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The technology set involved in the estimation of a multi-output production

frontier theoretically implies monotonicity on outputs. This is because an

efficient firm cannot reduce the vector of outputs holding the vector of

inputs fixed while it still belongs to the frontier. In empirical studies dealing

with the estimation of parametric distance functions, this hypothesis is

often violated by observations with far from average characteristics. To

overcome this limitation, we propose a new approach for allowing the easy

imposition of monotonicity on outputs in this context. This methodology

is tested in the educational sector using Spanish student level data from

the Programme for International Student Assessment (PISA) database.

The results indicate that a nonnegligible 8.33% of the production units

break the monotonicity assumption. Furthermore, although there is no

statistically significant difference in efficiency distribution by school

ownership, our methodology helps to detect a slight worse mathematical

performance for students attending public schools.

I. Introduction

In the past decade, the parametric approach for

measuring technical efficiency has gained growing

consideration in applied economics. The main reason

to explain this fact is that the parametric distance

function allows modelling multi-input multi-output

production problems without aggregation as it is

done in a nonparametric Data Envelopment Analysis

(DEA). However, the parametric tool is especially

appealing for applied researchers because it allows to

easily calculate production elasticities to help policy-

makers and private managers in their decisions.

Multi-output multi-input production technologies

are frequently used in public services (education,

health social services, etc.) as well as in other service

activities generally operated by private companies

(transportation, banking or insurance companies).

Education is one of those multi-input multi-output

economics fields in which developing consistent

indexes of school performance and promoting yard-

stick competition in the sector can lead to improved

human capital and reduced school failure without

increasing budget efforts.
Due to specialization, it often happens that some

Decision-Making Units (DMUs) produce propor-

tionally more in one output than in others. For

example, we consider the transportation of passen-

gers and tons of freight by railways companies,

other than firms only devoted to passenger or to
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freight transportation. However, we are unlikely to
find companies with extremely high, or extremely
low, passenger transportation proportions. Likewise,
in education, it is quite usual to observe students
better prepared or motivated in some of the subjects
with respect to others; as well as in the transportation
example named above it is unusual to find students
with, say, outstanding results in mathematics (read-
ing) together with a very low reading (mathematics)
level. As a consequence of the lack of extremely
specialized DMUs, the econometric estimation of the
corresponding parametric output distance function
(e.g. Coelli and Perelman, 1999, 2000) will probably
indicate a violation of microeconomic regularity
conditions, mainly monotonicity, for some of the
evaluated DMUs. The violation of monotonicity on
outputs can damage the reliability of efficiency
measures. This is because an efficient firm cannot
reduce the vector of outputs holding the vector of
inputs fixed while it still belongs to the frontier.

O’Donnell and Coelli (2005) proposed a Bayesian
approach allowing the imposition of regularity con-
ditions, among them monotonicity on outputs. In this
article, we propose a new alternative approach which
has the advantage of easy computation. To simplify,
we only show the imposition of monotonicity on
outputs for an output distance function.1 This
approach consists of the deterministic computation
of an extra-distance radial component together with a
set of output slacks for firms breaking the monoto-
nicity assumption. The same approach could be used
in such cases in which the monotonicity assumption
would be considered as economically plausible, e.g. to
measure congestion inefficiency or in the presence of
bad output production restrictions for considering
regulatory inefficiency (Färe et al., 1984).

In order to illustrate the potentialities of the
approach proposed here, we provide an application
to Spanish educational data from the Programme for
International Student Assessment (PISA), imple-
mented in 2000 by the Organization for Economic
Co-operation and Development (OECD). In this
article, we employ the pupil as a DMU because it
allows two main advantages. First, in efficiency
educational research, student results are typically
aggregated at school (Cordero-Ferrera et al., 2008),
district level (Banker et al., 2004) or countries
(Afonso and St. Aubyn, 2006), imposing a consider-
able limitation to simultaneously include the effect of
a student’s own background and the peer-group
effect as different variables (Santı́n, 2006). Second,
Hanushek et al. (1996) showed how aggregation can

dramatically influence the statistical significance of

inputs in the educational process upwards. We also

investigate differences in student performance across

Spanish public, private government dependent and

private government independent schools and con-
clude that, once school inputs, student background

and peer-group characteristics are taken into account,

there is no statistically significant difference in

efficiency distribution of the school regarding

public–private ownership. However, our methodol-

ogy is able to detect a slight worse mathematic
performance of students attending public school.

This article is organized as follows. Section II

presents the main properties and characteristics of

parametric output distance functions. In Section III,

we describe the procedure for imposing monotonicity

on the output distance function. Section IV shows the
Spanish educational data from the PISA database

employed in the empirical application. Section V

presents estimation results and illustrates the steps to

impose monotonicity on outputs in order to obtain

the corrected measurements of technical inefficiency.
Section VI focusses on the main conclusions.

II. Measuring Efficiency Through Distance
Functions

In defining a vector of inputs x¼ (x1, . . . , xK)2RKþ

and a vector of outputs y¼ (y1, . . . , yM)2RMþ, a

feasible multi-input multi-output production technol-

ogy can be defined using the output possibility set
P(x), which can be produced using the input vector x:

P(x)¼ {y: x can produce y}, which is assumed to

satisfy the set of axioms described by Färe and
Primont (1995). This technology can also be defined

as the output distance function proposed by

Shephard (1970)

DOðx, yÞ ¼ inf � : �4 0, x, y=�ð Þ 2 PðxÞ
� �

If DOðx, yÞ � 1, then (x, y) belongs to the produc-

tion set P(x). In addition, DOðx, yÞ ¼ 1, if y is located

on the outer boundary of the output possibility set. In

order to estimate the distance function in a paramet-

ric setting, a translog functional form is assumed.
According to Coelli and Perelman (2000), this

specification fulfils a set of desirable characteristics

for its empirical estimation: flexible, easy to derive

and allowing the imposition of homogeneity.

1 The procedure can be easily extended to impose monotonicity on inputs also in an output distance function and
monotonicity on outputs and inputs in an input distance function.
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The translog output distance function specification

herein adopted for the case of K inputs and M

outputs is given as

lnDOiðx,yÞ ¼ �0þ
XM
m¼1

�m lnymiþ
1

2

XM
m¼1

XM
n¼1

�mn

� lnymi lnyniþ
XK
k¼1

�k lnxki

þ
1

2

XK
k¼1

XK
l¼1

�kl lnxki lnxli

þ
XK
k¼1

XM
m¼1

�km lnxki lnymi, i¼ 1, 2, . . . ,N

ð1Þ

where i denotes the ith unit (DMU) in the sample. In

order to obtain the production frontier surface, we set

DOðx, yÞ ¼ 1, which implies that lnDOðx, yÞ ¼ 0.
The parameters of the above-mentioned distance

function must satisfy a number of restrictions, among

them symmetry and homogeneity of degree þ1 in

outputs. This latter restriction indicates that distances

with respect to the boundary of the production set are

measured by radial expansions.
According to Lovell et al. (1994), normalizing the

output distance function by one of the outputs is

equivalent to imposing homogeneity of a degree

þ1. Therefore, Equation 1 can be represented as

follows:

ln DOiðx, yÞ=yMið Þ ¼ TLðxi, yi=yMi,�,�, �Þ,

i ¼ 1, 2, . . . ,N

where

TLðxi, yi=yMi,�,�, �Þ

¼ �0 þ
XM�1
m¼1

�m ln ymi=yMið Þ þ
1

2

XM�1
m¼1

XM�1
n¼1

�mn

� ln ymi=yMið Þ ln yni=yMið Þ þ
XK
k¼1

�k ln xki

þ
1

2

XK
k¼1

XK
l¼1

�kl ln xki ln xli

þ
XK
k¼1

XM�1
m¼1

�km ln xki ln ymi=yMið Þ

Rearranging the terms, the above function can be

rewritten as follows:

�ln yMið Þ ¼ TLðxi, yi=yMi,�,�, �Þ � lnDOiðx, yÞ,

i ¼ 1, 2, . . . ,N

where �lnDOiðx, yÞ corresponds to the radial distance
from each point to the boundary. This deterministic
framework can be estimated using the Corrected
Ordinary Least Squares (COLS) method used by
Lovell et al. (1994), the Parametric Linear
Programming (PLP) method proposed for translog
output distance functions by Färe et al. (1993) and
the stochastic frontier analysis provided by Aigner
et al. (1977).

On the one hand, the flexibility of the translog
function is very useful for capturing possible second-
order nonlinear relationships among the variables.
However, on the other hand this specification can
break the microeconomic assumption of monotonic-
ity on outputs for some of the firms in empirical
estimations. In this article, we provide a simple
procedure to overcome this drawback.

III. Imposing Monotonicity on the Output
Distance Function

According to O’Donnell and Coelli (2005), monoto-
nicity on outputs implies the imposition of a condi-
tion on output distance function partial derivatives
with respect to output defined by

rm ¼
@ lnD

@ ln ym
¼ �m þ

XM
n¼1

�mn lnyn þ
XK
k¼1

�km ln xk

For D to be nondecreasing in y, it is required that

hm ¼
@D

@ym
¼
@ lnD

@ ln ym

D

ym
¼ rm

D

ym
� 0, rm � 0

The slope of the distance function between the two
outputs, i.e. the Marginal Rate of Transformation
(MRT), can be denoted as follows:

MRTymyn ¼ �
@ ln ym
@ ln yn

¼ �
rn
rm

This expression fulfils monotonicity on outputs
when MRTymyn � 0. In the case that this condition
was violated for some DMUs, as very often occurs in
empirical studies, it can be imposed in a simple way,
as illustrated in Fig. 1 for a two-output setting.

Theoretically, when a DMU such as A and B in
Fig. 1 exhibits a positive slope on the estimated
deterministic production frontier (FF 0) projection
points A0 and B0, we can re-compute the distance to
a new frontier after drawing a strict production
frontier (GG0 in Fig. 1), which fulfils the monotonicity
assumption. This implies the adding up of a new extra
distance component, �lnDextra

Oi ðx, yÞ, A
0A00 and B0B00
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for A and B DMUs, respectively. In practice, we
proceed in five steps as follows.

Step 1: This consists of the computation of the
predicted efficient output vector on the estimated
deterministic production frontier, hat denoted lnð ŷniÞ,
on behalf of the estimated production frontier
parameters (points F to F 0 in Fig. 1).

�lnð ŷMiÞ ¼ TLðxi, yi=yMi, �̂, �̂, �̂Þ, for the normaliza-
tion output and
�lnð ŷniÞ ¼ �lnð ŷMiÞ � lnð yni=yMiÞ, for the other
outputs, using the output ratio relationships.

Step 2: Following the estimated output distance
function parameters, we calculate MRTymyn for all
DMUs focussing our interest only in points breaking
the monotonicity on outputs MRTymyn 4 0 require-
ment before continuing with Step 3.

Step 3: This comprises of the computation of the
output projection vector corresponding to the strict
frontier, tilde denoted ln ~yni, those are points A00 and
B00 according to Fig. 1. To do this, we proceed as
follows. First, we calculate output distance function
partial derivatives with respect to all the outputs in
order to detect DMUs where rn is less than zero. Let
us assume that we start with output M and DMU A,
rMA50. Once we know a DMU as A breaks
monotonicity on M, our aim is to search for the
maximum values ln ~ymax

ni of the other outputs in the
estimated distance frontier with giving A inputs
endowment to remaining DMUs whatever ratio
relationships they have. These maximum observed

values are assigned to DMU A, projecting the M

output holding the exogenous output ratios of DMU

A constant.

ln ~ymax
ni ¼ max TL xA, yi=yMi, �̂, �̂, �̂

� �h i

ln ~yMA ¼ ln ~ymax
ni � ln

ynA
yMA

� �

Step 4: Finally, the new efficiency scores for each

DMU are computed by adding up the extra distance

term �lnDextra
Oi ðx, yÞ to the estimated distance

lnDOiðx, yÞ. Here, we can separate the computed

production frontier output vector, ðlnð ŷMiÞ, lnð ŷniÞÞ,

from the strict production frontier output vector,

ðlnð ~yMiÞ, lnð ~ymax
ni ÞÞ. The corresponding extra distance

for DMUs A and B are therefore graphically

measured in Fig. 1 by the Euclidean distances

between OA0 and OA00 and OB0 and OB00, respectively.

For DMU i, we obtain

lnDextra
Oi ðx, yÞ

¼ d A0A00ð Þ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln ŷMA � ln ~yMið Þ

2
þ
XM�1
n¼1

ln ŷni � ln ~ymax
ni

	 
2
vuut

Step 5: The radial expansion of a DMU breaking

monotonicity on outputs to the strict production

function originates a production target that presents

an output slack.2 As it is shown in Fig. 1, the A00 (B00)

radial projection points are inefficient because DMU

A (B) could produce more on output 1 (output 2)

holding output 2 (output 1) constant, achieving

point C (point D). The movement from A00 to C

implies that the DMU could change their output

ratio values. Sometimes, this could not be possible if

these ratios are exogenously imposed (for a regula-

tor, a politician, preferences, prices, etc.). For this

reason, we will only apply this fifth step if the

change is feasible in the analysed sector. In Point C

ln ~ymax
ni has the same value than in Step 3. The new

target ln y
^

Mi for DMU i to hold monotonicity on

output M will be

rMi ¼
@ lnD

@ ln yMi
¼ �̂M þ �̂Mm ln y

^

Mi þ
XM�1
n¼1

�̂Mn ln ~ymax
ni

þ
XK
k¼1

�̂kM ln xki ¼ 0

( )yxDOi ,ln−

O

•

•

•

•

Deterministic 
production frontier 

–r1/r2< 0 

–r
1
/r

2
=0

–r1/r2= ∞

A

A„•

A„„

•

B

B„
B„„

ln y2

ln y1

)~ln,~(ln
12

yymax

)ˆln,ˆ(ln
12

yy

Strict 
production frontier 

F

F„

G

G„

C
•

• D

)ln,(ln
12

yy

)ln,~(ln
12

yymax( )yxDextra
Oi ,ln−

Fig. 1. Imposing monotonicity on outputs in a two outputs

distance function

2 The term output slack is new in the parametric frontier analysis but its meaning and interpretation is exactly the same than
the output slack calculated with DEA.
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where rearranging terms

ln y
^

Mi ¼
��̂M�

PM�1
n¼1 �̂Mn ln ~ymax

ni �
PK

k¼1 �̂kM lnxki
�̂Mm

Finally, as is usual in empirical applications, we
measure the output slack of output M in absolute
magnitudes as follows:

OSMi ¼ y
^

Mi � ~ymax
ni

IV. Educational Data

In our empirical analysis, we use data from the PISA,
implemented in 2000 by the OECD. PISA tests
students in the subjects of reading, mathematics and
sciences. Because the home, school and national
contexts can play an important role in how students
learn, PISA also collects extensive information about
such background factors. The entire database com-
prises 32 countries, but this illustrative study is
limited to the Spanish case. Given that the target
15-year-old population tends to be enrolled in differ-
ent grades, we only selected upper 10th grade
students for this study in order to obtain a more
homogeneous sample to perform the efficiency anal-
ysis. To sum up, the analysis is based on a homog-
enous population composed of 2449 Spanish students
attending 10th grade at 185 different schools, which,

in the year 2000, completed the mathematics and
reading PISA tests.

It is worth noting that PISA is methodologically
highly complex and it exceeds the aims of this
empirical application to present a complete explana-
tion of the procedures followed in the sampling
design. Nevertheless, for a complete review, OECD
(2001, 2002) may be consulted. Table 1 displays
descriptive information on the output and input
measures used in the analysis by school ownership.

We consider two outputs: the students’ scores
obtained in the international mathematics and read-
ing tests. As reported in Table 1, average reading
scores were higher and at the same time, less widely
distributed than mathematics scores. On the other
hand, private independent schools and public
financed private schools show better mean scores
than public schools.

Two school inputs were selected: on the one hand,
the computer/student ratio (corresponding to the total
number of computers in the school divided by the
total enrollment) and, on the other hand, the teacher/
student ratio corresponding to the total teaching staff
divided by the total school enrollment (full-time and
part-time teachers are accounted for by 1.0 and 0.5,
respectively). We think that both inputs are plausible
indicators for the level of physical and human capital
inside each school. As most students in Spain spend
their entire secondary education in the same school,
we argue that specific school ratios are better input
indicators than those obtained at the (10th grade)

Table 1. Descriptive statistics: outputs and inputs at pupil level in Spain by school type

School type

Public
Private government
dependent

Private government
independent

Outputs and inputs Variable Mean (SD) Mean (SD) Mean (SD)

Outputs

Mathematics score y1 498.14 (83.56) 513.07 (81.20) 519.98 (81.32)
Reading score y2 519.26 (74.05) 526.39 (73.84) 543.71 (74.39)

Inputs
School

Computers/100 students x1 6.85 (3.52) 5.75 (5.08) 5.68 (2.84)
Teachers/100 students x2 9.02 (1.94) 5.75 (1.20) 5.73 (1.79)

Background
Mother’s level of education x3 2.69 (0.77) 2.88 (0.78) 3.04 (0.73)
Father’s level of education x4 2.78 (0.83) 3.00 (0.80) 3.10 (0.77)
Cultural activities x5 2.45 (1.16) 2.62 (1.14) 2.74 (1.21)
Cultural possessions x6 2.98 (1.00) 3.17 (0.97) 3.33 (0.90)
Time spent on homework x7 3.33 (0.84) 3.40 (0.79) 3.49 (0.75)

Peer group
Average mother’s level of education x8 2.78 (0.38) 3.00 (0.46) 3.10 (0.41)

N 2449 1383 829 237

Imposing monotonicity in parametric distance functions 5
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classroom level. The computer/student ratio as well as
the teacher/student ratio is higher for public schools.
These ratios are very similar in both types of private
schools.

We consider five student background inputs. All
of these variables are represented by indexes that
summarize the answers given by students to a series
of related questions. Mother and father’s level of
education corresponds to the International Standard
Classification of Education (ISCED) (OECD, 1999).
The original categories contained in ISCED were
redefined as four major possibilities: 1¼ did not go to
school; 2¼primary school completed; 3¼ secondary
school completed; and 4¼ tertiary education com-
pleted. The cultural activities index was derived from
how often students had participated in the following
activities during the preceding year: visiting a
museum or art gallery, attending the opera, ballet, a
classical symphony or a concert or watching live
theatre. The cultural possessions index was derived
from student reports on the availability of the
following items in their home: classical literature,
poetry books and works of art. Time spent on
homework was also derived from student reports on
the amount of time they devoted to homework per
week in reading, mathematics and science. Together
with these variables, and taking advantage of using
student level data, we introduce a variable to control
for potential peer-group effects. The variable consid-
ered here is the average mother’s level of education of
the peers measured at class level (Rosenzweig and
Wolpin, 1994). Given the nature and the treatment
applied to the construction of these variables, their
variation across the sample is limited. Even so, one
can see in Table 1 that for all variables related with
the background, the means are higher and the SDs
lower in private government independent schools
while pupils at public schools have the lower means
and the higher variances.

V. Results and Discussion

A parametric output distance function was estimated
assuming a stochastic translog technology, as indi-
cated in Section I. Homogeneity of degree þ1 was
imposed by selecting one of the outputs, the students’
scores in mathematics y1 as the dependent variable,
and the ratio y2/y1 as the explanatory variable,
instead of y2. However, for presentation purposes,
in Table 2 the parameters corresponding to y1 are
reported, as calculated by application of the homo-
geneity condition.

Two different specifications were estimated in
order to test the nonseparability hypothesis among
outputs and inputs. For this purpose, following Coelli
et al. (2005), we conducted a generalized Likelihood
Ratio (LR) test, which allows contrasting whether or
not input–output cross effect parameters are statisti-
cally significant. The null hypothesis was retained on
the basis of this test; therefore, the results presented
in Table 2 are those corresponding to the separable
output distance function. In this case, the null
hypothesis is rejected if the LR test exceeds �28(�).
For �¼ 0.05, the critical value is 15.5, and we
obtained LR¼ 10.74.

Parameter estimates

As is usual for the estimation of translog func-
tions, the original variables ym ðm ¼ 1, 2Þ and
xk ðk ¼ 1, . . . , 8Þ were transformed in deviations to
mean values. Therefore, the first-order parameters in
Table 2 must be interpreted as distance function
partial elasticities at mean values. For instance, those
corresponding to the reading and mathematics scores
are positive and indicate that student performance or
efficiency increase (distance functions increase) when,
ceteris paribus, their reading and mathematics scores
increase. The opposite effect is observed for the scores
in all first-order coefficients on inputs that are
negative. This indicates that, at least at mean values
and regardless of second-order effects, student per-
formance decreases (distance functions decrease)
when inputs increase. All these first-order coefficients
are significant, with the sole exception of both
school inputs: computer/student and teacher/student
ratios.

Some general conclusions can, however, be drawn
from these results without taking into account the
second-order coefficients affecting school inputs.
Several of them are statistically significant, e.g. �22,
�12 and �23, which correspond to the teacher/student
ratio in its quadratic form and in interaction with the
computer/student ratio and the mother’s level of
education index, respectively.

In our case, a simpler Cobb–Douglas production
function estimation would certainly be unable to
discover cross effects between school inputs them-
selves or when combined with student background
and peer-group inputs, and the conclusion would be
that school does not matter. Therefore, one of the
major advantages of parametric translog output
distance function analysis at student level is that it
can provide additional insights into the educational
production process, overcoming model misspecifica-
tion problems at the same time.
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Imposing curvature on the output distance function

Furthermore, the estimation of a parametric output

distance function can violate monotonicity for some

of the evaluated units. For this reason, it is worth

evaluating the results. In educational production

theory it is inconsistent that with the same quantities

of inputs a student could reduce both scores remain-

ing on the production frontier. The lack of theoretical

sense of this result in education and in most of the

economics fields leads us to evaluate the estimations

obtained at each observation.3 We proceed following

the steps depicted in Section III.

Step 1: This consists of the computation of the

predicted efficient output vector on the estimated

production frontier, hat denoted lnð ŷ1iÞ and lnð ŷ2iÞ,

using the outputs transformed in deviations to mean

values used in the estimation. In this application, the

curvature of the deterministic production frontier is

independent of input values because we assume

inputs–outputs separability. For this reason and for

simplicity in equations, we present the procedure

assuming that all DMUs are centred around the

mean value (zero in the deviations to mean estima-

tion). Holding this in mind, the outputs in the

deterministic production frontier are given as

�ln ŷ1ið Þ ¼ �0:1429þ 0:6243 ln
y2i
y1i

� �

þ 1:5089
1

2
ln

y2i
y1i

� �� �2

�ln ŷ2ið Þ ¼ �ln ŷ1ið Þ � ln y2i=y1ið Þ

Table 2. Parametric output distance function estimations

Variables and parameters t-ratio Variables and parameters t-ratio

Intercept �0 �0.1429 19.52 Inputs (Cont.)

Outputs (ln x1)(ln x5) �15 0.0188 1.98
ln y1 (mathematics score) �1 0.3757 (ln x1)(ln x6) �16 �0.0152 1.28
ln y2 (reading score) �2 0.6243 41.45 (ln x1)(ln x7) �17 �0.0166 1.01
(ln y1)

2 �11 1.5089 (ln x1)(ln x8) �18 �0.0857 2.26
(ln y2)

2 �22 1.5089 17.38 (ln x2)(ln x3) �23 �0.0601 1.69
(ln y1)(ln y2) �12 �1.5089 (ln x2)(ln x4) �24 0.0616 1.69

Inputs (ln x2)(ln x5) �25 �0.0073 0.42
ln x1 (computers/students) �1 �0.0002 0.05 (ln x2)(ln x6) �26 �0.0159 0.75
ln x2 (teachers/students) �2 �0.0046 0.54 (ln x2)(ln x7) �27 0.0017 0.06
ln x3 (mother’s level of education) �3 �0.0357 3.35 (ln x2)(ln x8) �28 0.1638 2.42
ln x4 (father’s level of education) �4 �0.0214 1.90 (ln x3)(ln x4) �34 �0.0570 1.96
ln x5 (cultural activities) �5 �0.0414 7.79 (ln x3)(ln x5) �35 0.0005 0.03
ln x6 (cultural possessions) �6 �0.0288 2.94 (ln x3)(ln x6) �36 0.0185 0.75
ln x7 (homework) �7 �0.0209 1.77 (ln x3)(ln x7) �37 �0.0063 0.22
ln x8 (peer�group) �8 �0.1497 7.81 (ln x3)(ln x8) �38 0.0240 0.30

(ln x1)
2 �11 0.0124 1.17 (ln x4)(ln x5) �45 �0.0074 0.40

(ln x2)
2 �22 0.1620 3.11 (ln x4)(ln x6) �46 �0.0162 0.70

(ln x3)
2 �33 0.0930 2.01 (ln x4)(ln x7) �47 0.0121 0.43

(ln x4)
2 �44 0.0250 0.59 (ln x4)(ln x8) �48 0.0879 1.15

(ln x5)
2 �55 �0.0576 2.72 (ln x5)(ln x6) �56 0.0066 0.54

(ln x6)
2 �66 �0.0189 0.70 (ln x5)(ln x7) �57 0.0288 1.82

(ln x7)
2 �77 0.0015 0.04 (ln x5)(ln x8) �58 �0.0293 0.79

(ln x8)
2 �88 0.0204 0.09 (ln x6)(ln x7) �67 0.0322 1.86

(ln x1)(ln x2) �12 �0.0656 3.70 (ln x6)(ln x8) �68 �0.0322 0.68
(ln x1)(ln x3) �13 �0.0079 0.43 (ln x7)(ln x8) �78 �0.0323 2.86
(ln x1)(ln x4) �14 0.0106 0.58

Other ML parameters � 0.8067 30.84 Expected mean efficiency 0.8869
�2 0.0286 19.17

Note: Underlined parameters are calculated by applying imposed homogeneity conditions.

3 The monotonicity on inputs (the output distance function is nondecreasing in x) would imply that additional units of an
input will not reduce the output vector. This assumption is closely related with the existence of input congestion which
sometimes can be found in empirical and theoretical economics. To examine the theory behind the ‘uneconomic region’ of the
production function, see Borts and Mishan (1962). For recent examples in education and health, see Flegg et al. (2004) and
Ferrier et al. (2006), respectively.
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For the sake of simplicity and interpretation, we

undo the deviations to mean in outputs in order to

follow the analysis with the original positive logs of
each output working with lnð ŷ1Þ and lnð ŷ2Þ. In Fig. 1,

this corresponds to points from F to F 0.

Step 2: We calculate MRTy2y1 for all DMUs focus-

sing our attention only in those points breaking the

monotonicity on outputs (MRTy2y1 4 0). This stage

also implies computation of the partial derivatives of
the estimated distance function with respect to each

output to know if DMU i fulfils with the assumption

of monotonicity on output 1 and on output 2.

rŷ1i ¼
@ ln D̂i

@ ln ŷ1i
¼ 0:3757þ 1:5089 ln ŷ1i � 1:5089 ln ŷ2i

rŷ2i ¼
@ ln D̂i

@ ln ŷ2i
¼ 0:6243þ 1:5089 ln ŷ2i � 1:5089 ln ŷ1i

MRTy2y1 ¼ �
@ ln y2
@ ln y1

¼ �
rŷ1
rŷ2

As we can see in Table 3, there are a number of

pupils (204 cases; i.e. 8.33% of total) where mono-

tonicity on outputs does not hold and the slope of the
distance function becomes positive. This is probably

due to the fact that, in real life, with very few

exceptions, there are no pupils with outstanding
results in reading (mathematics) and extremely bad

results in mathematics (reading) and as a consequence

the production frontier curves back in the wrong

direction. If we fail to take this fact into account, we
can underestimate inefficiency levels for those stu-

dents projected at the stretches of the production

frontier, which are breaking the monotonicity
assumption in outputs.

Step 3: We compute the output projection vector

corresponding to the strict frontier, tilde denoted

ln ~y1A, that is points A00 and B00 according to Fig. 1.
Once we know a DMU A breaks monotonicity on an

output, our aim is to seek the maximum value ln ~ymax
2i

of the other output (points C and D in Fig. 1) in the

distance frontier providing to all DMU the A

inputs endowment. The maximum value found is

assigned to DMU A projecting the other output,

holding the exogenous output ratio of A constant.

�ln ŷ1ið Þ ¼ �0:1429þ 0:6243 ln
y2i
y1i

� �

þ 1:5089
1

2
ln

y2i
y1i

� �� �2

�ln ŷ2ið Þ ¼ �lnð ŷ1iÞ � lnðy2i=y1iÞ ! ln ~ymax
2i

ln ~y1A ¼ ln ~ymax
2i � ln

y2A
y1A

� �

Note that ln ~y1A will be always greater than lnð ŷ1AÞ:

Step 4: New efficiency scores for each DMU are

computed to adding up to the estimated distance

ln D̂Oiðx, yÞ the extra distance term �ln D̂extra
Oi x, yð Þ,

which separates the computed deterministic produc-

tion frontier output vector, ðlnð ŷ1iÞ, lnð ŷ2iÞÞ, from

the strict production frontier output vector,

ðlnð ~yMiÞ, lnð ~ymax
ni ÞÞ. The corresponding extra distance

for DMUs A and B are therefore graphically

measured in Fig. 1 by the Euclidean distances

between OA0 and OA00 and OB0 and OB00, respectively.

For DMU A, we obtain the following equation:

lnDextra
OA ðx,yÞ ¼ d ln ŷ1A, ln ŷ2Að Þ; ln ~y1A, ln ~ymax

2A

	 

 �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln ŷ1A� ln ~y1Að Þ

2
þ ln ŷ2A� ln ~ymax

2A

	 
2q

In our example for DMUs breaking monotonicity the

new inefficiency values slightly decrease in mean from

0.877 to 0.863.

Step 5: As described in Section III, the radial

expansion of a DMU to the strict production

function originates a target that present an output

slack. DMU A could produce more on one output

holding constant the other. The new target ln y
^

1i for

DMU A to hold monotonicity on output 1 will be as

follows:

r1A ¼
@ ln D̂

@ ln ŷ1A
¼ 0:3757� 1:5089 ln ~ymax

2i þ 1:5089 ln y
^

1A

where rearranging terms

ln y
^

1A ¼
�0:3757þ 1:5089 ln ~ymax

2i

1:5089

We measure output slack for output 1 in absolute

values as follows:

OS1A ¼ y
^

1A � ~ymax
1A

Table 3. Descriptive statistics for DMUs breaking the

monotonicity on outputs

Distance slack N

Rupture in mathematics (r150) 194
Rupture in reading (r250) 10

Total 204

8 S. Perelman and D. Santin
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For DMU B and output 2, we have

r2B ¼
@ ln D̂

@ ln ŷ2B
¼ 0:6243� 1:5089 ln ~ymax

1i þ 1:5089 ln y
^

2B

where rearranging terms

ln y
^

2B ¼
�0:6243þ 1:5089 ln ~ymax

1i

1:5089

As we did with output 1, we also measure output
slack for output 2 in absolute values as follows:

OS2B ¼ y
^

2B � ~ymax
2B

Table 4 summarizes the changes in inefficiency
values for DMUs breaking monotonicity. In this
educational example, extra distances are moderately
low but for the highest values the imposition of
monotonicity on outputs shifts some DMUs to a
more realistic radial efficiency. With respect to output
slacks, we observe important potential gains for
Spanish students, especially in mathematics.
Average output slacks in mathematics and reading
account for 0.64 and 0.52 SDs of test scores of all
students respectively. Nevertheless, for some pupils

their projection to the production frontier without

output slacks supposes to increase mathematics and
reading scores up to 2.84 and 1.30 SDs, respectively.

Finally, we focus our attention on the relationship
between school ownership and efficiency. Table 5

reports student level average efficiency before and

after imposing monotonicity on the output distance

function as well as mean output slacks. We run

different statistical tests to look for significant

performance differences regarding school ownership.

First, we test through a one-way Analysis of Variance

(ANOVA) if there are significant differences in

technical efficiency by school ownership before and

after the imposition of monotonicity. Second, we

employ a t-test for paired samples to contrast whether

or not mean technical efficiency remains constant

before and after the imposition of monotonicity.

Finally, in order to test mean output slacks differ-

ences by school ownership, and taking into account

that the output slack variables are not normally

distributed, we employ a Kruskal–Wallis test.
What can we learn from this comparison? On the

one hand, once school inputs, student background

Table 4. Descriptive statistics for estimated new efficiencies in DMUs where monotonicity is imposed

Distance slack N Mean SD Minimum Maximum

Extra distance ln D̂ extra
Oi ðx, yÞ 204 0.018 0.041 1.92E�07 0.288

Output slacks (OSmaths) 194 53.19 51.81 0.95 235.72
Output slacks (OSreading) 10 39.08 31.46 8.46 96.49

Table 5. Efficiency, output slacks and school ownership

School type N

Mean efficienya before
imposing
monotonicity

Mean efficienyb after
imposing
monotonicity

Mean mathematic
slackd after
imposing
monotonicity

Mean reading
slacke after
imposing
monotonicity

Private, government
independent

237 0.8921 0.8920 2.2713 0.1968

Private, government
dependent

829 0.8873 0.8866 3.7841 0.2093

Government 1383 0.8857 0.8846 4.8032 0.1234

All 2449 0.8869c 0.8860 4.2132 0.1596

Notes: aMean differences among school types are not statistically significant, at 95% level, with F-test¼ 1.088
(p-value¼ 0.337). Variances are distributed homogenously, at 95% level, with p-value associated to the Levene’s test¼ 0.375.
bMean differences among school types are not statistically significant, at 95% level, with F-test¼ 1.485 (p-value¼ 0.227).
Variances are distributed homogenously, at 95% level, with p-value associated to the Levene’s test¼ 0.188.
cThere is a significant difference (paired t-test¼ 4.265) between the efficiency scores before and after the imposition of
monotonicity.
dThe p-value associated with the Kruskal–Wallis test equals 0.082 revealing statistically significant mean differences for the
mathematic slack by school ownership only at 90% level.
eThe p-value associated with the Kruskal–Wallis test equals 0.429 revealing no statistically significant mean differences for the
reading slack by school ownership.
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and peer group, are taken into account, there are no
mean technical efficiency differences by school own-
ership neither before nor after applying our approach
to impose monotonicity (this result is consistent with
Perelman and Santin (2008)). On the other hand,
according to the mathematic slack, we observe that
students attending public schools have a slight, but
significant at 90% level, greater potential of improve-
ment in mathematics to reach the production frontier
according to their inputs endowment. In addition to
this, differences in reading slack are not significant by
school ownership. Finally, it is interesting to remark
that the paired t-test points out a statistically signif-
icant difference between the technical efficiency
scores estimated before and after the imposition of
monotonicity.

From our point of view, without all these proposed
corrections for those DMUs breaking off the mono-
tonicity on outputs assumption, the first estimated
radial technical efficiency results obtained with the
initial stochastic frontier analysis could be misleading
in most empirical applications.

VI. Concluding Remarks

The violation of the monotonicity on outputs
assumption is not admissible from the point of view
of production theory. In order to avoid this economic
inconsistency in empirical parametric frontier estima-
tion studies, in this article we provide a methodology,
based on the computation of the estimated output
distance function derivatives, to easily impose mono-
tonicity on outputs. The final target of this approach
is to enhance efficiency estimations with parametric
distance functions as well as to calculate the mea-
surement of parametric output slacks proposed in the
article.

The example in education reveals that around a
nonnegligible 8.33% of DMUs break monotonicity
on outputs especially in mathematics (pupils with
high results in reading with respect to a relative low
performance in mathematics), representing 7.92% of
total. Although the extra-distance measurements
obtained in this application are of a modest impor-
tance, we find that nonnegligible output slacks in
both outputs. This result points out to high potential
educational gains in Spain especially in the mathe-
matics learning process. Furthermore, we do not find
technical efficiency mean differences by school own-
ership. However, we observe that students attending
public schools have a slight, but significant at 90%
level, greater mathematics slack pointing out to a
major potential of improvement in mathematics.

We do think that these new proposed efficiency
corrections may concern practitioners in future
empirical applications to obtain unbiased interpret-
able efficiency results.
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