can itself require a pilot IS or a recursive scheme
of IS – earning the overall technique the name Adaptive parametric Im-
portance Sampling. This is discussed in detail in Section 2.

When x is high-dimensional and possibly non-Euclidean, a parametric
approximation to p(x) is hard to obtain. In such cases one strategy is
to break the task of approximating p(x) into a series of low dimensional
approximations. In many interesting Monte Carlo problems, p(x) leads to
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a natural chain-like decomposition of x allowing a sequential construction
of q(x) that takes advantage of this decomposition. The resulting IS,
called Sequential Importance Sampling (SIS) is discussed in Section 3. In
the absence of a natural decomposition, it is still possible to apply the SIS
framework by extending the Monte Carlo problem to an augmented space.
A specific implementation of this strategy, known as Annealed Importance
Sampling is presented in Section 4.

In Section 5, we review the use of resampling in SIS to adapt dynam-
ically from an initial candidate q(x) to the target p(x) without requiring
any numerical optimizations. This adaptability of SIS, which takes full
advantage of its parallel computing structure, gives it a competitive edge
against Monte Carlo methods that rely solely on Markov Chain sampling
(MCS). In Section 6, we end with a brief discussion of the current devel-
opments in IS research, especially its combination with MCS.

2 Adaptive parametric Importance Sam-
pling

In Bayesian statistics and econometric applications, p(x) often represents
an un-normalized posterior density p(x) = cg(x) over a Euclidean pa-
rameter space, known only up to a multiplicative constant c > 0. In
many cases such a p(x) can be asymptotically well approximated by a
multivariate normal distribution with mean given by the posterior mode
x̂ = argminx[− log p(x)] and variance matrix given by the inverse of the
Hessian of − log p(x) at x̂ (see Section 4 of Ghosh et al. 2006 and the
references therein). It is rather cheap to obtain stable and accurate ap-
proximation to these quantities through standard optimization routines.
Hence the corresponding multivariate normal density serves as a good
candidate for q(x). In practice, a multivariate Student density with simi-
lar characteristics may be preferred to the multivariate normal choice (see
Geweke 1989 and Evans and Swartz 1995). This is because a multivariate
Student density, with its heavy tails, provides a higher assurance of the
finiteness Eq[w(X)2] and thus that of the variance of µ̃f .

Oh and Berger (1992, and previously Kloek and van Dijk 1978) ex-
tended the above approach by reducing its dependence on the exact asymp-
totic approximation of p(x). They took q(x) to be given by the density
qλ(x) = tν(x | λ) – the multivariate Student density with a fixed degrees
of freedom ν and a location-scale λ = (µ,Σ) chosen to minimize

cv2(λ) =

Z
p(x)2

tν(x | λ)
dx− 1. (4)

Note that cv2(λ) equals Eq[(w(X) − 1)2] and hence, as noted earlier, a
small magnitude of this quantity ensures high accuracy in estimating µf
for all f(x) that are relatively flat with respect to p(x). Many authors take
the related quantity Eq[w(X)2] as a rule-of-thumb measure of efficiency of
IS based on a trial density q(x); see Liu (2001) for a discussion. In Oh and
Berger (1993), the candidate set for q(x) was further extended to a finite
mixture of the form qλ(x) =

Pk
i=1 πitν(x | µi,Σi) with λ = {(πi, µi,Σi)},

3



to cover the case of multimodal posterior densities. Since the quantity in
(4) cannot be computed in closed form or minimized analytically, Oh and
Berger (1993) suggested the following approximate optimization. Start
with an initial guess λinit for λ and sample x(1), · · · , x(m) from qλinit(x).
Compute λopt = argminλ bcv2(λ;λinit) where

bcv2(λ;λ′) =

1
m

Pm
j=1

[g(x(j))/qλ′ (x
(j))]2

[qλ(x(j)|)/qλ′ (x(j))]

[ 1
m

Pm
j=1 g(x(j))/qλ′(x(j))]2

− 1

is an IS approximation to cv2(λ) based on the sample drawn from qλinit(x).
A variation of the above idea was proposed in Richard and Zhang

(2007). For a family of candidates qλ(x), they suggested choosing λ = λopt

where (αopt, λopt) minimizes the pseudo divergence

d(α, λ) =

Z
(log g(x)− α− log qλ(x))2p(x)dx (5)

over (α, λ). Note that if p(x) = qλ0(x) for some λ0, then the above is
minimized at (− log c, λ0). As in Oh and Berger (1993), (5) too has to
be solved numerically. Richard and Zhang (2007) proposed the following
iterative scheme for this. Start with an initial estimate of λ = λ(0). For
t = 1, 2, · · · compute

(α(t+1), λ(t+1)) = argminα,λ

mX
j=1

(log g(x
(j)
t )− α− log qλ(x

(j)
t ))2

g(x
(j)
t )

qλ(t)(x
(j)
t )

(6)

where x
(j)
t are drawn from qλ(t)(x). The attractive feature of this program

is that the minimization in (6) is a generalized, weighted least squares
minimization problem for which global solutions are often easy to find.
In particular, if qλ is chosen from an exponential family, then the above
reduces to a simple least squares problem.

A different adaptive parametric IS was proposed by Owen and Zhou
(2000) who combined IS with the method of control variates (see Hammer-
sley and Handscomb 1964). They worked with a single choice of q(x) but
adapted their Monte Carlo method by optimizing over a parametric choice
of the control variates. In particular, they took q(x) =

Pk
i=1 αiqi(x), with

fixed densities qi’s and a fixed probability vector α = (α1, · · · , αk), but
proposed to estimate µf by

µ̂f,β =
1

m

mX
j=1

f(x(j))p(x(j))−
Pk
i=1 βiqi(x

(j))

q(x(j))
+

kX
i=1

βi

with β = (β1, · · · , βk) minimizing the asymptotic variance of µ̂f,β given
by

σ2(β) =

Z „
f(x)p(x)−

P
i βiqi(x)

q(x)
− µf +

X
i

βi

«2

q(x)dx. (7)

A consistent estimate of an optimal β can be found by minimizing

σ̂2(β, β0) =

mX
j=1

„
f(x(j))p(x(j))

q(x(j))
−
X
i

βi
qi(x

(j))

q(x)
− β0

«2
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through least squares methods. Note that µ̂f,β requires exact knowledge
of p(x). When p(x) = cg(x) with c unknown, one can modify the estimate
to become

µ̃f,β =

Pm
j=1

f(x(j))g(x(j))−
Pk
i=1 βiqi(x

(j))

q(x(j))
+
Pk
i=1 βiPm

j=1

g(x(j))−
Pk
i=1 βiqi(x

(j))

q(x(j))
+
Pk
i=1 βi

.

It is also possible to use two different sets of β in the numerator and the
denominator above. This approach is particularly attractive when more
than one (p(x), f(x)) are of interest, and at least one of the chosen qi(x)
is expected to lead to an efficient IS for each pair (see Theorem 2 in Owen
and Zhou 2000).

3 Sequential Importance Sampling

In many Monte Carlo problems with a high-dimensional x, the target den-
sity p(x) induces a chain-like decomposition of x = (x1, · · · , xd), paving
the way for generating x sequentially as x[1:t] = (x1, · · · , xt), 1 ≤ t ≤
d. Such decompositions occur naturally in state-space models (finance,
signal-tracking), evolutionary models (molecular physics and biology, ge-
netics) and others (see Section 3 of Liu 2001). Writing p(x) as

p(x) = p(x1)

dY
t=2

p(xt | x[1:t−1])

it is easy to see that an efficient IS can be built by using a q(x) of the
form

q(x) = q1(x1)

dY
t=2

qt(xt | x[1:t−1]),

where qt(xt | x[1:t−1]) mimics p(xt | x[1:t−1]) well. For such a scheme, the
importance weight w(x) = p(x)/q(x), too, can be computed sequentially
as w(x) = wd where

wt = wt−1
p(xt | x[1:t−1])

qt(xt | x[1:t−1])
(8)

and w0 = 1. The sequence wt can be used to check on the fly the im-
portance of the sample being generated, and one can possibly discard a
sample half-way if wt starts getting very small. We shall make this idea
more precise in the next section.

To facilitate the construction of qt(xt | x[1:t−1]), Liu (2001) presented
the above sequential importance sampling (SIS) scheme in a slightly more
general form. Liu introduced a sequence of auxiliary distributions pt(x[1:t]),
1 ≤ t ≤ d, with pd(x[1:d]) = p(x) and rewrote the updating equation (8)
as

wt = wt−1
pt(x[1:t])

pt−1(x[1:t−1])qt(xt | x[1:t−1])
.

The auxiliary densities pt(x[1:t]) could be chosen to approximate the marginal
densities p(x[1:t]) with pt(xt | x[1:t−1]) serving as a guideline to construct-
ing qt(xt | x[1:t−1]). This general definition accommodates the possibility
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that there could be various ways of obtaining a good approximation. We
shall illustrate this with two examples of historical and practical relevance.

Consider the task of simulating a length-d self-avoiding-walk (SAW, see
Liu 2001) on the 2-dimensional integer lattice starting from (0, 0). Here
x = (x1, · · · , xd) denotes a chain of d integer coordinates xt = (it, jt),
1 ≤ t ≤ d such that

(it, jt) ∈ {(it−1 − 1, jt−1), (it−1 + 1, jt−1), (it−1, jt−1 − 1), (it−1, jt−1 + 1)}

with xt 6= (0, 0) and xt 6= xs for any 1 ≤ s 6= t ≤ d. Suppose the
target distribution p(x) is the uniform distribution over all length-d SAWs.
A reasonable choice of an auxiliary pt(x1[:t]) in this case is the uniform
distribution on x[1:t]. Bear in mind that pt(x[1:t]) 6= p(x[1:t]). By taking
qt(xt | x[1:t−1]) = pt(xt | x[1:t−1]) it is easy to see that given the first
t− 1 coordinates x[1:t−1], one samples xt uniformly from the unoccupied
neighbors of xt−1. Alternatively one can take pt(x[1:t]) as the marginal
distribution of x[1:t] under a uniform distribution on x[1:t+1]. In this case
qt = pt(xt | x[1:t−1]) leads to a two-step look ahead sampling of xt given
x[1:t−1] where a neighbor of xt−1 is selected with probability proportional
to the number of unoccupied neighbors it currently has.

In statistical missing data problems, for example, the observables zt,
1 ≤ t ≤ n, are partitioned into zt = (xt, yt) with only the yt components
being actually observed. For maximum likelihood or Bayesian inference on
such problems p(x) often represents the conditional distribution f(x | y)
derived from a joint model f(x, y) on the complete data z. When f(x, y)
specifies independence or a simple chain structure across zt’s, a useful
choice of pt(x[1:t]) is given by f(x[1:t] | y[1:t]) with qt(xt | x[1:t−1]) =
pt(xt | x[1:t−1]) = f(xt | z[1:t−1], yt). The corresponding updates of wt
can be written more compactly as wt = wt−1f(yt | z1:t−1). Because the
method fills in the missing components sequentially it is called sequential
imputation.

4 Annealed Importance Sampling

The appealing feature of SIS is that it achieves an approximation to p(x)
through a series of simpler approximations of p(xt | x[1:t−1]) by qt(xt |
x[1:t−1]). In Annealed Importance Sampling (AIS), Neal (2001) introduced
a similar construction to handle cases where x does not admit a natural
chain-like decomposition. Like SIS, a sequence of distributions pt(x), 0 ≤
t ≤ d is used, with pd(x) = p(x). But each of these densities is defined on
the same space on which p(x) is defined. Here the sequence {pt(x)}t forms
a bridge of successive approximations from p0(x) to p(x) = pd(x). The
initial density p0(x) is taken to be diffuse and easy to sample from. It is
required that at every step, sampling from pt−1(x) leads to an efficient IS
for the immediate target pt(x). This can be achieved for some p(x) when
one defines pt(x) = p0(x)1−btp(x)bt with 0 = b0 < b1 < · · · < bd = 1.
This gradual morphing of a diffuse p0(x) to a possibly well concentrated
p(x) is reminiscent of the cooling schedules applied in Simulated Annealing
(SANN) for function optimization. In fact, Neal (2001) introduced AIS
as an IS-augmented version of SANN fit for Monte Carlo approximations.
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In AIS, a random draw of x is made by sequentially drawing x(t),
0 ≤ t ≤ d, and equating x = x(d) as follows. One starts by drawing x(0)

from p0(x) and sets w0 = 1. Then, for t = 1, · · · , d
1. Sample x(t) from gt(· | x(t−1)).

2. Set wt = wt−1
pt(x(t−1))

pt−1(x(t−1))

where gt(x
′ | x) is a transition kernel that leaves pt(x) invariant:

gt(x
′ | x) ≥ 0,

Z
gt(x

′ | x)dx′ = 1,

Z
pt(x)gt(x

′ | x)dx = pt(x
′). (9)

Taking g̃t(x
′ | x) = gt(x | x′)pt(x′)/pt(x) – the reversal of gt – it can be

shown that wd gives the proper importance weight p∗(x∗)/q∗(x∗) for the
target density

p∗(x∗) = pd(x(d))× g̃d(x(d−1) | x(d))× · · · × g̃1(x(0) | x(1))

on the augmented variable x∗ = (x(0), x(1), · · · , x(d)) with

q∗(x∗) = p0(x(0))× g1(x(1) | x(0))× · · · × gd(x(d) | x(d−1))

as determined by the AIS sampling scheme. The marginal distribution of
x(d) determined by p∗(x∗) is simply pd(x(d)) = p(x(d)).

Note that gt(x
′ | x) is left completely unspecified beyond the requisite

invariance property (9). One can tap into the vast literature of Markov
Chain Monte Carlo to construct a suitable transition kernel gt(x

′ | x).
A simple choice is a few Metopolis or Gibbs updates of x with pt(x) as
the target density. AIS also offers complete flexibility in the choice of the
number of steps d and the intermediate densities pd(x). This choice can
have a major impact on the performance of the algorithm; see Lyman and
Zuckerman (2007) and Godsill and Clapp (2001).

5 SIS with Resampling

In all of the SIS implementations detailed above, them samples x(1), · · · , x(m)

are drawn in a non-interactive parallel manner. In such schemes, most of
the corresponding weights w(j) = w(x(j)) are very small and contribute
only a little to the computation of µ̂f or µ̃f . This becomes particularly
problematic when x is high dimensional. For example, in SIS, it can be
shown that the weight sequence wt forms a martingale and hence its coeffi-
cient of variation cv2

t = Var(wt)/E(wt)
2 explodes to infinity as t increases

(Kong et al. 1994). Consequently, a very small proportion of the final
draws x(j) carry most of the weight – making the SIS estimate rather
inefficient.

A simple fix of this, known as the enrichment method, was proposed
by Wall and Erpenbeck (1959). Their idea was to grow all the x

(j)

[1:t],
j ≤ 1 ≤ m – each called a stream – simultaneously, and at intermediate
check points 1 ≤ t1 ≤ · · · ≤ tk ≤ d, replace the streams with small current
weights w

(j)
t with replicates of the streams with large current weights. A

simple re-weighting of the resulting streams makes the whole process a
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valid IS scheme. Grassberger (1997) further suggested making the check
points dynamic. In his Pruned-enriched Rosenbluth method (PERM) each
current stream is either removed or replicated (or grown according to the
original SIS scheme) based on its current weight being smaller than a
lower cut-off ct or larger than an upper cut-off Ct (or otherwise). Note
that the total number of streams may not remain the same.

A related idea of replicating the “good” streams was explored by Gor-
don et al. (1993) for the special IS method known as the bootstrap filter
(also particle filter) for non-linear/non-Gaussian state space models. The
setting here is similar to the missing data problem discussed in the pre-
vious section with the following important differences: (A) the model on
f(y, x) is assumed to have the following Markov structure

f(y, x) =

nY
t=1

[fstate(xt | xt−1)fobs(yt | xt)]

and (B) f(xt | xt−1, yt) is not assumed to be easy to sample from, making
the choice qt(xt | x[1:t−1]) = f(xt | z[1:t−1], yt) infeasible. The choice of
qt(xt | xt−1) = fstate(xt | xt−1) is assumed feasible, but it often leads to
an extremely large cv2

t . Gordon et al. (1993) improved upon this through

an extra resampling stage as follows. At stage t, draw x
(∗j)
t , 1 ≤ j ≤ m

from fstate(xt | x(j)
t−1) and weight each draw by w

(j)
t ∝ fobs(yt | x(∗j)

t ).

Resample from {x(∗1)
t , · · · , x(∗m)

t } with weights w
(j)
t to produce the next

stage draws {x(1)
t , · · · , x(m)

t }. At completion, each stream gets weighed

equally (w
(j)
d = 1/m) for evaluating the estimate µ̃f . This estimate is

guaranteed to converge to µf as the number of streams (also known as
particles in state-space literature) tends to infinity.

Liu and Chen (1998) introduced SIS with resampling (SISR) by com-
bining across-stream resampling with a dynamic choice of check points. In
SISR, a decision of resampling at state t is made by checking the current
coefficient of variation cv2

t of the weights {w(j)
t , · · · , w(j)

t } against a pre-
specified cut-off ct (typically growing with t at a polynomial rate). If cv2

t

exceeds ct, then x
(j)

[1:t]’s are updated by resampling from {x(1)

[1:t], · · · , x
(m)

[1:t]}
with probability proportional to w

(j)
t . Each resampled stream is then as-

signed a weight
P
j w

(j)
t /m. A check on the coefficient of variation guards

against unwanted pruning when all streams have similar weights. Chen
et al. (2005) further modified SISR to allow resampling along a different
time measurement than the original stage index t. The modified algo-
rithm, called SIS with stopping time resampling (SISSTR) determines
check points by applying a stopping rule on each stream separately. Once
all streams have reached their first stop, they are pooled together and a
resampling is done if the coefficient of variation of the current weights
exceeds a pre-specified cut-off. The streams then grow in parallel until
the next stop is reached by each, and so on. An interesting application
of this was presented in Chen et al. (2005) to the coalescent model of
Kingman (1982) where SISSTR remarkably improved a naive SIS due to
Griffiths and Tavaré (1994).
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6 SIS and Markov Chain Sampling

The introduction of resampling and the use of transition kernels have
largely expanded the scope of SIS algorithms. The latter development
has brought these algorithms closer to Monte Calro methods that use
Markov chain sampling to generate a sequence of dependent draws from
a target density by exploring it through appropriate transition kernels.
A consensus is rapidly emerging that much can be gained by combining
these two approaches together. The AIS algorithm, in which Markov chain
sampling (MCS) facilitates SIS on an artificially augmented space, gave
the first formal exploration of such a combination. The Population Monte
Carlo (PMC) algorithm of Cappé et al. (2004) – inspired by a resampling
enriched AIS due to Hukushima and Iba (2001) – went in the reverse di-
rection. In PMC, a resampling based SIS facilitates MCS by adaptively
choosing transition kernels that lead to most efficient exploration of the
target distribution. Del Moral et al. (2006) proposed an extremely flexible
theoretical framework for an effective symbiosis of IS and MCS in popula-
tion based simulation methods for sequential Monte Carlo problems; see
also Jasra et al. (2007) and Fernhead (2008). In these methods, a pool of
draws is generated sequentially in an interactive, parallel manner. MCS
guides local exploration by each stream in the pool and importance sam-
pling enables the pool to decide how to efficiently redistribute its streams
in the vast space it is trying to explore. Such confluence of MCS and IS
will be an important direction for future Monte Carlo research.
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