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Abstract. Impossible differential cryptanalysis is well known to be ef-
fective in analyzing the security of block ciphers. Known result shows
that there always exists 5-round impossible differentials of a Feistel cipher
with bijective round function. However, if more details of the round func-
tion are known, the result could be improved. This paper mainly studies
the impossible differentials of Feistel ciphers with both SP and SPS
round functions where the linear transformation P is defined over F

n×n
2 .

For Feistel ciphers with SP round functions, any column of P ⊕ P−1

whose Hamming weight is greater than 1 corresponds to some 6-round
impossible differentials. The existence of some 7-round impossible dif-
ferentials can be determined by counting the times that 1 appears at
some special positions of P and P−1. Some 8-round impossible differ-
entials can be found by computing the rank of some sub-matrix of P .
Impossible differentials of Camellia found by these techniques are well
consistent with previously known results. For Feistel ciphers with SPS
round functions, by determining the rank of some sub-matrix of P , 6-
round impossible differentials can be found, which improves the results
on E2 by one round. These results tell that when designing a Feistel ci-
pher with SP or SPS round function where the diffusion layer is selected
from F

n×n
2 , the linear transformation should be chosen carefully to make

the cipher secure against impossible differential cryptanalysis.
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1 Introduction

Impossible differential cryptanalysis, proposed by Biham and Knudsen, was first
applied to the cipher DEAL [7] and later to Skipjack [8]. The main idea is to
specify a differential with probability zero over some rounds of the cipher. Then
one can derive the right keys by discarding the wrong keys which lead to the
impossible differential. Impossible differential cryptanalysis has been applied to
AES, Camellia, MISTY1 and so on with very good results [10–16].
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The key step of impossible differential cryptanalysis is to retrieve the longest
impossible differential. The main technique is miss-in-the-middle [8, 9], namely
to find two differential characteristics with probability 1 from encryption and
decryption directions, and connect them together. When there are some incon-
sistencies, their combination is the impossible differential that we are looking
for. Once the impossible differential is found, it can be used to distinguish the
cipher from a random permutation. In [17], Kim et al. introduced the U-method
to find impossible differentials of various block ciphers. However, U-method is
so general that some information is often lost during calculating the impossible
differentials. Some longer impossible differentials cannot be found by using the
U-method.

The class of block ciphers considered in this paper is Feistel cipher with SP
and SPS round functions whose diffusion layers can be represented by matrices
over F2. These structures are worth being looked at since they are so popular
that they have been employed by many famous ciphers, including Camellia, E2
and so on. For Feistel structure, 5-round impossible differential always exists if
the round function is bijective [7]. However, if more details of the round function
are taken into consideration, we can prove the existence of impossible differ-
entials over more than 5 rounds. By carefully analyzing the properties of the
linear transformations, we found that the existence of impossible differentials in
a cipher is strongly related to the properties of the diffusion layer P . We should
emphasize that the idea of exploiting incomplete diffusion of the round function
is not new. Impossible differential for 7 rounds of DES is shown in [9], 8-round
impossible differential for Camellia has been used in the previous attacks [11].

The contribution of this paper is an improvement of the original judgement
about the impossible differential for Feistel cipher. Instead of searching by ex-
perience and intuition, some sufficient conditions are given to characterize the
existence of 6/7/8-round impossible differentials of Feistel cipher with SP round
functions and 6-round impossible differential of Feistel cipher with SPS round
functions. One can discover these impossible differentials just by observing the
linear transformation. All of these kinds of impossible differentials cannot be
found by U-method. As examples, 6-round impossible differential of E2 is found
while previously known round of impossible differentials of E2 is 5 [3]. 8-round
impossible differentials of Camellia found by this technique are well consistent
with [11].

The paper is organized as follows: Feistel structure and χ-function are de-
scribed in Section 2. In Section 3 and Section 4, we discuss the existence of
impossible differentials of Feistel ciphers with SP and SPS round functions,
respectively. Section 5 concludes this paper.

2 Preliminaries

In this section, we describe Feistel structure firstly, and then give the definition
and properties of χ-function.
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2.1 Feistel Structure

A Feistel network consists of r rounds, each of which is defined as follows. Denote
by (L, R) the 2n-bit input, set α0 = L and β0 = R, let (αi−1, βi−1) be the input
to the i-th round, (αi, βi) and ki be the output and the round key of the i-th
round, respectively. Then (αi, βi) = Round(αi−1, βi−1) is defined as:{

αi = βi−1,
βi = f(βi−1, ki) ⊕ αi−1,

where f is the round function and in this paper, we always assume that f(βi−1, ki)
= f(βi−1 ⊕ ki). After iterating Round r times, the ciphertext (CL, CR) is defined
as (βr, αr). According to the definition of round function f , Feistel cipher can
be fractionized to many branch structures. Major round functions under study
are based on SP structure and SPS structure (See Fig. 1).

The former structure has one nonlinear transformation layer, and one linear
transformation layer. Examples of these ciphers are DES [4], Camellia [5]. The
later structure consist of 1st nonlinear transformation layer, linear transforma-
tion layer, and 2nd nonlinear transformation layer. Example of this kind of cipher
is E2 [1].

This paper focuses on the above two kinds of Feistel ciphers with following
nonlinear transformation S and linear transformation P . S : F

n
2t → F

n
2t is defined

as S(x1, x2, . . . , xn) = (S1(x1), S2(x2), . . . , Sn(xn)), where Si(1 ≤ i ≤ n) are
nonlinear bijective mappings on F2t . P is an invertible linear transformation
defined over F

n×n
2 .

To be convenient, we simply denote P = (pi,j)1≤i,j≤n = (p1, . . . , pn), P−1 =
(qi,j)1≤i,j≤n = (q1, . . . , qn), where pi and qi are the i-th columns of P and P−1,
respectively. E denotes a Feistel cipher with SP round function. D denotes a Feis-
tel cipher with SPS round function. Brief descriptions of Camellia, SNAKE(2)
and E2 are presented in Appendix A.
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Fig. 1. Feistel Ciphers with SP and SPS Round Function

Proposition 1. If the round function of a Feistel cipher is bijective, then (x, 0)
� (0, x) is a 5-round impossible differential of the cipher, where x �= 0.
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The above proposition is pointed out by Knudsen. As described in Fig. 2, the
output difference of the 3rd round function should be x⊕x = 0, while the input
difference is non-zero, which indicates a contradiction since f is bijective.
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Fig. 2. 5-round Impossible Differential of Feistel Structure

2.2 χ-Function

In this section, we first give the definition of χ-function that maps any element
of F

n
2t to F

n
2 , and then discuss basic properties of χ-function.

Definition 1. (χ-Function) Let θ : F2t → F2 be defined as

θ(x) =

{
0 if x = 0,
1 if x �= 0.

Then χ : F
n
2t → F

n
2 is defined as

χ(x1, x2, . . . , xn) = (θ(x1), θ(x2), . . . , θ(xn)),

while χs : F
n
2t → F2 is defined as

χs(x1, x2, . . . , xn) = θ(xs).
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The χ-function is well used in truncated differential cryptanalysis, when we
only consider whether there is a difference or not while the concrete value of
the difference is out of consideration. If χs(ΔX) = 1 (ΔX ∈ F

n
2t), it means that

there is some non-zero difference at the s position.
For convenience, let Ei ∈ F

n
2 be a vector whose i-th component is 1 while

other components are 0, and ei is any one of the vectors such that χ(ei) = Ei.
For nonlinear transform layer S, we denote S(X) ⊕ S(X ⊕ ΔX) by S(ΔX).

Property 1. (1) For any difference ΔX ∈ F
n
2t ,

χ(S(ΔX)) = χ(ΔX);

(2) Let P = (p1, . . . , pn) where pi is the i-th column of P , if ΔX = ei, then

χ(P ◦ S(ΔX)) = χ(P (ΔX)) = pi;

(3) Let X = (x1, . . . , xn) and Y = (y1, . . . , yn), respectively, if xs = 0, then

χs(X ⊕ Y ) = χs(Y ).

Definition 2. (Hamming Weight) Let Fq be a finite field with q elements,
X = (x1, . . . , xn) ∈ F

n
q . Then the Hamming Weight of X is defined as the number

of non-zero components of X:

w(X) = |{i|xi �= 0, 1 ≤ i ≤ n}|.

3 Analysis of Round-Reduced Feistel Cipher with SP
Structure

By carefully analyzing the properties of the linear transformations and taking
the χ-function into consideration, some sufficient conditions will be given which
characterize the existence of 6/7/8-round impossible differentials of Feistel ci-
pher with SP round functions (Notice that Feistel cipher with this structure is
denoted by E).

To apply the miss-in-the-middle technique effectively, we concentrate on dif-
ferentials with the form (ei, 0) → (0, ej), i.e. both the Hamming weight of input
difference and out difference are 1.

3.1 Analysis of 6-Round Feistel Cipher with SP Structure

Let (αr, βr) be the output of the r-th round, and Yr and Zr be the outputs
of S-Box layer and P layer of the r-th round, respectively. In the following,
impossibility of some differential (ei, 0) → (0, ej) will be proved given that some
special properties of the linear transformation P are satisfied.

Proposition 2. For linear transformation P , let P ⊕ P−1 = (γ1, γ2, . . . , γn),
where γi is the i-th column of P ⊕P−1. If there exists an i, 1 ≤ i ≤ n, such that
w(γi) ≥ 2, then for any j, 1 ≤ j ≤ n, (ei, 0) → (0, ej) is a 6-round impossible
differential of E.
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Fig. 3. 6-round Impossible Differential of Feistel-SP

Proof. Fig. 3 describes the 6-round impossible differential. From the encryption
direction, if the input difference is

Δ(α0, β0) = (ei, 0),

the differences of the output of the 1st and 2nd rounds can be calculated as
follows:

Δ(α1, β1) = (0, ei),
Δ(α2, β2) = (ei, P ◦ S(ei)).
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Accordingly, in the third round,

ΔY3 = S ◦ P ◦ S(ei),
ΔZ3 = P ◦ S ◦ P ◦ S(ei).

From the decryption direction, if the output difference (the 6-th round) is

Δ(α6, β6) = (0, ej),

the differences of the output of the 5-th and 4-th rounds are

Δ(α5, β5) = (ej , 0),
Δ(α4, β4) = (P ◦ S(ej), ej).

According to the Feistel structure,

Δα4 = Δβ3 = ΔZ3 ⊕ Δα2 = ΔZ3 ⊕ Δβ1,

the following equation must hold:

P ◦ S(ej) = Δα4 = ΔZ3 ⊕ Δβ1 = P ◦ S ◦ P ◦ S(ei) ⊕ ei,

which implies that

S(ej) = S ◦ P ◦ S(ei) ⊕ P−1(ei),

and

χ(S(ej)) = χ
(
S ◦ P ◦ S(ei) ⊕ P−1(ei)

)
.

From Property 1,

χ(S(ej)) = χ(ej) = Ej .

If w(pi ⊕ qi) ≥ 2, which implies that pi and qi differ at least 2 positions, say
pt1,i = 0, qt1,i = 1 and pt2,i = 1, qt2,i = 0. Thus

χt1(S ◦ P ◦ S(ei) ⊕ P−1(ei)) = χt1(P
−1(ei)) = 1,

χt2(S ◦ P ◦ S(ei) ⊕ P−1(ei)) = χt2(S ◦ P ◦ S(ei)) = 1,

which implies that w(χ(S ◦ P ◦ S(ei) ⊕ P−1(ei))) ≥ 2, and this is contradicted
with χ(S(ej)) = Ej whose Hamming weight is 1. Thus (ei, 0) → (0, ej) is a
6-round impossible differential. 	

Example 1. (6-Round Impossible Differential of Camellia) By careful computa-
tion, we have:

P ⊕ P−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0
1 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1
0 0 0 0 1 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= (γ1, γ2, . . . , γ8).
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Since for any 1 ≤ i ≤ 8, w(γi) = 2, according to Proposition 2, for any 1 ≤ i, j ≤
8, (ei, 0) → (0, ej) is a 6-round differential of Camellia.

3.2 Analysis of 7-Round Feistel Cipher with SP Structure

The 7-round Feistel ciphers with SP round functions can be analyzed similarly.

Proposition 3. For linear transformation P , if there exists a triplet (i, j, k)
such that the multiset {pk,i, pk,j , qk,i, qk,j} is equal to {1, 0, 0, 0}, then (ei, 0) →
(0, ej) is a 7-round impossible differential of E.

Proof. Let Δ(α0, β0) = (ei, 0) and Δ(α7, β7) = (0, ej), respectively. Then by
analyzing the propagation of Δ(α0, β0) and Δ(α7, β7) from the encryption and
decryption directions, respectively, we have (see Fig. 4)

Δ(α1, β1) = (0, ei),
Δ(α2, β2) = (ei, P ◦ S(ei)),

ΔZ3 = P ◦ S ◦ P ◦ S(ei),
Δ(α6, β6) = (ej , 0),
Δ(α5, β5) = (P ◦ S(ej), ej),

ΔZ5 = P ◦ S ◦ P ◦ S(ej).

Since

Δα2 ⊕ ΔZ3 = Δβ3 = Δα4 = Δβ5 ⊕ ΔZ5,

thus

ei ⊕ P ◦ S ◦ P ◦ S(ei) = ej ⊕ P ◦ S ◦ P ◦ S(ej),

from which we have

P−1(ei) ⊕ P−1(ej) = (S ◦ P ◦ S(ei)) ⊕ (S ◦ P ◦ S(ej)).

Let ρ1 = χ(P−1(ei)), ρ2 = χ(P−1(ej)), ρ3 = χ(S◦P◦S(ei)), ρ4 = χ(S◦P◦S(ej)).
According to Property 1, the following equations hold:

ρ1 = qi,

ρ2 = qj ,

ρ3 = pi,

ρ4 = pj .

Assume that there exists some t, such that {ρ1,t, ρ2,t, ρ3,t, ρ4,t} = {1, 0, 0, 0}, say
ρ1,t = 1, and ρ2,t = ρ3,t = ρ4,t = 0, then

χt(P−1(ei) ⊕ P−1(ej)) = 1,
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Fig. 4. 7-round Impossible Differential of Feistel-SP

and

χt ((S ◦ P ◦ S(ei)) ⊕ (S ◦ P ◦ S(ej))) = 0,

which is a contradiction. Thus the above Proposition holds. 	
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Example 2. (7-Round Impossible Differentials of Camellia) By the definition of
Camellia, we can determine P = (pi,j)1≤i,j≤8 and P−1 = (qi,j)1≤i,j≤8 as follows:

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1
1 1 1 0 1 1 0 1
0 1 1 1 1 1 1 0
1 1 0 0 0 1 1 1
0 1 1 0 1 0 1 1
0 0 1 1 1 1 0 1
1 0 0 1 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

P−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 0 1 1 1
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 0 1 1 1 0
1 1 0 0 1 0 1 1
0 1 1 0 1 1 0 1
0 0 1 1 1 1 1 0
1 0 0 1 0 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Since p1,1 = 1, p1,5 = q1,1 = q1,5 = 0, (e1, 0) → (0, e5) is a 7-round impossible
differential of Camellia; Similarly, (e2, 0) → (0, e7) is another 7-round impossible
differential of Camellia since q7,7 = 1, p7,2 = p7,7 = q7,2 = 0.

3.3 Analysis of 8-Round Feistel Cipher with SP Structure

Let Δ(α0, β0) = (ei, 0), Δ(α8, β8) = (0, ej). Then from the encryption direction,
we have (see Fig. 5):

Δ(α1, β1) = (0, ei),
Δ(α2, β2) = (ei, P ◦ S(ei)),
Δ(α3, β3) = (P ◦ S(ei), ei ⊕ P ◦ S ◦ P ◦ S(ei)),
ΔZ4 = P ◦ S(ei ⊕ P ◦ S ◦ P ◦ S(ei)),

and while analyzing from the decryption direction, we have

Δ(α7, β7) = (ej , 0),
Δ(α6, β6) = (P ◦ S(ej), ej),
Δ(α5, β5) = (ej ⊕ P ◦ S ◦ P ◦ S(ej), P ◦ S(ej)).

Since

Δβ2 ⊕ ΔZ4 = Δα3 ⊕ ΔZ4 = Δβ4 = Δα5,

the following equation holds

P ◦ S(ei) ⊕ P ◦ S(ei ⊕ P ◦ S ◦ P ◦ S(ei)) = ej ⊕ P ◦ S ◦ P ◦ S(ej),

which implies that

S(ei ⊕ P ◦ S ◦ P ◦ S(ei)) = P−1(ej) ⊕ S ◦ P ◦ S(ej) ⊕ S(ei).

Let Ui,j = {t|pt,j = qt,j = 0, t �= i} = {t1, . . . , tu}, thus for any t ∈ Ui,j ,

χt

(
P−1(ej) ⊕ S ◦ P ◦ S(ej) ⊕ S(ei)

)
= 0,
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which tells that

χt(ei ⊕ P ◦ S ◦ P ◦ S(ei)) = 0.

and now, we have the following Proposition:

Proposition 4. For any i and j, let

Ui,j = {t|pt,j = qt,j = 0, t �= i} = {t1, . . . , tu},
Vi = {r|pr,i = 1} = {r1, . . . , rv},

and

Mi,j = (pta,rb
)u×v = (m1, . . . , mv).

If Ui,j �= ∅, Vi �= ∅, and there exists an s, 1 ≤ s ≤ v, such that

rank{m1, . . . , mv} = rank{{m1, . . . , mv} \ {ms}} + 1,

then (ei, 0) → (0, ej) is an 8-round impossible differential of E.

Proof. Let η = ei ⊕ P ◦ S ◦ P ◦ S(ei), λ = S ◦ P ◦ S(ei). Then

χt(λ) =

{
1 if t ∈ Vi,
0 if t �∈ Vi.

Accordingly, χt(λ) �= 0 holds if and only if when λt �= 0. Thus

η = ei ⊕ (pr1 , . . . , prv)(λr1 , . . . , λrv )T,

where r1 < · · · < rv, rk ∈ Vi(1 ≤ k ≤ v) and prk
is the rk-th column of P .

By the definition of Ui,j , we have

ηt = 0 if t ∈ Ui,j ,

thus ⎛
⎜⎝

pt1,r1 · · · pt1,rv

...
...

ptu,r1 · · · ptu,rv

⎞
⎟⎠

⎛
⎜⎝

λr1

...
λrv

⎞
⎟⎠ � (Mi,j)u,vλ̃ =

⎛
⎜⎝

0
...
0

⎞
⎟⎠

where tk ∈ Ui,j , rk ∈ Vi and λrk
�= 0.

The above equation can be described as

(m1, . . . , ms−1, ms+1, . . . , mv)(λ1, . . . , . . . , λv)T = λsms,

from linear algebra, the equation has solutions if and only if

rank{{m1, . . . , mv} \ {ms}} = rank{m1, . . . , λsms, . . . , mv}.
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Since rank{m1, . . . , mv} = rank{{m1, . . . , mv}\{ms}}+1, if (Mi,j)u,vλ̃ = 0 has
a solution λ̃ = (λ1, . . . , λv), λs must be 0 which is a contradiction. 	


For most cases, especially when n = 4 or n = 8, |Ui,j | = u ≤ 2. According to
Proposition 4, the case that u = 1 and u = 2 can be characterized as follows:

Proposition 5. Let Ui,j and Vi defined as in Proposition 4, and

Mi,j = (pta,rb
)u×v =

⎛
⎜⎝

l1
...
lu

⎞
⎟⎠ .

(1) If u = 1 and w(l1) = 1, then (ei, 0) → (0, ej) is an 8-round impossible
differential of E.

(2) If u = 2 and w(l1 ⊕ l2) = 1, then (ei, 0) → (0, ej) is an 8-round impossible
differential of E.

Example 3. (8-Round Impossible Differentials of Camellia) We verify (e2, 0) →
(0, e2) is an 8-round impossible differential. From the linear transformation of
Camellia we have,

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1
1 1 1 0 1 1 0 1
0 1 1 1 1 1 1 0
1 1 0 0 0 1 1 1
0 1 1 0 1 0 1 1
0 0 1 1 1 1 0 1
1 0 0 1 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

P−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 0 1 1 1
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 0 1 1 1 0
1 1 0 0 1 0 1 1
0 1 1 0 1 1 0 1
0 0 1 1 1 1 1 0
1 0 0 1 0 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Since p7,2 = q7,2 = 0, p8,2 = q8,2 = 0,

U2,2 = {7, 8}.
Since p2,2 = p3,2 = p4,2 = p5,2 = p6,2 = 1, we have

V2 = {2, 3, 4, 5, 6},
Thus M2,2 is a sub-matrix of P

M2,2 =
(

0 1 1 1 1
0 0 1 1 1

)
.

Since,

2 = rankM2,2 = rank{M2,2 \ {l2}} + 1,

we know that (e2, 0) → (0, e2) is an 8-round impossible differential of Camellia
which is consistent with [11].
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Fig. 5. 8-round Impossible Differential of Feistel-SP
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Example 4. (8-Round Impossible Differentials of SNAKE(2)) SNAKE(2) is equiv-
alent to Feistel structure with SP round function by adding a P−1 in the begin-
ning and a P in the end. By the definition of SNAKE(2), we describe P and P−1

as follows:

P =

⎛
⎜⎜⎝

1 1 1 1
1 0 0 0
1 1 0 0
1 1 1 0

⎞
⎟⎟⎠ P−1 =

⎛
⎜⎜⎝

0 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

⎞
⎟⎟⎠.

Hence,

U4,4 = {2}, V4 = {1}, and M4,4 = {1}.
Since w(l1) = 1, (e4, 0) → (0, e4) is an 8-round impossible differential of SP
part of SNAKE(2). Therefore, (P (e4), 0) → (0, P (e4)) is an 8-round impossible
differential of SNAKE(2).

4 Analysis of 6-Round Feistel Cipher with SPS Structure

By using the same techniques that are used in analyzing 8-round Feistel ciphers
with SP round functions, a characterization for the existence of 6-round of Feistel
cipher with SPS round functions (Notice that Feistel cipher with this structure
is denoted by D) can be given as follows, and the details of the proof are omitted.

Proposition 6. For any i and j, let

Ui,j = {t|pt,j = 0, t �= i} = {t1, . . . , tu},
Vi = {r|pr,i = 1} = {r1, . . . , rv},

and

Mi,j = (pta,rb
)u×v = (m1, . . . , mv).

If Ui,j �= ∅, Vi �= ∅, and there exists an s, 1 ≤ s ≤ v, such that

rank{m1, . . . , mv} = rank{{m1, . . . , mv} \ {ms}} + 1,

then (ei, 0) → (0, ej) is a 6-round impossible differential of D.

Proposition 7. Let Ui,j and Vi be defined as in Proposition 6, and

Mi,j = (pta,rb
)u×v =

⎛
⎜⎝

l1
...
lu

⎞
⎟⎠ .

(1) If u = 1 and w(l1) = 1, then (ei, 0) → (0, ej) is a 6-round impossible differ-
ential of D.
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(2) If u = 2 and w(l1 ⊕ l2) = 1, then (ei, 0) → (0, ej) is a 6-round impossible
differential of D.

Example 5. (6-Round Impossible Differentials of E2) Since the permutation BRL
after the 2nd nonlinear transformation layer of E2 is a byte-transposition, the
structure is equivalent to an SPS structure, where the linear transformation P

′

is defined as:

P
′
= BRL ◦ P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1
1 1 1 0 1 1 0 1
1 1 0 1 1 1 0 0
1 1 1 0 0 1 1 0
0 1 1 1 0 0 1 1
1 0 1 1 1 0 0 1
0 1 1 1 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We have

U1,3 = {2, 4}, V1 = {1, 2, 3, 4, 5, 7},
hence,

M1,3 =
(

1 1 0 1 1 1
1 1 0 1 1 0

)
.

Since,

w(l1 ⊕ l2) = 1,

(e1, 0) → (0, e3) is a 6-round impossible differential of E2, whereas only 5-round
impossible differentials were previously known[3].

5 Conclusion

In this paper, we propose impossible differential cryptanalysis on Feistel ciphers
with SP and SPS round functions. Both 6/7/8-round impossible differentials
of Feistel cipher with SP round functions and 6-round impossible differential
of Feistel cipher with SPS round functions can be judged by verifying some
properties of linear transformations. The former result that 5-round impossible
differential exists when round function is bijective is improved. Since we know a
lot about Feistel cipher against impossible differential cryptanalysis, the proper-
ties presented in this paper should be considered when designing a block cipher.
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A Appendix

A.1 Brief Description of Camellia

Camellia is a Feistel cipher with SP round function and has 18 rounds (for 128-
bit keys) or 24 rounds (for 192/256-bit keys). The FL/FL−1 function layer is in-
serted at every 6 rounds. In this paper, we consider Camellia without FL/FL−1

function layer. The nonlinear layer S and linear transformation P in the round
function of Camellia are represented as follows. For more details, we refer to [5].

S : F
8
28 → F

8
28 : (x1, x2, . . . , x8) → (y1, y2, . . . , y8)

y1 = s1(x1), y2 = s2(x2), y3 = s3(x3), y4 = s4(x4),
y5 = s2(x5), y6 = s3(x6), y7 = s4(x7), y8 = s1(x8),

where s1, s2, s3 and s4 are 8 × 8 nonlinear transformations (s-boxes).

P : F
8
28 → F

8
28 : (y1, y2, . . . , y8) → P (y1, y2, . . . , y8)

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1
1 1 1 0 1 1 0 1
0 1 1 1 1 1 1 0
1 1 0 0 0 1 1 1
0 1 1 0 1 0 1 1
0 0 1 1 1 1 0 1
1 0 0 1 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A.2 Brief Description of SNAKE(2)

SNAKE(1) and SNAKE(2) are Feistel ciphers proposed by Lee and Cha at JW-
ISC’97 [2] and this paper concentrates on SNAKE(2) only. Although it employs
a PS round function, according to [6], SNAKE(2) is equivalent to a Feistel cipher
with SP round function by adding a P−1 transformation before the first round
and a P transformation after the last round. The nonlinear layer S and linear
transformation P in the round function of SNAKE(2) are represented as follows.

S : F
4
28 → F

4
28 : (x1, x2, x3, x4) → (y1, y2, y3, y4)

y1 = s(x1), y2 = s(x2), y3 = s(x3), y4 = s(x4),

where s is an 8 × 8 nonlinear transformation.

P : F
4
28 → F

4
28 : (y1, y2, y3, y4) → P (y1, y2, y3, y4)

P =

⎛
⎜⎜⎝

1 1 1 1
1 0 0 0
1 1 0 0
1 1 1 0

⎞
⎟⎟⎠
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A.3 Brief Description of E2

E2, designed by NTT, is a candidate of AES [1]. It employs Feistel structure
with an SPS round function. There is also an initial transformation in the
beginning and a final transformation in the end. Another permutation BRL is
placed after the 2nd non linear transformation layer. The non-linear layer S and
linear transformation P and BRL in the round function of E2 are represented
as follows.

S : F
8
28 → F

8
28 : (x1, x2, . . . , x8) → (y1, y2, . . . , y8)

y1 = s(x1), y2 = s(x2), y3 = s(x3), y4 = s(x4),
y5 = s(x5), y6 = s(x6), y7 = s(x7), y8 = s(x8),

where s is an 8 × 8 nonlinear transformation.

P : F
8
28 → F

8
28 : (y1, y2, . . . , y8) → P (y1, y2, . . . , y8)

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 1 1 1 0
1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1
1 1 1 0 1 1 0 1
1 1 0 1 1 1 0 0
1 1 1 0 0 1 1 0
0 1 1 1 0 0 1 1
1 0 1 1 1 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

BRL : F
8
28 → F

8
28 : (y1, y2, . . . , y8) → (y2, y3, . . . , y8, y1).
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