
Importing documents and metadata into digital libraries:
Requirements analysis and an extensible architecture

Ian H. Witten,* David Bainbridge,* Gordon Paynter,† Stefan Boddie*

*Computer Science Department
University of Waikato

New Zealand

† University of California Science Library
Riverside

 California, U.S.
{ihw, davidb, sjboddie}@cs.waikato.ac.nz gordon.paynter@ucr.edu

ABSTRACT

Flexible digital library systems need to be able to accept, or
“import,” documents and metadata in a variety of forms,
and associate metadata with the appropriate documents.
This paper analyzes the requirements of the import process
for general digital libraries. The requirements include (a)
format conversion for source documents, (b) the ability to
incorporate existing conversion utilities, (c) provision for
metadata to be specified in the document files themselves
and/or in separate metadata files, (d) format conversion for
metadata files, (e) provision for metadata to be computed
from the document content, and (f) flexible ways of
associating metadata with documents or sets of documents.
We argue that these requirements are so open-ended that
they are best met by an extensible architecture that
facilitates the addition of new document formats and
metadata facilities to existing digital library systems. An
example implementation of this architecture is briefly
described.

Keywords
Software architecture, metadata, digital library architecture,
Greenstone digital library software

INTRODUCTION
Flexible digital library systems need to be able to accept
documents and metadata in a variety of different forms.
Documents may be available in web-oriented formats such
as HTML and XML, in word-processor formats such as
Microsoft Word and RTF, in page description languages
such as PostScript and PDF, or in media-rich formats such
as JPEG images and MPEG video. Metadata may also be
available in a variety of different forms: embedded in the
documents, in separate metadata files, in spreadsheets, or
even encoded into file naming conventions; or it may be
computable from the documents themselves. Digital library
designers must either insist that users adopt a particular
prescribed scheme for document and metadata
specification, or face the challenge of coming up with
flexible, extensible, ways of allowing different formats to
be accommodated.

Of course, there are standards for representing metadata,
just as there are standards for representing documents.
Embedded metadata might take the form of meta tags in

HTML, \info attributes in RTF, or \title and \author
commands in LaTeX. Or it may be expressed as MARC
records or in some standard encoding of Dublin Core
metadata. While it might be desirable to enforce the use of
a particular standard, as most digital library systems do, in
practice there are many different standards to choose from!
Furthermore, legacy data will always present conversion
problems.

This paper explores a different approach that involves an
extensible architecture.

REQUIREMENTS
There are two basic elements that must be considered when
importing material into a digital library. The first comprises
documents, where the term is interpreted in a suitably
general way. These form the raw material of any library.
The second is metadata, which is summary information, in
a structured form, about the documents. This forms the
basis for the organization of material: librarians are expert
in creating metadata and using it to facilitate access to large
information collections.

When a large collection of documents and metadata is
made available for import into a digital library, questions
arise as to the structure within which the documents are
presented, and how the relationship between the documents
and the metadata is expressed—which metadata pertains to
which documents.

Documents

We use the term “document” to denote any information-
bearing message in electronically recorded form. In a
digital library, a document is a particular electronic
encoding of what in library science is called a “work.” A
pressing practical problem is the wide variety of ways in
which this encoding may be expressed. We focus in this
paper on textual documents and media-rich formats
supported by metadata; similar considerations arise when
dealing with direct manipulation of multimedia content.

There are four principal styles of format in which electronic
documents are expressed. The first comprises in web-
oriented formats such as HTML, XHTML and XML
document manifestations such as the Text Encoding
Initiative and Open eBook format. The principal difficulty
here is that such documents are not always self-contained:

they frequently include explicit links to other resources
such as images or other documents and these raise
questions about the identity of the document—where are its
boundaries?

When such formats are designed with a strong notion of a
work—for instance an Open eBook document contains a
manifest of all external resources that constitute a single
book—such decisions are straightforward to make. In less
well defined situations (HTML being the archetypal
example) images that a document refers to are generally
considered as part of the document, and when documents
are downloaded a subdirectory is created containing the
images. In contrast, linked documents are considered as
having separate identity.

When a set of documents are imported into a digital library,
the question of what to do with links must be revisited. For
example, when a link is to another document that is also
being imported, it is often appropriate to replace it by a link
to the library copy of the target document instead of a link
to the original external resource. Such decisions will
depend on the digital library’s aim and context.

The second style of expression comprises word-processor
formats such as Microsoft Word or RTF (“rich text
format”). RTF is designed to allow word-processor
documents to be transferred between applications, and uses
ASCII text to describe page-based documents that contain a
mixture of formatted text and graphics. In contrast, the
native Word format is intended for use by a single word
processor. Strictly speaking, it is inappropriate to use this
format to convey documents to digital libraries;
nevertheless, users often want to do that.

There are two key difficulties with word-processor formats:
they continually evolve to meet new demands, and they are
often proprietary, with no public documentation. These
problems are less severe with RTF: it is documented, and
has an explicit and well-defined mechanism for adding new
commands in a backwards-compatible manner that ensures
that reasonable results can be obtained when new
documents are processed by old software. However, with
native Word the situation is different. Even Microsoft
products sometimes can’t read Word documents properly.
Word is really a family of formats rather than a single one,
and has nasty legacy problems. Although Microsoft have
published “as is” their internal technical manual for the
Word 97 version, the format continues to evolve. A serious
complication is that documents can be written to disk in
“fast save” mode, which no longer preserves the order of
the text. Instead, new edits are appended, and whatever
program reads the file must reconstruct its current state.

The third style of expression for documents comprises page
description languages like PostScript and PDF. These
combine text and graphics by treating the glyphs that
express text as little pictures in their own right, and
allowing them to be described, denoted, and placed on an
electronic “page” alongside conventional illustrations. They

portray finished documents, ones that are not intended to be
edited, and are therefore more akin to traditional library
documents than word-processor formats. Most of the time
digital libraries can treat documents in these languages by
processing them using standard “black boxes”: generate
this report in a particular page description language, display
it here, transfer it there, and print. However, to build
coherent collections out of the documents, it is beneficial to
be able to extract the text for indexing purposes and some
elements of document structure for browsing purposes, and
these are challenging problems.

The fourth style of expression is media-rich documents
such as sound, pictures and video. When accompanied by
textual descriptions (the view taken here), their treatment
becomes one of associating metadata with documents. This
provides a baseline approach that unifies the different
media types and permits all the metadata methods
discussed below for the general case to be applied. Direct
manipulation of content is also possible, but beyond the
scope of this paper.

We have taken care to categorize these four groups as
styles because in practice their boundaries overlap. For
example, although PDF is formally a page description
language it supports hyperlinks akin to web-based
documents and annotations comparable with word
processed documents. Proprietary eBook formats exhibit
web characteristics, but are also bound up in issues
resulting from closed specifications. This means the
importing architecture should not be compartmentalized
based on these categories, rather it should be flexible
enough to respond to a range of conceptualized document
features regardless of their origin.

Aside from document format, another key question for
digital libraries is the librarian’s traditional distinction
between “work” and “document”. This arises when we
have to deal with different versions of a particular work.
Digital representations of a work are far easier than printed
ones to both copy and change. It is necessary to decide
when two documents are to be considered the same and
when they are different. Digital collections often contain
many exact duplicates of documents; should duplicate
copies be retained? When a new version of a document
appears, should it supersede the old one, or should both be
kept? The answers will depend on the purpose of the
collection. Archival or historical records must not be
allowed to change, but errors in collections of practical or
educational information must be correctable.

A further complication that affects the identity of
documents is that interactions with digital libraries are
often sustained over time—for example, by keeping records
of the interaction history of individual users to facilitate
future interaction. When identifiers are allocated to
documents, decisions must be made about whether
duplicates are significant and when new versions of
documents supersede old ones. For example, one way of
assigning identifiers is to compute a signature from the

word sequence that makes up the document. This is
attractive because exact copies receive the same identifier
and are therefore mapped into the same object. However,
sometimes it is necessary to make an updated version of a
document supersede the original by giving it exactly the
same identifier even though its content is slightly different,
and in this case identifiers cannot simply be computed from
the content.

Metadata

Metadata may be conveyed in three basically different
ways. It may be embedded in the particular documents to
which it pertains, contained in auxiliary metadata files, or
extracted automatically from the textual content of the
documents themselves. The final category extends the
traditional definition of the term metadata, but it does so in
a way that is conducive to our requirements.

Embedded metadata
Document formats such as HTML and RTF allow metadata
to be specified explicitly: in the former case using <meta>
tags and in the latter with an \info statement. These provide
a mechanism for specifying that certain “attributes” have
certain “values”. However, it is rather limited. HTML
imposes no checks or constraints on the particular attributes
that are used, while RTF restricts the attributes to a small
fixed set. Metadata values are strings with no other
structure.

XML, in contrast, is specifically designed for expressing
both document structure and metadata in a very flexible
way. Document Type Definitions (DTDs) can be created
that enforce appropriate constraints over the metadata that
is present in an entire family of documents, including rules
that govern the syntactic nesting of nodes. Metadata can be
expressed as an “enumerated” type with a particular set of
valid values, particular attributes can be declared to be
“unique” within the document to act as identifiers, and so
on. Even more comprehensive facilities for defining data
structures are provided in the related standard XML
Schema. As well as describing what structure is allowed in
an XML file, this provides a rich array of basic types
including year, date, and URI, as well as textual patterns
and ways of subtyping and defining new types.

Other document formats have their own particular way of
embedding metadata. Microsoft Office documents have
“Summary” metadata that comprises title, date, subject,
author, manager, company, category, keywords, comments.
E-mail documents have sender, recipient, date, subject, and
so on. PDF documents have title, date, subject, author,
keywords, and binding (left or right edge). Music files may
have title, date, composer, copyright, description.

Auxiliary metadata
Metadata pertaining to a document collection is commonly
expressed in the form of a separate metadata file. There are
two widely-used standard methods for representing

document metadata: the “machine-readable cataloging”
(MARC) format and the Dublin Core. They represent
opposite ends of the complexity spectrum. MARC is a
comprehensive, well-developed, carefully-controlled
scheme intended to be generated by professional catalogers
for use in libraries. Dublin Core is an intentionally
minimalist standard intended to be applied to a wide range
of digital library materials by people who are not
necessarily trained in library cataloging. These two
schemes are of interest not only for their practical value but
also to highlight diametrically opposed underlying
philosophies. There are two other bibliographic metadata
formats that are in common use amongst document authors
in scientific and technical fields, namely BibTeX and
Refer.

As well as being able to express complete, self-contained
documents along with their metadata, the XML language is
capable of representing metadata alone in the form of
auxiliary files. The information in any of the above
metadata formats could easily be expressed as an XML file.

Extracted metadata
Whereas explicit metadata is determined by a person after
careful examination and analysis of the document,
“extracted” metadata is obtained automatically from the
document’s contents. This is usually hard to do reliably,
and although extracted metadata is cheap, it is often of
questionable accuracy. Relatively few documents today
contain explicitly-encoded metadata, although the balance
will shift as authors recognize the added value of metadata,
standards for its encoding become widespread, and
improved interfaces reduce the mechanical effort required
to supply it.

“Text mining” may be defined as the process of analyzing
text to extract information that is useful for particular
purposes, and is a hot research topic nowadays. The ready
availability of huge amounts of textual information on the
web has placed a high premium on automatic extraction
techniques. In this area there is hardly any underlying
theory, and existing methods use heuristics that are
complex, detailed, and difficult to replicate and evaluate.

Associating metadata with documents

Several challenging practical issues arise when a large
collection of documents and metadata is made available for
import into a digital library. Any large collection of files is
almost always stored in some kind of hierarchical directory
space. And the structure of the file hierarchy is hardly
likely to be completely random: it invariably represents
some aspects of the structure of the document collection
itself.

Large collections are usually created by amalgamating
smaller subcollections, and the upper levels of the
hierarchy are likely to reflect this structure. This may have
important implications for metadata assignment. Ideally,
one assumes that all metadata associated with a document

is explicitly coded into it, or into a separate metadata file
along with an explicit link to the document itself (e.g., its
source URL). However, this is often not the case in
practice. Particular pieces of metadata may be associated
with the position of documents in the directory hierarchy.
For example, all works published by one organization may
be grouped together into a subdirectory, and within this
works may be grouped by author into subordinate
directories. In a collection formed by amalgamating diverse
subcollections, different parts of the hierarchy are likely to
have their own special organization. And certain pieces of
metadata—publisher and author, in this example—may be
defined implicitly rather than being explicitly stated along
with each document.

It may be that directory and file names have been chosen to
reflect particular metadata values. Perhaps more likely is
that auxiliary files will be available that state what
metadata values are to be assigned to which parts of the
hierarchy. In our experience with building digital library
collections, metadata is more likely to be presented in the
form of spreadsheet files than as MARC records. And these
spreadsheets have an ad hoc structure that often relates to
the directory hierarchy containing the documents.

The lower levels of the directory hierarchy may also have
their own structure, in this case determined by the
documents themselves. For example, image files associated
with a particular HTML document are usually placed
together in a subdirectory. Different types of files will call
for different treatment. Some contain documents, others
images, others metadata in various forms, and still others
should be ignored completely.

Metadata at other levels
We have tacitly assumed that metadata is associated with
individual documents, and this is certainly the normal case.
However, metadata is frequently present at other levels.

At the subdocument level, metadata may be associated with
particular parts of documents. Chapter and section headings
are a kind of metadata, and different sections of a document
frequently have different authors. In general, any kind of
metadata may be associated with any logical level of a
document. Unless explicitly stated otherwise, subparts of a
document inherit the document-level metadata.

At the supra-document level, metadata may be associated
with a collection of documents as a whole. This might
comprise a general statement of the topic covered by a
collection, principles that govern the inclusion or exclusion
of documents, principles according to which the collection
is organized, collection editor and creation date, as well as
particular information relevant to the collection, such as
time period covered by a historical collection.

ARCHITECTURE

The requirements that we have identified above are so
varied that they can only be accommodated by a flexible
architecture, one that is extensible in that new facilities can

easily be added as new document and metadata formats
arise. The architecture that we propose has three main
components: an internal document format to which all
documents are converted when they are imported into the
system; a set of parsers that process document and
metadata formats (and the directory structure in which they
are presented) and whose functionality can be combined by
cascading them, and a scheme for “designing” individual
digital library collections by providing a configuration file
that specifies what kind of documents and metadata they
are to contain, and what searching and browsing facilities
they provide.

Internal document format
Collections of disparate documents in assorted formats are
best accommodated by converting them into some standard
internal representation for processing. There are many
reasons, amongst them:

• as a fallback for presentation
• to support full-text searching
• as a vessel for metadata
• to resolve the issue of document identity
• to facilitate rapid processing.

A standardized internal document format need not imply a
uniform presentation format, because a link to the original
document can be retained and that original presented when
the user calls for the document. In a Web-based digital
library, HTML documents can be presented directly; XML
documents can be presented using an appropriate
stylesheet; PDF documents can be presented through the
Acrobat reader; PostScript ones by invoking a suitable
viewer; Word and RTF documents by invoking Word itself.
However, if the necessary viewing utility is not available
(e.g., Word on a Linux platform), a convenient fallback
position is to display the document’s standard internal
representation instead, with a concomitant reduction in
display quality.

One purpose of the internal document format is to support
full-text searching. It should be expressed in the form of as
electronic text; preferably using Unicode (say UTF-8 or
UTF-16 representation) to accommodate different
languages and scripts. The requirements of full-text search
may mean that the internal format must preserve certain
document components. For example, if searching is
required at a paragraph, section, or chapter level, those
structural units must be represented in the internal
document format. Search terms can easily be highlighted in
found documents if they are presented using the internal
representation; otherwise some word-by-word positional
mapping back to the original may be needed. Note that
search engine operations such as stemming and case-
folding may preclude highlighting by re-scanning the found
documents for the search terms.

The internal document format is a convenient vessel for
storing the document’s metadata. Whether metadata is
embedded in the original document file, specified in some

auxiliary file, or computed from the document text
itself—or a mixture of all three—it can be pulled out into a
standard form and saved as part of the internal document
representation. This allows subsequent operations on
document metadata to proceed in the same way irrespective
of its source. XML is a suitable way of expressing
document metadata along with its textual content and some
structuring information.

Another purpose of the document format is to resolve
issues of document identity. The simplest way to identify
each document within the system is to assign it a unique
label. It is important that labels persist over time, so that
they can be used to record the history of individual users’
interactions. Duplicate copies of documents can be
eliminated by assigning them the same label. One way to
do this, suggested above, is to compute a signature from the
document’s internal representation. Assuming that this
representation is plain, unformatted text, this conveniently
ignores differences that are merely formatting. However,
for some collections, other ways of assigning document
identifiers will be more appropriate—for example, when
suitable labels pre-exist, differently-formatted versions of
identical documents are to be distinguished, or there are
special requirements for structured labels. Once computed,
a document’s identifier can be stored within it as metadata;
then, the signature method simply becomes the default way
of calculating this metadata value.

Finally, the internal format should facilitate rapid
processing of documents. Most digital library collections
are very large, and processing speed is often critical. Each

document is converted to the internal format just once:
subsequently all operations work on this representation.

Figure 1 gives an overview of how a digital library
collection is created. The importing phase converts all
documents to the internal format, which forms the basis for
all subsequent operations. This improves efficiency when
working with large collections (the normal case) by caching
documents and metadata in a uniform format. We return to
the remainder of the procedure shortly.

Plug-ins
The proposed architecture adopts a flexible scheme of
parser modules, called plug-ins, to process document and
metadata formats. Each collection may involve documents
and metadata in several different formats, and a plug-in
must be included for each type. Plug-ins fit together into a
cascaded pipeline structure that provides a highly
configurable workflow system.

Plug-in pipeline
Figure 2 shows the pipeline in generic terms. There are
three types of plug-in: structural, markup, and extraction.
The processing order in the pipeline is determined by the
order in which they are listed in the collection’s
configuration file (see below).

The import process is initiated by feeding the name of the
top-level directory that contains the source documents into
the pipeline. This name is passed down the pipeline until
one of the plug-ins signals that it is able to process it.

Figure 1 Creating a digital library collection within the proposed architecture

Importing phase

Building phase

Document conversion

Internal format

Index Classify

Full text index Database Associated files

Importing phase

Building phase

If an item travels to the end of the pipeline without being
processed by any plug-in, the system generates a warning
message and moves on to the next item. The process stops
when no more items remain in the queue.

Structural plug-ins
Structural plug-ins operate on the generic file structure
rather than on particular document formats. For example,
under normal operating conditions, any filename that
names a directory is processed by a structural plug-in that
lists all files in the named directory and feeds their names,
one by one, into the pipeline. In general this list includes
further subdirectories, and they will be processed in the
same way.

This is the default way in which a collection’s directory
structure is traversed. However, when certain files or

directories need special treatment, or when directory names
are significant for metadata assignment purposes it must
also be possible to adapt this behavior. For example, it is
often necessary to handle archived input formats in a digital
library. Using this architecture, these can be expanded and
their contents fed into the pipeline one by one. In other
cases each source file may contain several documents
(common E-mail formats do this) and need to be split into
separate documents for the processing pipeline.

Markup plug-ins
Markup plug-ins process particular document or metadata
types. To take one example of a document type, Microsoft
Word documents require a markup plug-in that can parse
this syntax. In this case, as in many others, external utilities
will exist for document format conversion which the plug-

Figure 2 The generic plugin pipeline architecture (idealized: see text)

Top level directory

Structural plugin

file accepted

in calls to do the work. The result may be in a form such as
HTML or text, which must be further transformed to the
internal format using a subsequent plug-in.

To supply the necessary flexibility, plug-ins are designed to
take various options that modify their behavior. One
example is the input encoding used for the source files: in
addition to ASCII, Unicode, and various other ISO
standards, but special-purpose techniques used for
encoding particular languages such as Chinese, Cyrillic,
Greek, Hebrew, and standards accommodated by particular
operating systems (e.g. Windows) are required if the
architecture is to operate in an international arena. Another
option is to specify which files a plug-in can process, in
terms of a set of file extensions. The plug-in for HTML, for
example, should accept filenames with the extension .htm
or .html. It is also useful for a plug-in to block particular
files and prevent them from being further down the
pipeline—the same HTML plug-in will need to block files
with such extensions as .gif, .png and .jpg because they do
not contain any text or metadata but are embedded in
documents when they are viewed.
Plug-ins for document formats that include metadata
extract this information and transfer it to the document’s
internal-format file. One of the requirements identified
above is to be able to assign metadata to documents from
files that have been created manually (or automatically).
For example, information pertaining to a document
collection might be available in a standard form such as
MARC records. A metadata markup plug-in processes this
by placing the metadata into each individual document’s
internal file during the import process. Once there, it can be
used to define searchable indexes and browsing structures.

Extraction plug-ins
The identified text and metadata are passed into a
secondary pipeline of “extraction” plug-ins, again
determined by the collection’s configuration file (see
below). These extract metadata from the plain text of the
document and add it to the internal format. In this
subsection we stretch the term “metadata” beyond its
conventional usage to include any useful structured
information about the contents of a document collection
that can be extracted automatically.

One important piece of metadata that can be readily and
reliably derived from a document’s content is the language
that it is written in. This can be added as language
metadata. The same techniques can be used to identify the
encoding scheme used for the document, which was
mentioned above as an example of something that ought to
be explicitly specifiable. This example illustrates that the
sequential pipeline structure illustrated in Figure 2, while
useful for conceptualizing what goes on, may be something
of an idealization in implementation terms. We expand on
this in the implementation section below.

A document’s opening words are often used as a title
substitute if Title metadata is unavailable, and so it is useful

to be able to extract the first stretch of text and add it as
metadata.
E-mail addresses are a good example of information that
can be extracted automatically; they can be added to the
document as emailAddress metadata. More challenging is
to identify all dates (e.g., in years) relating to the content of
historical documents and add them as Coverage metadata.
Technical, commercial and political documents make
extensive use of acronyms. A list of acronyms and their
definitions can assist document presentation by allowing
users to click on an acronym to see its expansion, and help
check whether acronyms are being used consistently in a
document collection. Heuristic procedures can be used to
extract acronyms and their definitions, and add them as
Acronym metadata [1]. It is sometimes useful to annotate
all occurrences of acronyms with links to their definitions.
In the scientific and technical literature, keywords and
keyphrases are often attached to documents to provide a
brief synopsis of what they are about. Keyphrases are a
useful form of metadata because they condense documents
into a few pithy phrases that can be interpreted individually
and independently of each other. Again, heuristic
procedures are available that obtain keyphrase metadata
automatically from documents with a considerable degree
of success [2, 3].

AN IMPLEMENTATION
The Greenstone digital library software is an
implementation of large parts of the architecture that has
been described above [5].

In our architecture, the design of a collection is
encapsulated in a “collection configuration file” that directs
both the import and build phases. This file contains the list
of plug-ins for processing the source information, along
with appropriate options for each, and this is used during
the import procedure. The remainder of the configuration
file includes information pertinent to the build phase—what
searchable indexes the collection contains, what browsing
facilities there should be, how the various pages should be
formatted, and so on. We have described this mechanism in
a previous paper [4] and will not dwell on it here.

Inheritance

Digital libraries process vast collections of documents, and
one overriding requirement is that they operate reasonably
efficiently. The processes that we are discussing are
performed off-line, of course; and so do not affect the
response to interactive library users. Nevertheless, even
off-line collection building must take place expeditiously.

The pipeline architecture in Figure 2 has the potential to be
rather sluggish. Each document must pass through many
stages. It may be expanded from a compressed archive,
converted to a different format (e.g., Word to HTML),
reconverted (e.g. HTML to the internal format), have an
identifier calculated (e.g. by hashing the full text), and the

resulting document passed to a whole succession of
extraction plug-ins that extract language and various other
types of metadata. While the actual processing components
are unavoidable, significant overhead will be incurred by
repeatedly passing the document around. For example, if a
Unix pipeline mechanism were used, the proposed
architecture has the potential to be rather inefficient.

For this reason, the pipeline metaphor of Figure 2 is not to
be taken completely literally. The Greenstone
implementation of the architecture utilizes an inheritance
structure to provide the necessary flexibility while
minimizing code duplication, without repeatedly passing
document representations around. All plug-ins derive from
the same basic code, which performs universally-required
operations like creating a new internal document object to
work with, assigning an object identifier, and handling a
document’s sections.

It is also more efficient to implement the automatic
extraction plug-ins as part of the basic plug-in, rather than
as separate steps in the pipeline. This simplifies the
triggering of the cascading pipeline, when a particular
markup plug-in needs to pass a document on to an
automatic extraction plug-in for further processing. It also
allows structural plug-ins to be enhanced with markup
capabilities and vice versa. This is a useful ability when, for
example, metadata and documents are represented
separately in the file system. It allows more flexible
dependencies to occur than the pipeline model, as when an
extraction plug-in identifies both language and encoding
and the latter is used in the early stages of converting the
document to Unicode. Finally, it increases efficiency of
operation because there is no need to physically pass large
volumes of textual data from one extraction plug-in to the
next.

Internal document format
The internal format divides documents into sections and
stores metadata at the document or section level. One
design requirement is to be able to represent any previously
marked-up document that uses HTML tags, even if the
markup is sloppy. Another is to be able to parse documents
very rapidly. The internal format is an XML-compliant
syntax that contains explicit markup for sectioning and
metadata assignment, and can also embed HTML-style

markup that is not interpreted at the top XML level.

In XML, tags are enclosed in angle brackets for markup,
just like HTML tags. The internal format encodes
documents that are already in HTML by escaping any
embedded <, >, or " characters within the original text
using the standard codes <, > and ".

An XML <Section> tag signals the start of each document
section, and the corresponding closing tag marks the end of
that section. Each section begins with a metadata block that
defines pertinent metadata. There can be any number of
metadata specifications; each gives the metadata name and
its value. In addition to regular metadata, the file that
contains the original document can be specified as
gsdlsourcefilename, and files that are associated with the
document, such as image files, can be specified as
gsdlassocfile.

Figure 3 gives the XML Document Type Definition (DTD)
for the internal document format. The basic document
structure is preserved by allowing it to be split into
Sections , which can be nested. Each Section has a
Description that comprises zero or more Metadata items,
and a Content part (which may be null)—this is where the
actual document’s content goes. A name attribute and some
textual data are associated with each Metadata element (the
name can be anything). Implementing both parts to be
optional enables collections to be built purely on content or
metadata: a useful detail that, for instance, allows for
multimedia based content described by metadata, and
means that the design encompasses traditional electronic
library catalogue systems.

In XML, PCDATA stands for “parsed character data,” that
is, text that may involve further markup; to include
characters such as ‘<’ therefore, their XML entity form
must be used, such as < for the less than symbol.

first Extract the first characters of text and add it
as metadata.

email Extract E-mail addresses.
date Extract dates relating to the content of

historical documents and add them as
Coverage metadata.

language Identify each document’s language.
acronyms Extract acronym definitions.
acronyms Add acronym information into document

text.
keyphrases Extract keyphrases from the full text and

add them as Subject metadata.
Table 2 Metadata extraction plugins

<!DOCTYPE GreenstoneArchive [
 <!ELEMENT Section (Description,Content,Section*)>
 <!ELEMENT Description (Metadata*)>
 <!ELEMENT Content (#PCDATA)>
 <!ELEMENT Metadata (#PCDATA)>
 <ATTLIST Metadata name CDATA #REQUIRED>

]>

Figure 3 Greenstone internal document format

Plug-ins
Table 1 lists the document processing plug-ins, while Table
2 shows the metadata extraction plug-ins. As previously

mentioned, all plug-ins that extract metadata from full text
are implemented as features of the basic plug-in object, and
consequently all derived plug-ins inherit them. Extraction
plug-ins, therefore, are specified as options to markup and
structural plug-ins. This has the advantage that they can, if
desired, be used selectively to extract information from
certain types of document.

The structural plug-in that traverses directory hierarchies
incorporates a way of assigning metadata to documents
from XML files that contain auxiliary metadata. It checks
each input directory for an XML file called metadata.xml
and applies its contents to all the directory’s files and
subdirectories.

Figure 4a shows the XML Document Type Definition for
the metadata file format, while Figure 4b shows an example
metadata.xml file. The example contains two metadata
structures. In each one, the filename element describes files
to which the metadata applies, in the form of a regular
expression. Thus <FileName>nugget.* </FileName>
indicates that the first metadata record applies to every file
whose name starts with “nugget”. For these files (sourced
from a collection of photos), Title metadata is set to
“Nugget Point, The Catlins.”

Metadata elements are processed in the order in which they
appear. The second structure sets Title metadata for the file
named nugget-point-1.jpg to “Nugget Point Lighthouse,
The Catlins,” overriding the previous specification. It also
adds a Subject metadata field.

Sometimes metadata is multi-valued and new values should
accumulate, rather than overriding previous ones. The
mode=accumulate attribute does this. It is applied to Place
metadata in the first specification above, which will
therefore be multi-valued. To revert to a single metadata
element, write <Metadata name=“Place” mode=
“override”>New Zealand</Metadata>. In fact, you could
omit this mode specification because every element
overrides unless otherwise specified. To accumulate
metadata for some field, mode=accumulate must be
specified in every occurrence.

CONCLUSIONS
This paper has analyzed the requirements for importing
documents and metadata into digital libraries and described
a new extensible architecture that satisfies these
requirements. It also includes a brief sketch of the
Greenstone digital library system as an example
implementation of this architecture. The proposed structure
converts heterogeneous document and metadata formats,
organized in arbitrary ways on the file system, into a
uniform XML-compliant file structure. This simplifies the
construction of the indexes, browsing structures, and
associated files that form the basis of the runtime digital
library system. Object oriented design further enhances
capabilities whilst maximizing code reuse. The result is a
comprehensive, flexible and extensible design.

TEXTPlug Plain text.
HTMLPlug HTML, replacing hyperlinks appropriately.
WordPlug Microsoft Word documents.
PDFPlug PDF documents.

PSPlug PostScript documents.
EMAILPlug E-mail messages, recognizing author,

subject, date, etc.
BibTexPlug Bibliography files in BibTex format.

ReferPlug Bibliography files in refer format.
SRCPlug Source code files.

ImagePlug Image files for creating a library of images.
SplitPlug Splits a document file into parts.
ZIPPlug Uncompresses files.

BookPlug Specially marked-up HTML.
GBPlug Project Gutenberg E-text.

TCCPlug E-mail documents from Computists’
Weekly.

PrePlug HTML output from the PRESCRIPT
program.

Table 1 Document processing plugins

<!DOCTYPE DirectoryMetadata [(a)
 <!ELEMENT DirectoryMetadata (FileSet*)>
 <!ELEMENT FileSet (FileName+,Description)>
 <!ELEMENT FileName (#PCDATA)>
 <!ELEMENT Description (Metadata*)>
 <!ELEMENT Metadata (#PCDATA)>
 <ATTLIST Metadata name CDATA #REQUIRED>
 <ATTLIST Metadata mode (accumulate|override) "override">
]>

<?xml version="1.0" ?> (b)
<!DOCTYPE DirectoryMetadata SYSTEM
"http://greenstone.org/dtd/DirectoryMetadata/1.0/DirectoryMe
tadata.dtd">
<DirectoryMetadata>
 <FileSet>
 <FileName>nugget.*</FileName>
 <Description>
 <Metadata name="Title">Nugget Point Lighthouse
 </Metadata>
 <Metadata name="Place" mode="accumulate">Nugget Point
 </Metadata>
 </Description>
 </FileSet>
 <FileSet>
 <FileName>nugget-point-1.jpg</FileName>
 <Description>
 <Metadata name="Title">Nugget Point Lighthouse
 </Metadata>
 <Metadata name="Subject">Lighthouse</Metadata>
 </Description>
 </FileSet>
</DirectoryMetadata>

Figure 4 XML metadata format: (a) DTD; (b) Example

Further details, and many examples, can be obtained from
nzdl.org. The software is available at greenstone.org.

REFERENCES

1. Yeates, S., Bainbridge, D. and Witten, I.H. (2000)
“Using compression to identify acronyms in text.” Proc
Data Compression Conference, edited by J.A. Storer
and M. Cohn. IEEE Press Los Alamitos, CA, p. 582.

2. Dumais, S.T., Platt, J., Heckerman, D. and Sahami, M.
(1998) “Inductive learning algorithms and
representations for text categorization.” Proc ACM Conf
on Information and Knowledge Management, pp.
148–155.

3. Frank, E., Paynter, G.W., Witten, I.H., Gutwin, C. and
Nevill-Manning, C. (1999) “Domain-specific keyphrase
extraction.” Proc Int Joint Conference on Artificial
Intelligence, Stockholm, Sweden. San Francisco, CA:
Morgan Kaufmann Publishers, pp. 668–673.

4. Witten, I.H., Bainbridge, D. and Boddie, S.J. (2001)
“Power to the people: end-user building of digital
library collections.” Proc Joint Conference on Digital
Libraries, Roanoke, Virginia, pp. 94–103.

5. Witten, I.H., Bainbridge, D., Paynter, S. and Boddie,
S.J. (2002) “The Greenstone plugin architecture.” Proc
Joint Conference on Digital Libraries, Portland,
Oregon.

