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Abstract. Simpira v2 is a family of cryptographic permutations proposed at ASIACRYPT 2016

which can be used to construct high throughput block ciphers using the Even-Mansour construc-

tion, permutation-based hashing and wide-block authenticated encryption. In this paper, we give

a 9-round impossible differential of Simpira-4, which turns out to be the first 9-round impossible

differential. In order to get some efficient key recovery attacks on its block cipher mode (EM con-

struction with Simpira-4), we use some 6/7-round shrunken impossible differentials. Based on eight

different 6-round impossible differentials, we propose a series of 7-round key recovery attacks on

the block cipher mode, each 6-round impossible differential helps to recover 32-bit of the master

key (512-bit) and totally half of the master key bits are recovered. The attacks need 257 chosen

plaintexts and 257 7-round encryptions. Furthermore, based on ten 7-round impossible differentials,

we add one round on the top or at the bottom to mount ten 8-round key recovery attacks on the

block cipher mode, which recover the full key space (512-bit) with the data complexity of 2170

chosen plaintexts and time complexity of 2170 8-round encryptions. Those are the first attacks on

round-reduced Simpira v2 and do not threaten the EM mode with the full 15-round Simpira-4.

Keywords: Simpira-4, impossible differential attack, Super S-box, the Even-Mansour construction,

security claim

1 Introduction

Since the block cipher Rijndael [1] designed by Daemen and Rijmen was selected as the Advanced En-

cryption Standard (AES) in 2001 by NIST, it has been researched worldwide by various cryptanalysis

methods, e.g., impossible attack [2,3,4], SQUARE attack [5], collision attack [6] and meet-in-the-middle

attack [7,8,9] et al. Although the full versions of AES-192 and AES-256 have been theoretically broken

under the related-key model [10,11], the attacks do not threaten the practical use of AES. Recently,

some new 5-round distinguishers of AES are proposed [12,13], and extend the long standing 4-round

distinguisher by 1 round.

Nowadays, Intel, AMD and ARM all introduce AES instructions to their modern processors to reduce

the encryption overheads. To design a permutation based on the AES round function becomes a mean-

ingful project as when used in software implementation, it can introduce the AES instruction directly.

As there are proposed cipher suites that allows the message blocks can be processed independently for

encryption, the fixed block size of AES becomes a limitation.

To achieve a higher throughput, Shay Gueron and Nicky Mouha proposed Simpira in ASIACRYPT

2016[14]. It is a family of cryptographic permutations that accepts arbitrarily large input sizes of x ×

128 bits, x ∈ N
+. Meanwhile, to take advantage of the security of AES round function and the AES

instructions set for well optimized software implementations, Simpira uses two rounds of AES as the

basic building block and use a Feistel Structure for x ≥ 2 that operates on x input subblocks of 128 bits

each.

One application of Simpira recommended by the designer is to be used as the permutation in the

Even-Mansour construction [15,16] to construct a block cipher without round keys. The Even-Mansour

construction has a trade-off security claim that when D plaintext-ciphertexts are available, the secret key

K can be recovered in 2n/D evaluations of the permutation [15]. And also, the designer give a security



claim about the permutation that Simpira can be used in constructions where a adversary can not query

a distinguisher more than 2128 times.

There are two related works both focus on Simpira v1. In SAC 2016 [17], Dobraunig et al showed

that, for Simpira v1, the underlying assumptions of independence and thus the derived bounds are

incorrect. They provided differential trails with only 40 ( instead of 75) active S-boxes for Simpira v1

with x = 4. Based on these trails, they propose full-round collision attacks on the proposed Davies-Meyer

hash constructions based on Simpira v1 with x = 4. In addition, Sondre Rønjom reported on invariant

subspaces in Simpira v1 with x = 4 [18]. He showed that the whole coset of dimension 56 over F64
28
, and

these invariant subspaces result from the AES based round function together with the particular choice

of Feistel configuration.

To solve these problems, the designer give Simpira v2 by ensuring that every subblock will only be

operated once. Simpira v2 has more complex round constants and uses a more logical Feistel Structure.

Without other statements, we use Simpira to denote Simpira v2 for short in the following.

In this paper, we explore the security of Simpira v2 against impossible differential cryptanalysis.

Impossible differential cryptanalysis was independently proposed by Knudsen [19] and Biham [20]. Its

main idea is to use impossible differentials that hold with probability zero to discard the wrong keys

until only one key is left. Recently, inspired by Sun’s work [21,22], a new automatic search tool [23] for

searching impossible differentials is proposed.

Our Contribution. In this paper, we will focus on the block cipher mode of Simpira v2 with

four branches (x = 4), i.e. the Even-Mansour construction with Simpira-4. We first present a 9-round

impossible distinguisher which turns out to be the first 9-round impossible differential on Simpira v2 with

x = 4. In addition, we mount two impossible differential key recovery attacks: one is on 7-round Simpira

with x = 4 with a data complexity of 257 plaintexts and a time complexity of 257 encryption units to

recover 256 of 512 key bits with 6-round impossible differentials, and the other is on 8-round Simpira

with x = 4 with a data complexity of 2170 plaintexts and a time complexity of 2170 encryption units to

recover all 512 key bits with a 7-round impossible differentials.

2 Preliminaries

2.1 Notation

⊕
bitwise XOR

P the plaintext

C the ciphertext

S the internal state

F the basic building block of Simpira

∆S the difference between S and S
′

Sh the input of the hth round, h ≥ 0

Si the ith subblock of S, i∈ {0,1,2,3}

Si[j] the jth byte of Si, j ∈ {0, 1, 2, · · ·, 15}

Simpira-x Simpira with x subblocks, x ∈ N
+

0 nibbles and subblocks with zero difference

* nibbles and subblocks with nonzero difference

f−1 the inverse operation of function f

a,b,α,β to express the difference pattern of a subblock

2.2 Description of Simpira

Simpira is a family of cryptographic permutatioins that supports of 128 × x bits where x is a positive

integer. Its design goal is to achieve high throughput on virtually all modern 64-bit processor architectures.
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We will only give the detail of Simpira-4 as all attacks are on it. For more about Simpira, we refer to

[14].
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Fig. 1. Round Function of Simpira-4

The round function of Simpira-4 is as shown in Figure 1, so the state update rule will be as follows

with 0 ≤ i ≤ 14:

S0
i+1 = S1

i ⊕ F2i+1,4(S
0
i ),

S1
i+1 = S2

i ,

S2
i+1 = S3

i ⊕ F2i+2,4(S
2
i ),

S3
i+1 = S0

i .

Note that when the number of rounds is not a multiple of 4, the state words are output in a permuted

order to allow for more efficient implementations.

The Feistel update function is represented as F = Fc,x where x is the number of subblocks, i.e. 4

for Simpira-4 and c is a counter counted from 1. It is made up of two rounds of AES while omitting

the second AddRoundKey operation. The only difference is that the specific round constant updating

process, i.e. AddRoundKey in AES round function. But beyond that, SubBytes, ShiftRows, MixColumns

are identical as AES. For more detail, we refer to [1].

Every subblock can be expressed as a 4× 4 matrix of bytes as:

S = (s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14, s15) =









s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15









We also refer to si as S[i].

To be convenient when referring to the internal states inside the F function for an input S, we use

the same notation as in [17]:

S
SB
−−→ SSB1

SR
−−→ SSR1

MC
−−→ SMC1

AC
−−→ SAC SB

−−→ SSB2
SR
−−→ SSR2

MC
−−→ SMC2 = F (S).

2.3 The Even-Mansour Construction

The (single-key) Even-Mansour construction[16] encrypts a plaintext P to a ciphertext under a secret

key K as follows:

C = EK(P ) = π(P ⊕K)⊕K,

where π is an n-bit permutation.
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2.4 Our Attack Assumptions

In this paper, we focus on the impossible differential cryptanalysis of round-reduced Simpira-4. As rec-

ommended by the designer, Simpira-4 can be used as a permutation to construct block ciphers without

round keys such as the Even-Mansour scheme with 512-bit key.

In 2012 [15], Dunkelman and Shamir gave a security claim that when D plaintext-ciphertexts are

available, the secret key K of the Even-Mansour construction can be recovered in 2n/D(off-line) evalua-

tions of the permutation π. If we use Simpira-4 as the permutation in the Even-Mansour scheme, then the

product of the time complexity and the data complexity of an attack must be less than 2512 encryption

units.

Meanwhile, the designer also gave a security claim about Simpira [14]: Simpira can be used in con-

struction that require a random permutation, however no statements can be made for adversaries that

exceed 2128 queries. Due to this occasion, the data complexity and the time complexity of the attack both

should be less than 2128.

As a result, for different security claims, we mount two attacks of the Simpira-4 basing Even-Mansour

construction: one is on 7-round Simpira-4 with a data complexity of 257 plaintexts and a time complexity

of 257 encryption units and the other one is on 8-round Simpira-4 with a data complexity of 2170 plaintexts

and a time complexity of 2170 encryption units.

3 Impossible Differential Attacks on Simpira-4

In this section, we firstly present some useful observations and properties of Simpira-4, and then present

the impossible differential distinguisher and the attack procedure.

3.1 Some Observations

In [24], Daemen and Rijmen introduce the structure of Super Sbox to analyze the two-round differentials

of AES. For clarity, we quote the definition of Super S-box.

Definition (Super Sbox). The AES Super Sbox maps a 4-byte array (s0, s1, s2, s3) to a 4-byte array

(e0, e1, e2, e3) and takes a 4-byte key k. It consists of the sequence of four transformations: Subbytes,

MixColumns, AddRoundKey and SubBytes.

Property(Differential Property of Super Sbox)Given ∆input and ∆output two non-zero difference in

F 32
2 , the equation of Super Sbox:

Super − S(x)⊕ Super − S(x⊕∆input) = ∆output,

has one solution in average for each key value.

Observation 1.Consider the computational process of F -function: If there exists that at least one column

of ∆SSR1 is inactive, the number of all possible values of ∆F will be not but less than 2128.

Proof. Without loss of generality, we set the difference pattern of ∆S:

∆S = (0, ∗, 0, 0, 0, 0, ∗, 0, 0, 0, 0, ∗, ∗, 0, 0, 0)

and swap the order of the first SubBytes operation and the first ShiftRows operation (Figure 2) to obtain

an integrated Super Sbox structure.

Then after the ShiftRows operation, the difference pattern will be:

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ∗, ∗, ∗, ∗).
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Fig. 2. Super Sbox of AES

The difference pattern of the output of the Super Sbox will be:

∆SSB2 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ∗, ∗, ∗, ∗),

so although all 16 bytes of ∆F are active, the number of possible values is only 232 instead of 2128. �

Observation 2. (The 9-round Impossible Differential) If ∆S1
0 is the one and only active subblock of

the input difference ∆S0 and ∆S0
9 is the only active subblock of the output difference ∆S9, the differen-

tial:

(0, ∆S1
0 , 0, 0)

9R
−−→ (∆S0

9 , 0, 0, 0)

is impossible when the difference pattern of SR−1 ◦MC−1(∆F (S1
0)) and SR−1 ◦MC−1(∆F (S0

9)) are not

same.

For example, when the difference pattern of ∆S1
0 is

(∗, 0, ∗, ∗, ∗, ∗, 0, ∗, ∗, ∗, ∗, 0, 0, ∗, ∗, ∗),

the difference pattern of SR−1 ◦MC−1(∆F (S1
0)) is

(∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, 0, 0, 0, 0);

when the difference pattern of ∆S0
9 is

(0, ∗, 0, 0, 0, 0, ∗, 0, 0, 0, 0, ∗, ∗, 0, 0, 0),

the difference pattern of SR−1 ◦MC−1(∆F (S0
9)) is

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ∗, ∗, ∗, ∗).

In this case, as there exists i that SR−1 ◦ MC−1(∆F (S1
0))[i] is zero but SR−1 ◦ MC−1(∆F (S9

0)[i] is

nonzero, or vice versa, we say their difference patterns are different.

Proof. We denote the difference pattern of ∆S1
0 as a and the difference pattern of F (∆S1

0) as α, e.g.,

α = F (a). Similarly, we use b and β to denote the difference patterns of ∆S0
9 and F (∆S0

9) respectively,

then β = F (b).

In the forward direction, when the input difference pattern:

∆S0 = (0, ∆S1
0 , 0, 0),

the first 4-round difference pattern will be as follows:

∆S0 = (0, a, 0, 0) → (a, 0, 0, 0) → (α, 0, 0, a) → (F (α), 0, a, α) → (F 2(α), a, α, F (α)) = ∆S4;

and in the backward direction, when the output difference of the 9-round distinguisher:

∆S9 = (∆S0
9 , 0, 0, 0),
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Fig. 3. The 9-Round Impossible Differential
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the last 4-round differential will be:

∆S9 = (b, 0, 0, 0) → (0, b, 0, 0) → (0, 0, b, β) → (β, F (β), 0, b) → (b, β, F (β), F 2(β)) = ∆S5.

As S2
4 = S1

5 , the difference pattern of ∆S2
4 will be same as the difference pattern of ∆S1

5 , that means

there exists at least one value of S2
4 that has the difference pattern α, and S1

5 that has the difference

pattern β, satisfying that ∆S2
4 = ∆S1

5 , e.g. ∆F (S1
0) = ∆F (S0

9).

Since the inverse of ShiftRows and MixColumns are both linear operations, values of the same differ-

ence pattern will also share a same difference pattern through these operations, e.g.

SR−1
◦MC−1(∆F (S1

0)) = SR−1
◦MC−1(∆F (S0

9)).

That is contradict to our assumption, so the observation is proved.

As shown in the above example, when we suppose that the difference pattern of a as:

(∗, 0, ∗, ∗, ∗, ∗, 0, ∗, ∗, ∗, ∗, 0, 0, ∗, ∗, ∗)

and the difference pattern of b as:

(0, ∗, 0, 0, 0, 0, ∗, 0, 0, 0, 0, ∗, ∗, 0, 0, 0),

the difference pattern of SR−1 ◦MC−1(F (a)) will be:

SR−1
◦MC−1(α) = (∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, 0, 0, 0, 0)

and the difference pattern of SR−1 ◦MC−1(F (b)) will be:

SR−1
◦MC−1(β) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ∗, ∗, ∗, ∗).

Obviously, they are different, then

(0, a, 0, 0)
9R
−−→ (b, 0, 0, 0)

is an impossible differential. �

3.2 Attack on 7-round Simpira-4

Because of the security claim about Simpira that an adversary can not query the distinguisher more than

2128 times, we can not directly use the 9-round distinguisher to mount an attack. Instead, using the idea

of the contradiction in the 9-round distinguisher, we deduce a 6-round impossible distinguisher.

As shown in Figure 4, S3
1 is the one and only active subblock of S1, then after a 3-round encryption,

the difference pattern of S4 will be:

(∆S0
4 , ∆S1

4 , ∆S2
4 , ∆S3

4) = (a, α, F (α), 0).

So as ∆S0
5 = ∆F (S0

4)
⊕

∆S1
4 , the difference pattern of ∆S0

5 will be α.

When S7 satisfies that ∆S1
7 = b and ∆S2

7 = β, in the backward direction, the difference pattern of

∆S0
5 will be β after a 2-round decryption.

As a result, α = β, we get the contradiction proved in the 9-round distinguisher, so the differential in

Figure 4 is impossible.

By adding one round on the top of the 6-round distinguisher, we achieve a 7-round attack on Simpira-4

under the Even-Mansour construction. The differential of the first round is depicted in Figure 5.

The attack process is as follows:

(1) Construct 2n structures that each structure is made up of 248 plaintexts. We set P 0[1, 12] and SR−1 ◦

MC−1(P 1)[12, 13, 14, 15] to be the six active bytes, then each structure will provide 295 pairs.
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Fig. 4. A 6-Round Impossible Differential

(2) Encrypt the plaintexts and only choose the pairs that satisfy ∆C1 = b and ∆C2 = β.

This is a 64-bit filter, after this step, about 2n+95−64 = 2n+31 pairs leave in total.

(3) For each remaining pair, ∆S0
0 is equal to ∆P 0. When ∆F (S0

0) is equal to ∆P 1, we get the input

difference of the distinguisher. As ShiftRows and MixColumns are both linear operations, with the

property of Super S-Box, we get the value of S0
0 [1, 6, 11, 12]. Xor the value of S0

0 [1, 6, 11, 12] with the

value of P 0[1, 6, 11, 12] to deduce K0[1, 6, 11, 12] which should be eliminated.

(4) Repeat the step(3) until there are only one value of the 32-bit key value left and that is the right

value of K0[1, 6, 11, 12].

By changing the positions of active nibbles of the structure, we can get all 256-bit value of K0 and

K2. Table 1 lists the positions of active nibbles with their corresponding key values.

Complexity. To recover K0[1, 6, 11, 12], we need to analyze the remaining 2n+31 pairs. The number

of remaining 32-bit key values is N = 232 × (1 − 2−32)2
n+31

. In order to make sure that N ≈ 1, we

choose n = 6. Then the data complexity is 254 chosen plaintexts. The time complexity of the attack is
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Table 1. Corresponding Key Bytes of the 7-Round Attack

∆P 0(∆P 2) ∆C1(∆C3) Responding Bytes of K0(K2)

(*00000000000000*) (0****0****0****0) [0,5,10,15]

(0*0000000000*000) (*0****0****00***) [1,6,11,12]

(00*0000000000*00) (**0****00****0**) [2,7,8,13]

(000*0000000000*0) (***00****0****0*) [3,4,9,14]

obviously dominated by encrypting the plaintexts, so it is 254 encryption units. Similarly, to recover the

other 224-bit value of K0 and K2, we need to repeat a similar attack procedure eight times. That is, to

recover K0 and K2, the data complexity is 257 chosen plaintexts, the time complexity is 257 encryption

units.

3.3 Attack on 8-round Simpira-4

As the security claim of the Even-Mansour scheme, we could not use the 9-round distinguisher to attack

Simpira-4 either. To attack 8-round Simpira-4, we propose a 7-round distinguisher. Its key idea is also

same as that in the 9-round distinguisher. When the input difference ∆S1 = (0, a, 0, 0) and the output

difference ∆S8 = (∗, 0, b, β), we will get the contradiction.

Using the 7-round impossible differential, we recover all 512-bit key value of Simpira-4 under the

Even-Mansour construction. The attack can be partitioned into two phases:

(a) By adding one round on the top of the 7-round impossible differential, we mount an 8-round attack

to recover 256-bit key;

(b) Recover the other 256-bit key by adding one round on the bottom of the distinguisher.

The difference characteristic of the first round is depicted in Figure 7. The process of the first phase

is as follows:

Phase a:

(1) Construct 2n structures that plaintexts in each structure traverses 8 bytes: P 2[1, 6, 11, 12] and SR−1◦

MC−1(P 3)[12, 13, 14, 15].

As a result, in each structure, there are 264 plaintexts providing 2127 pairs.

(2) Encrypt the plaintexts in each structure and only choose the pairs that satisfy:(a) ∆C1 = 0; (b)

∆C2 = b; (c) ∆C3 = β.

This step performs a 192-bit filter, so we expect about 2n+127−192 = 2n−65 pairs left in total.
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Fig. 6. The 7-Round Distinguisher

(3) For each left pair, we can directly get the value of ∆S2
0 and ∆S3

0 from ∆P 2 and ∆P 3 respectively.

When ∆F (S2
0) = ∆S3

0 , S
1
1 will be the only active subblock in S1, thus we get the input difference of

the distinguisher.

By applying the differential property of the Super Sbox, we can easily get the value of S2
0 [1, 6, 11, 12].

Combining S2
0 [1, 6, 11, 12] and P 2[1, 6, 11, 12], we get one wrong value of K2[1, 6, 11, 12].

(4) Repeat the step(3) until there are only one value of K2[1, 6, 11, 12] remaining, and that is the right

value.
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By changing the position of active bytes of P 2 and C2, we can recover all 256-bit value of K2 as shown

in Table 2.

Table 2. Corresponding Key bytes of Phase a

∆P 2(∆P 0) ∆C2(∆C0) Responding Bytes of K2(K0)

(0*0000*0000**000) (*0****0****00***) [1,6,11,12]

(00*0000**0000*00) (**0****00****0**) [2,7,8,13]

(000**0000*0000*0) (***00****0****0*) [3,4,9,14]

(*0000*0000*0000*) (0****0****0****0) [0,5,10,15]

Complexity. To recover K2[1, 6, 11, 12], we need to analyze 2n−65 pairs. The number of remaining

32-bit key values is N = 232 × (1 − 2−32)2
n−65

. In order to make sure that N ≈ 1, we choose n = 102,

then the data complexity is 2166 chosen plaintexts; the time complexity of the attack is also 2166 8-round

encryptions. Similarly, to recover all bits of and K0 and K2, we repeat the same procedure eight times.

So the data complexity is 2169 chosen plaintexts and the time complexity is 2169 encryption units.

Till now, we recover all 256-bit value of K0 and K2. In the following we mount an attack to recover

K1 and K3 by adding one round on the bottom of the 7-round distinguisher. The differential trail of the

last round is shown in Figure 8.

Phase b:

(1) Construct 2n structures that each structure is made up of 232 plaintexts that traverses P 1[1, 6, 11, 12].

We expected to get 2n+63 pairs in total.

(2) Encrypt the plaintexts and only choose the pairs that satisfy:(a) ∆C1 = b; (b) ∆C2 = β.

This step performs a 64 bits filter, so after this step, about 2n−1 pairs leave.

(3) For each remaining pair, we set ∆F (S0
8) = ∆C0, then ∆S1

8 = 0, we get the output difference of the

impossible distinguisher. By using the property of the Super Sbox, we get the value of S3
9 . Xor the

value of S3
9 with the value of C3, we get the value of K3 and delete it.

(4) Repeat the step(3) until there is only one value of K3 remaining.

Similarly as phase a, we can recover all 256-bit value of K1 and K3 by mounting two analogous

attacks.

Complexity. To make sure that there is only one value of 128-bit key value remaining after the

attack process, N = 2128 × (1− 2−128)2
n−1

should be approximately equal to 1. We choose n = 136, then
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Fig. 8. Last Round of Phase b

the data complexity is about 2168 chosen plaintexts, the time complexity is about 2168 encryption units

to encrypt the plaintexts. As we need to mount two attack process to recover all 256-bit of K1 and K3,

so the data complexity is 2169 plaintexts, the time complexity is 2169 encryption units.

So in total, we need a data complexity of 2170 chosen plaintexts and a time complexity of 2170 to

recover all 512-bit key value.

4 Conclusion

In this paper, we propose a 9-round impossible differential on Simpira-4, to our best knowledge, this is the

first impossible distinguisher of Simpira-4. By using the same contradiction as in the 9-round distinguisher,

we propose a 6-round distinguisher and achieve a 7-round attack on Simpira-4 under the Even-Mansour

construction with a data complexity of 257 plaintexts and a time complexity of 257 encryption units to

recover 256 bits key. After that, we present an attack on 8-round Simpira-4 under the Even-Mansour

construction. By using 2170 plaintexts and 2170 encryption units, we recover all 512-bit key. These two

attacks aim at two different security claims of the Even-Mansour scheme and the Simpira-4 permutation

respectively. As far as we know, this is the first result of impossible differential attacks on Simpira v2.
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