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IMPPAT: A curated database 
of Indian Medicinal Plants, 
Phytochemistry And Therapeutics
Karthikeyan Mohanraj1, Bagavathy Shanmugam Karthikeyan1, R. P. Vivek-Ananth1,  

R. P. Bharath Chand1, S. R. Aparna2, Pattulingam Mangalapandi1 & Areejit Samal  1

Phytochemicals of medicinal plants encompass a diverse chemical space for drug discovery. India is 

rich with a flora of indigenous medicinal plants that have been used for centuries in traditional Indian 
medicine to treat human maladies. A comprehensive online database on the phytochemistry of Indian 

medicinal plants will enable computational approaches towards natural product based drug discovery. 

In this direction, we present, IMPPAT, a manually curated database of 1742 Indian Medicinal Plants, 

9596 Phytochemicals, And 1124 Therapeutic uses spanning 27074 plant-phytochemical associations 
and 11514 plant-therapeutic associations. Notably, the curation effort led to a non-redundant in silico 

library of 9596 phytochemicals with standard chemical identifiers and structure information. Using 
cheminformatic approaches, we have computed the physicochemical, ADMET (absorption, distribution, 

metabolism, excretion, toxicity) and drug-likeliness properties of the IMPPAT phytochemicals. We 

show that the stereochemical complexity and shape complexity of IMPPAT phytochemicals differ from 
libraries of commercial compounds or diversity-oriented synthesis compounds while being similar to 

other libraries of natural products. Within IMPPAT, we have filtered a subset of 960 potential druggable 
phytochemicals, of which majority have no significant similarity to existing FDA approved drugs, and 
thus, rendering them as good candidates for prospective drugs. IMPPAT database is openly accessible 

at: https://cb.imsc.res.in/imppat.

Natural products continue to play a significant role in pharmaceutical industry1–4 as new sources of drugs. 
However, recently there has been a decline in the number of marketable drugs derived from natural sources3,4. 
Furthermore, the majority of these drugs fall into already known structural scaffolds as due importance has not 
been given to unexplored sources of natural products for drug discovery4. As a result, lately, there has been sig-
nificant interest in applying interdisciplinary approaches5 to expand the novel chemical scaffold libraries for drug 
discovery.

India is well known for its practice of traditional medicine and ethnopharmacology6. It is noteworthy that 
traditional Indian medicinal formulations are multi-component mixtures whose therapeutic use is based on 
empirical knowledge rather than a mechanistic understanding of the active ingredients in the mixture6. Until 
recently, knowledge of traditional Indian medicine including important medicinal plants and their formulations 
were buried within books such as Indian Materia Medica7 and Ayurveda Materia Medica8. The nondigital nature 
of this information limited their effective use towards new drug discovery5. Hence, digitization of this knowledge 
into a comprehensive database on Indian medicinal plants, phytochemistry and ethnopharmacology will enable 
researchers to apply computational approaches towards drug discovery.

Availability of a curated database of information on plants, their associated natural products and a repository 
of their chemical structures, can help in in silico drug discovery. In this direction, there has been significant recent 
progress in the development of databases9–17 on natural products with a focus on phytochemistry of edible and 
herbaceous plants. Examples of such databases include CVDHD12, KNAPSACK13, Nutrichem9,10, Phytochemica11, 
TCMID15, TCM@Taiwan14 and TCM-Mesh16 which can facilitate virtual screening of prospective drug com-
pounds or aid in the investigation of plant-disease associations. However, from the perspective of traditional 
Indian medicine, there have been relatively few efforts to build online databases that include Indian medicinal 
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plants, their phytochemicals and therapeutic uses. Previously, Polur et al.18 compiled information on 295 ayurve-
dic Indian medicinal plants, their 1829 phytochemicals and therapeutic uses. Subsequently, Polur et al.18  
studied the structural similarity between their library of 1829 phytochemicals and drugs in the DrugBank19 data-
base to predict pharmacologically active natural compounds. Recently, the Phytochemica11 database gathered 
information on 5 Indian medicinal plants and their 963 phytochemicals. In addition, Phytochemica11 provided 
chemical structures and pharmacological properties of the phytochemicals within their database. Other efforts 
to build online databases for traditional Indian medicine has largely been limited to cataloguing medicinal plants 
and their therapeutic uses rather than capturing the phytochemicals that are vital for drug discovery. On the 
other hand, in contrast to the above mentioned online databases, more comprehensive databases are available for 
Chinese medicinal plants14–16. For example, TCM-MeSH16 is an online database for traditional Chinese medicine 
which captures phytochemical compositions and therapeutic uses for more than 6000 Chinese medicinal plants.

We therefore have built a manually curated database, IMPPAT, containing 1742 Indian Medicinal Plants, 
9596 Phytochemicals, And 1124 T herapeutic uses. In addition, the IMPPAT database has linked Indian medic-
inal plants to 974 openly accessible traditional Indian medicinal formulations. Importantly, our curation efforts 
have led to a non-redundant in silico chemical library of 9596 phytochemicals with two-dimensional (2D) 
and three-dimensional (3D) chemical structures. For the 9596 phytochemicals in our database, we have com-
puted physicochemical properties and predicted Absorption, distribution, metabolism, excretion and toxicity 
(ADMET) properties using cheminformatic tools20–22. We then employed cheminformatic approaches to evaluate 
the drug-likeliness of the phytochemicals in our in silico chemical library using multiple scoring schemes such 
as Lipinski’s rule of five (RO5)23, Oral PhysChem Score (Traffic Lights)24, GlaxoSmithKline’s (GSK’s) 4/40025, 
Pfizer’s 3/7526, Veber rule27 and Egan rule28. We found a subset of 960 phytochemicals of Indian medicinal plants 
that are potentially druggable in our chemical library of 9596 phytochemicals based on multiple scoring schemes. 
We also provide predicted interactions between phytochemicals in our database and human target proteins from 
STITCH29 database. Table 1 provides a comparison of the IMPPAT database with previous efforts by Polur et al.18  
and Phytochemica11 to build dedicated digital resource on phytochemical composition of Indian medicinal 
plants. In summary, IMPPAT is the largest database on phytochemicals of Indian medicinal plants to date, and 
this resource is a culmination of our efforts to digitize the wealth of information contained within traditional 
Indian medicine. IMPPAT provides an integrated platform to apply cheminformatic30 approaches to accelerate 
natural product based drug discovery. IMPPAT is openly accessible at: https://cb.imsc.res.in/imppat.

Methods
Curated list of Indian medicinal plants. In the preliminary phase of the database construction (Fig. 1), we 
compiled a comprehensive list of more than 5000 Indian medicinal plants based on information contained in the 
Indian medicinal plants database (http://www.medicinalplants.in/) of the Foundation for Revitalisation of Local 
Health Traditions (FRLHT), Bengaluru. In addition to the comprehensive list from FRLHT, the AYUSH priority 

Database IMPPAT Phytochemica11 Polur et al.18

Basic statistics

Number of Indian medicinal plants 1742 5 295

Number of phytochemicals 9596 963 1829

Type of associations

Plant-phytochemical associations Yes Yes Yes

Plant-therapeutic use associations Yes No Yes

Plant-medicinal formulation associations Yes No No

Phytochemical-human target protein associations Yes No Yes

Plant part-phytochemical associations No Yes No

Additional Features

Web interface Yes Yes No

Availability of 2D structure of phytochemicals Yes No No

Availability of 3D structure of phytochemicals Yes Yes No

Downloadable structure file formats MOL, MOL2, SDF, 
PDB & PDBQT MOL2 No

Chemical classification Yes Yes No

Physicochemical properties Yes Yes No

ADMET properties Yes Yes No

Druggability properties Yes No No

Cytoscape network visualization of associations Yes No No

Filter phytochemicals based on physicochemical properties Yes Yes No

Filter phytochemicals based on druggability properties Yes No No

Chemical similarity search within database Yes No No

Table 1. Comparison of IMPPAT with earlier databases on phytochemical composition of Indian medicinal 
plants.

https://cb.imsc.res.in/imppat
http://www.medicinalplants.in/
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list was compiled from two sources, namely, the list prepared by the National Mission on Medicinal Plants of 
Ministry of AYUSH, Government of India which is available at http://ayush.gov.in/sites/default/files/IV.pdf, and 
the list jointly prepared by the National Medicinal Plants Board (NMPB), Directorate of Medicinal and Aromatic 
Plants Research (DMAPR), Department of Agriculture and Cooperation, and Central Institute of Medicinal and 
Aromatic Plants (CIMAP), Government of India which is available at http://pib.nic.in/newsite/PrintRelease.
aspx?relid = 67277. We remark that the AYUSH priority list was prepared based on several criteria including 
the medicinal use, conservation status and herbal industry demand of Indian medicinal plants. Due to the usage 
of multiple synonyms for Indian medicinal plants across different sources, the common names of plants were 
manually mapped to their scientific species names using The Plant List database31 (http://www.theplantlist.org/),  
and the compiled list was manually curated to remove redundancies. Furthermore, the Indian medicinal plants 
in our database were manually classified into their respective taxonomic families within the kingdom plantae 
using The Plant List database31 and Tropicos database (http://www.tropicos.org/). We have also linked the Indian 
medicinal plants in IMPPAT database to their corresponding page in The Plant List database, Tropicos database 
and the FRLHT digital herbarium (http://envis.frlht.org).

Phytochemical composition of Indian medicinal plants. After compiling a comprehensive list of 
more than 5000 Indian medicinal plants, we mined literature to gather information on their phytochemicals 
(Fig. 1). In the first stage of data mining, we focussed on specialized traditional Indian medicine books32–41. From 
these books32–41, we gathered phytochemical composition for more than 1600 Indian medicinal plants. In the 
second stage, we gathered information from published databases of Indian medicinal plants. Phytochemica11 
database contains information on 963 phytochemicals of 5 Indian medicinal plants. Another database described 
in Polur et al.18 had compiled information on 1829 phytochemicals of 295 ayurvedic Indian medicinal plants18. 
While this list is no longer publicly available, the Nutrichem9,10 database on phytochemical composition and 
therapeutic uses of plant-based food products has incorporated the information compiled by Polur et al.18. From 
the Phytochemica11 and Nutrichem9,10 databases, we gathered information on the phytochemical composition of 
more than 400 Indian medicinal plants. Note that our comprehensive list covers a wide spectrum of Indian medic-
inal plants which includes apart from Ayurveda, other systems of traditional Indian medicine such as Siddha and 
Unani. In the third stage of data mining for phytochemical composition, we performed text mining of abstracts 
from published research articles in PubMed42 using natural language processing (NLP)43. Using in-house Python 
scripts and a dataset of known plant-phytochemical associations, we identified keywords in PubMed abstracts 
which imply plant-phytochemical associations (Supplementary Table S1). We then used the selected keywords 
listed in Supplementary Table S1 to mine PubMed abstracts to identify and incorporate additional references for 
plant-phytochemical associations in our database. In total, our database captures the phytochemical composition 
of 1742 Indian medicinal plants (Supplementary Table S2). The literature references for plant-phytochemical 
associations are listed in our database in the form of ISBN or DOI identifiers for books and PubMed identifiers 
(PMIDs) for journal articles.

We would like to mention a potential bias in the list of plant-phytochemical associations compiled from sci-
entific literature. Our database most-likely contains high-quality yet incomplete information on phytochemical 
composition of Indian medicinal plants. That is, phytochemicals listed are most-likely produced by the corre-
sponding Indian medicinal plant but other phytochemicals not listed in our database cannot be ruled out from 
being also produced by the same plant due to possible lack of scientific literature. Moreover, the scientific liter-
ature will most probably have more information on phytochemical composition of well-studied or sequenced 
Indian medicinal plants such as Catharanthus roseus. Thus, future updates of this database will be needed to 
capture additional information on phytochemical composition of Indian medicinal plants. Nevertheless, one can 
argue that for the discovery of novel molecules it is more important to know the list of phytochemicals produced 
by an herb rather than the list of phytochemicals not produced by an herb.

Annotation, curation and filtering of identified phytochemicals. An overarching goal of this work 
is to create a platform for exploring the chemistry of the phytochemicals of Indian medicinal plants. Evaluation 
of the phytochemicals of Indian medicinal plants for their druggability or drug-likeliness will facilitate the iden-
tification of molecules for drug discovery. We would like to emphasize that synonymous chemical names are 
pervasive across the literature on traditional Indian medicine which were mined to construct this database. In 
order to remove redundancy, we manually annotated the common names of phytochemicals of Indian medicinal 
plants compiled from literature sources with documented synonyms and standard chemical identifiers (Fig. 1) 
from Pubchem44, CHEBI45, CAS (https://www.cas.org/), CHEMSPIDER46, KNAPSACK47, CHEMFACES (http://
www.chemfaces.com), FOODB (http://foodb.ca/), NIST Chemistry webbook48 and Human Metabolome data-
base (HMDB)49. While assigning standard identifiers to phytochemicals in our database, we have chosen the 
following priority order: Pubchem44, CHEBI45, CAS, CHEMSPIDER46, KNAPSACK47, CHEMFACES, FOODB, 
NIST Chemistry webbook48 and HMDB49. We highlight that this extensive manual curation effort led to the 
mapping of more than 15000 common names of phytochemicals used across literature sources to a unique set of 
9596 standard chemical identifiers. Phytochemicals which could not be mapped to standard chemical identifiers 
were excluded from our finalized database. Our choice to include only phytochemicals with standard identifiers 
and structure information was dictated by our goal to investigate the chemistry and druggability of phytochemi-
cals of Indian medicinal plants. We remark that the 2D structure information for the unique set of 9596 IMPPAT 
phytochemicals was obtained using the standard chemical identifiers from the respective databases. We have also 
determined the chemical classification of the IMPPAT phytochemicals using ClassyFire50 (http://classyfire.wis-
hartlab.com/). ClassyFire50 gives a hierarchical classification for each chemical compound into kingdom (organic 
or inorganic), followed by super-class, followed by class, followed by sub-class. Note that ClassyFire classifies 
organic compounds into 26 super-classes. In a nutshell, this largely manual effort to compile a non-redundant 

http://ayush.gov.in/sites/default/files/IV.pdf
http://pib.nic.in/newsite/PrintRelease.aspx?relid=67277
http://pib.nic.in/newsite/PrintRelease.aspx?relid=67277
http://www.theplantlist.org/
http://www.tropicos.org/
http://envis.frlht.org
https://www.cas.org/
http://www.chemfaces.com
http://www.chemfaces.com
http://foodb.ca/
http://classyfire.wishartlab.com/
http://classyfire.wishartlab.com/
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Figure 1. Schematic overview of the IMPPAT database construction pipeline. Briefly, we first compiled a 
comprehensive list of Indian medicinal plants from various sources. We next mined specialized books on 
Indian traditional medicine, existing databases and PubMed abstracts of journal articles to gather information 
on phytochemicals of Indian medicinal plants. We then manually annotated, curated and indexed names 
of identified phytochemicals with standard identifiers to build a non-redundant library of phytochemicals. 
This manual curation effort led to a unique list of plant-phytochemical associations. We also classified the 
Indian medicinal plants into taxonomic families and phytochemicals into chemical classes. Subsequently, we 
gathered ethnopharmacological information from books on traditional Indian medicine to build a unique list 
of plant-therapeutic use associations. We also extracted publicly accessible information on traditional medicine 
formulations from TKDL database to build a list of plant-formulation associations. Lastly, we have used 
cheminformatic tools to obtain the 3D structures, physicochemical properties, druggability scores, predicted 
ADMET properties and predicted target human proteins of phytochemicals.
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chemical library of 9596 phytochemicals of Indian medicinal plants with standard identifiers and structure infor-
mation will serve as valuable resource for natural product-based drug discovery in future. Moreover, the use of 
standard chemical identifiers will enable effortless integration of our IMPPAT database with other data sources.

Therapeutic uses of Indian medicinal plants. Another goal of our database is to compile ethnopharma-
cological information on Indian medicinal plants. Towards this goal, we manually compiled the medicinal (ther-
apeutic) uses of Indian medicinal plants from books on Indian traditional medicine32–41,48,51–67. Apart from books, 
Polur et al.18 had previously compiled a list of therapeutic uses for 295 ayurvedic Indian medicinal plants, and this 
information was extracted from the Nutrichem9,10 database. To ensure high quality, we manually curated infor-
mation on therapeutic uses of Indian medicinal plants and consciously avoided automated text mining to retrieve 
additional information on plant-therapeutic associations. We remark that our database has manually compiled 
therapeutic uses of Indian medicinal plants from standard books on traditional Indian medicine which contain 
accumulated experience-based knowledge on treating human diseases. Furthermore, we manually annotated 
and standardized the compiled therapeutic uses of Indian medicinal plants from the above sources with identi-
fiers from the Disease Ontology68, Online Mendelian Inheritance in Man (OMIM)69, Unified Medical Language 
System (UMLS)70 and Medical Subject Headings (MeSH)71 databases. To the best of our knowledge, this is the 
first large-scale attempt to link the ethnopharmacological information on Indian medicinal plants with standard-
ized vocabulary in modern medicine. Note that databases of gene-disease associations72 and disease-symptom 
associations73 usually provide disease information in form of identifiers from OMIM, UMLS and MeSH data-
bases, and in future, information from such databases can be effortlessly integrated into IMPPAT database.

Traditional formulations of Indian medicinal plants. Traditional knowledge digital library (TKDL) 
(http://www.tkdl.res.in) is a knowledgebase of traditional Indian medicinal formulations. A traditional medici-
nal formulation is often a multi-component mixture derived from plant, animal and other sources which is used 
for treating disease based on specific indication. For example, Thinavu Sori Soolaiku Ennai (TKDL Identifier: 
HM02/36) is a medicinal formulation in traditional Indian system of medicine, Siddha, which is used to treat 
allergic rashes, and this formulation mainly consists of extracts of medicinal plants, Plumbago zeylanica, Sesamum 
orientale (also called Sesamum indicum) and Cuminum cyminum. According to TKDL, there are more than 
250000 formulations of Ayurveda, Siddha and Unani of which 1200 representative formulations are openly acces-
sible via their database. To exhibit the broader utility of our database to phytopharmacology, we have also com-
piled and curated the subset of 1200 openly accessible formulations in TKDL which contain at least one of the 
1742 Indian medicinal plants in our database. This process led to associations between 321 Indian medicinal 
plants in our database and 974 traditional Indian medicinal formulations which are openly accessible through 
TKDL database (Fig. 1). We emphasize that our database has only incorporated open digital information on 
traditional Indian medicinal formulations from TKDL database. However, we are aware of the vast literature7,8,74 
on traditional Indian medicinal formulations, especially in books, and in the future, a significant effort will be 
needed to digitize and integrate such information into our database.

3D structure of phytochemicals. We have generated lowest energy 3D conformational structure of 
IMPPAT phytochemicals using Balloon75 (http://users.abo.fi/mivainio/balloon/) and Open Babel76 (http://open-
babel.org/wiki/Main_Page). Balloon generates 3D conformers of input 2D structures from scratch and optimizes 
them using Merck Molecular Force Field (MMFF94). The lowest energy 3D conformer was selected from 20 
generated conformations for a given phytochemical. Of the 9596 IMPPAT phytochemicals, Balloon successfully 
generated 3D structures for 8021 phytochemicals. For the remaining 1575 phytochemicals, the lowest energy 
3D conformer was generated using Open Babel with MMFF94 force field. We remark that our preferred choice 
of Balloon to generate lowest energy 3D structures of IMPPAT phytochemicals was motivated by similar choice 
made by two other databases of 3D structures of natural products, namely, KNApSAcK-3D47 and TIPdb-3D77.

Physicochemical properties of phytochemicals. We used FAF-Drugs4 webserver20 and RDKit21 
to compute the following physicochemical properties of the IMPPAT phytochemicals: molecular weight, 
octanol-water partition coefficient (logP), logP at physiological pH of 7.4 (logD), logarithm of water solubility 
(logSw), number of stereocenters, stereochemical complexity78 which is the fraction of carbon atoms which are 
stereogenic, Fsp3 which is the fraction of carbon atoms that are sp3 hybridized79, topological polar surface area 
(TPSA), charge of the compound, number of hydrogen bond donors and acceptors, number of smallest set of 
smallest rings (SSSR) which is the number of smallest ring building blocks required for forming other ring sys-
tems, size of the biggest system ring which is the number of atoms present in the biggest ring system, number of 
rotatable and rigid bonds, number of charged groups, total charge of the compound, number of carbon, hetero- 
and heavy atoms, and ratio between the number of non-carbon atoms and the number of carbon atoms.

ADMET properties of phytochemicals. Absorption, distribution, metabolism, excretion and toxicity 
(ADMET) properties have been implicated as one of the reasons for high attrition rate of candidates from drug 
development pipeline. Thus, we used admetSAR22 webserver to predict the ADMET properties of the phytochem-
icals. The predicted properties which influence absorption include Human Intestinal Absorption (HIA)80, Blood 
Brain Barrier (BBB) permeability80, Caco-2 permeability81 and likeliness of being P-glycoprotein substrate82. 
The predicted properties which affect phytochemical metabolism include the ability to inhibit several CYP450 
enzymes or likeliness of being a substrate to CYP450 enzymes83–85. Lastly, toxicity predictions are based on com-
putational models for Ames test for mutagenicity86, carcinogenicity, biodegradability87, rat acute toxicity88 and 
hERG inhibition89,90. Note that our choice of admetSAR22 was motivated by the same choice made by DrugBank19 
database (https://www.drugbank.ca/) which is the widely-used repository of approved and experimental drugs.

http://www.tkdl.res.in
http://users.abo.fi/mivainio/balloon/
http://openbabel.org/wiki/Main_Page
http://openbabel.org/wiki/Main_Page
https://www.drugbank.ca/
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Druggability scores of phytochemicals. We used FAF-Drugs4 webserver20 to test the druggability of 
the phytochemicals based on multiple scoring schemes, namely, Lipinski’s rule of five (RO5)23, Oral PhysChem24 
score (Traffic Lights), GlaxoSmithKline’s (GSK’s) 4/40025, Pfizer’s 3/7526, Veber rule27 and Egan rule28. Lipinski’s 
RO523 is a classical rule of thumb to filter druggable small molecules based on four physiochemical proper-
ties. RO5 considers a small molecule to be druggable if it has ≤5 hydrogen bond donors, ≤10 hydrogen bond 
acceptors, molecular weight <500 Daltons and logP ≤5. If a small molecule violates none of the above rules it is 
assigned a RO5 value of 0, and on the other extreme if it violates all the above rules it is assigned a RO5 value of 
4. OralPhysChem24 score is another method for filtering druggable small molecules which is based on five physi-
ochemical properties, namely, aqueous solubility, logP, corrected molecular weight for presence of halogen atoms, 
TPSA and number of rotatable bonds. OralPhysChem score ranges from 0 to 10 whereby 0 signifies high drugga-
bility while 10 signifies low druggability of the small molecule. GSK’s 4/40025 is another filter based on a number 
of ADMET assays carried out in GSK. Briefly, a small molecule is considered more druggable and labelled ‘Good’ 
by GSK’s 4/400 score if it has both molecular weight <400 Daltons and logP <4 while it is considered less drug-
gable and labelled ‘Bad’ if at least one of the rules is not satisfied. Pfizer’s 3/7526 rule is used to filter small mole-
cules which are more prone to be toxic, and hence, less likely to be druggable. Pfizer’s 3/75 rule considers small 
molecules with logP <3 and TPSA > 75 Å2 to be ‘Good’ as they are likely to be less toxic, and hence, more likely 
to be druggable, and small molecules which do not satisfy one of the two rules are labelled as ‘Warning’, and small 
molecules which violate both rules are labelled as ‘Bad’. Veber rule27 considers small molecules to have good oral 
bioavailability if they satisfy number of rotatable bonds ≤10 and TPSA ≤140 Å2, and small molecules which fail 
these criteria are considered to have low bioavailability. Similarly, Egan rule28 considers small molecules to have 
good oral bioavailability if they satisfy −1.0 ≤logP ≤5.8 and TPSA ≤130 Å2, and small molecules which fail these 
criteria are considered to have low bioavailability. We filtered phytochemicals with no RO5 violation, net Traffic 
Lights value of zero and satisfying GSK’s 4/400, Pfizer’s 3/75, Veber rule and Egan rule as druggable. We further 
computed the weighted quantitative estimate of drug-likeness (QEDw)91 score using FAF-QED webserver20 for 
the filtered list of druggable phytochemicals within IMPPAT and TCM-Mesh16. QEDw is a druggability score 
for small molecules proposed by Bickerton et al.91 which is the weighted geometric mean of molecular weight, 
logP, number of hydrogen bond donors, number of hydrogen bond acceptors, TPSA, number of rotatable bonds, 
number of aromatic rings and number of structural alerts. Note that QEDw is a continuous score between 0 and 
1 where 0 signifies low druggability and 1 signifies high druggability.

Predicted human target proteins of phytochemicals. We have extracted the predicted human tar-
get proteins of IMPPAT phytochemicals from STITCH29 database (http://stitch1.embl.de/). Note that STITCH29 
database is the largest resource on predicted interactions between chemicals and their target proteins. From the 
STITCH29 database, we have extracted and reported only high confidence interactions between phytochemicals 
and target human proteins that have a combined STITCH score ≥700. Note that our choice of STITCH database 
to predict interactions between IMPPAT phytochemicals and target human proteins was based on similar choice 
made by the traditional Chinese medicine database TCM-Mesh16.

Small molecule collections of commercial compounds, diverse compounds, natural products 
and phytochemicals from Chinese medicinal plants. We have compared the physicochemical prop-
erties of 9596 IMPPAT phytochemicals from Indian medicinal plants with other collections of small molecules. 
Clemons et al.78 have compiled small molecule collections from three different sources, namely, commercial 
compounds (CC), diversity-oriented synthesis compounds (DC’) and natural products (NP). CC contains 6152 
representative small molecules from commercial sources. DC’ contains 5963 small molecules synthesized by 
academic community using methods like diversity-oriented synthesis. NP contains 2477 small molecules from 
natural products. We remark that 11, 3 and 147 small molecules in CC, DC’ and NP collections, respectively, 
are also contained in the set of 9596 IMPPAT phytochemicals. Note that the computation of physicochemical 
properties failed for 3 small molecules in CC and 3 small molecules in DC’, and we omitted these small molecules 
from subsequent analysis.

In addition, we have also extracted the set of 10140 phytochemicals produced by 6235 Chinese medicinal 
plants or herbs from TCM-Mesh16 (http://mesh.tcm.microbioinformatics.org/) database. TCM-Mesh has com-
piled information on phytochemicals of Chinese herbs from two other extensive databases on traditional Chinese 
medicine, TCMID15 (http://www.megabionet.org/tcmid/) and TCM@Taiwan14 (http://tcm.cmu.edu.tw/). Note 
that TCM-Mesh contains a large set of 383840 chemical compounds but only a subset of 10140 phytochemicals 
are ingredients of 6235 Chinese herbs in the database.

Similarity of phytochemicals. Tanimoto coefficient (Tc)92 is a widely used measure to compute structural 
similarity between chemicals93. To evaluate the structural similarity of chemicals within our database to known 
drugs using Tc, we employed two molecular fingerprints: (a) Extended Circular Fingerprints (ECFP4)94 applying 
Morgan algorithm95 with radius value of 2 as implemented in RDKit21, and (b) MACCS keys based fingerprint. 
We employed the open source package, RDKit21, to compute molecular fingerprints and Tc between pairs of 
chemical structures. To identify structural similarity between chemicals, a stringent cut-off of Tc ≥0.5 was used 
while employing ECFP4 and a cut-off of Tc ≥0.85 was used while employing MACCS keys. Our selection of Tc 
cut-offs for ECFP4 and MACCS keys based computations was motivated by the recent work of Jasial et al.96.

We obtained a list of 2069 FDA approved drugs from DrugBank19 database and computed their structural 
similarity with druggable IMPPAT phytochemicals using both ECFP4 and MACCS keys based molecular fin-
gerprints. Note that ECFP4 molecular fingerprints were used to create the chemical similarity network of the 
druggable phytochemicals with QEDw score ≥0.9. Besides quantifying the structural similarity based on the 

http://stitch1.embl.de/
http://mesh.tcm.microbioinformatics.org/
http://www.megabionet.org/tcmid/
http://tcm.cmu.edu.tw/
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Tc of phytochemicals, we have employed principal component analysis (PCA) to explore possible relationships 
between druggable phytochemicals with QEDw score ≥0.9 based on their physicochemical properties.

Database management and network visualization. To construct this database, the compiled and 
curated data was integrated using MySQL (https://www.mysql.com/), a relational database management system 
which serves as a back-end for our resource. The web interface for the database was built using Drupal (https://
www.drupal.org/), a PHP-based content management system hosted on Apache server with the MySQL data-
base in the back-end. Users can browse or query our database using the scientific names of Indian medicinal 
plants, standard identifiers for phytochemicals, or associated therapeutic uses (Fig. 2). Further we have integrated 
the Cytoscape.js application97 (http://js.cytoscape.org/) into our web interface which enables visualization of 
plant-phytochemical associations, plant-therapeutic associations, and plant-formulation associations in the form 
of a network. The Cytoscape network visualization displays different types of nodes such as plant, phytochemical, 
therapeutic use and traditional medicinal formulations in different shapes and colours. Finally, the association 
network can be downloaded as a tab-separated list using the available export option in our database (Fig. 2).

Data availability. The datasets generated and analysed in this study are openly accessible at: https://cb.imsc.
res.in/imppat.

Results
Web-interface of the database. The IMPPAT database captures information on three types of associa-
tions for Indian medicinal plants: phytochemical composition, therapeutic uses, and traditional medicinal for-
mulations (Fig. 1). The web-interface of the database enables users to query for each of these associations using 
(a) scientific names of plants, (b) standard chemical identifiers of phytochemicals, (c) therapeutic uses, or (d) 
formulation identifiers (Fig. 2). The web-interface displays the result of user queries for these associations in 
two ways: (a) A table of associations with references to literature sources, and (b) A network visualization of the 
associations which is powered by Cytoscape.js97 (Fig. 2). In addition, users can also download the result of their 
queries for different associations of medicinal plants as a tab-separated list using the available export option in 
the web-interface. In the results page of queries for plant-phytochemical associations, users can click each phy-
tochemical name or identifier to navigate to a separate page containing detailed information such as chemical 
structure, alternate chemical names or identifiers, computed physicochemical properties, computed druggability 
scores, predicted ADMET properties, predicted human target proteins and the option to download the 2D or 
3D chemical structure file in several formats (Fig. 2; Methods). Queries for plant-therapeutic associations leads 
to a page where users can also obtain the disease ontology identifiers corresponding to therapeutic uses (Fig. 2; 
Methods). In the results page of queries for plant-formulation associations, users can click the medicinal formu-
lation identifiers to navigate to the corresponding page in the TKDL database. Moreover, in the advanced search 
page of IMPPAT database (Fig. 2), users can filter phytochemicals based on physicochemical properties (e.g., 
molecular weight, number of hydrogen bond acceptors), or filter phytochemicals satisfying various druggability 
scores (e.g. RO5, Traffic Lights), or search for phytochemicals similar to query chemical compound. To run the 
similarity filter, users will have to provide the query compound in the form of Canonical SMILES and choose a 
molecular fingerprint (ECFP4 or MACCS keys) to compute Tc between the query compound and IMPPAT phy-
tochemicals. The chemical similarity filter will list top 10 IMPPAT phytochemicals which are similar to the input 
query compound based on Tc.

Network of plant-phytochemical associations, plant-therapeutic use associations, and 
plant-traditional medicinal formulation associations. IMPPAT database contains information on 
the phytochemical composition and therapeutic uses of 1742 Indian medicinal plants (Supplementary Table S2). 
The 1742 Indian medicinal plants in our database are distributed across 215 different taxonomic families (Fig. 3a; 
Methods). Among the 215 taxonomic families, Leguminosae contains the maximum number (131) of Indian 
medicinal plants in our database (Fig. 3a). Of the 134 Indian medicinal plants in the priority list of Ministry 
of AYUSH, Government of India, 116 Indian medicinal plants are contained in our database (Supplementary 
Table S2).

IMPPAT captures information on 27074 plant-phytochemical associations which encompasses 1742 Indian 
medicinal plants and their 9596 phytochemicals. We used ClassyFire50 webserver for chemical classification 
of the 9596 IMPPAT phytochemicals (Methods). The 9596 IMPPAT phytochemicals are distributed across 24 
super-classes, 260 classes and 415 sub-classes of ClassyFire50. Among the 24 super-classes, lipids and lipid-like 
molecules, phenylpropanoids and polyketides, and organoheterocyclic compounds are the top three super-classes 
with 3190, 1793 and 1184 phytochemicals, respectively (Fig. 3b). Among 260 chemical classes, prenol lipids, orga-
nooxygen compounds, and flavonoids are the top three classes with 2005, 868 and 818 phytochemicals, respec-
tively. Among the 1742 Indian medicinal plants in our database, Catharanthus roseus has the highest number of 
phytochemical associations. In Fig. 3c, we show a histogram of the occurrence of phytochemicals across 1742 
Indian medicinal plants in our database. From this figure, it is seen that the majority of (8838) phytochemicals 
are found in less than 5 Indian medicinal plants while only a handful of (3) phytochemicals are found in more 
than 200 Indian medicinal plants. IMPPAT also captures 48632 predicted interactions between phytochemicals 
and their human target proteins from STITCH29 database which encompasses 1477 IMPPAT phytochemicals and 
8128 human proteins (Methods).

IMPPAT also captures information on 11514 plant-therapeutic use associations which encompasses 1742 
Indian medicinal plants and 1124 therapeutic uses. In Fig. 3d, we show a histogram of the number of therapeutic 
uses per Indian medicinal plant in our database. From this figure, it is seen that a majority of 1409 Indian medici-
nal plants have less than 10 documented therapeutic uses while a small fraction of 90 Indian medicinal plants have 

https://www.mysql.com/
https://www.drupal.org/
https://www.drupal.org/
http://js.cytoscape.org/
https://cb.imsc.res.in/imppat
https://cb.imsc.res.in/imppat
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Figure 2. Web-interface of the IMPPAT database. (a) Snapshot of the result of a standard query for 
phytochemicals of an Indian medicinal plant. In this example, we show the plant-phytochemical association for 
Ocimum tenuiflorum, commonly known as Tulsi, from IMPPAT database. (b) Snapshot of the dedicated page 
containing detailed information on 2D and 3D chemical structure, physicochemical properties, druggability 
scores, predicted ADMET properties and predicted target human proteins for a chosen phytochemical. From 
the dedicated page for each phytochemical, users can download the 2D and 3D structure of the phytochemical 
in the form of a SDF or MOL or MOL2 or PDB or PDBQT file. (c) Snapshot of the result of a standard query 
for therapeutic uses of an Indian medicinal plant. In this example, we show the therapeutic uses of Ocimum 
tenuiflorum from IMPPAT database. (d) Snapshot of the advanced search options which enable users to filter 
phytochemicals based on their physiochemical properties or druggability scores or chemical similarity with a 
query compound.
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more than 20 therapeutic uses in our database. Among the 1742 Indian medicinal plants in our database, Ginkgo 
biloba (136), Panax ginseng (135) and Allium sativum (86) have the largest number of documented therapeutic 
uses. Lastly, IMPPAT also captures information on 5069 plant-formulation associations which encompasses 321 

Figure 3. Basic statistics for Indian medicinal plants and associated phytochemicals in IMPPAT database. 
(a) Pie chart shows the distribution of the 1742 Indian medicinal plants in IMPPAT database across different 
taxonomic families. (b) Pie chart shows the distribution of the 9596 IMPPAT phytochemicals across different 
chemical super-classes obtained from ClassyFire50. (c) Histogram of the number of Indian medicinal plants 
which produce a given phytochemical in our database. (d) Histogram of the number of therapeutic uses per 
Indian medicinal plant in our database. (e–j) Histogram of the molecular weight (in g/mol), logP, TPSA (in Å2), 
number of hydrogen bond donors, number of hydrogen bond acceptors and number of rotatable bonds of the 
phytochemicals in our database.
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Indian medicinal plants in our database and 974 traditional Indian medicinal formulations which are openly 
accessible from the TKDL database (Methods).

Comparative analysis of the physicochemical properties of IMPPAT phytochemicals with other 
small molecule collections. We have computed several physicochemical properties for the 9596 IMPPAT 
phytochemicals (Methods). Figure 3e–j shows the distribution and the table in Fig. 4c gives the mean and median 
of the distribution for six physicochemical properties, namely, molecular weight, logP, TPSA, number of hydro-
gen bond donors, number of hydrogen bond acceptors and number of rotatable bonds for the 9596 IMPPAT 
phytochemicals. Moreover, we have predicted several ADMET properties for the 9596 IMPPAT phytochemicals 
(Methods). For example, HIA model predicts 89% of IMPPAT phytochemicals have good intestinal absorption 
and carcinogenicity model predicts 94% of IMPPAT phytochemicals are non-carcinogenic.

Small molecules which are specific protein binders in screening assays are more favourable candidates for 
drug discovery pipeline than promiscuous binders which might interact with many proteins in a screening assay. 
Clemons et al.78 have correlated two simple size-independent metrics, namely, stereochemical complexity and 
shape complexity (Fsp3)79 with the binding specificity of representative compound collections, CC, DC’ and NP 
(Methods). Clemons et al.78 found that DC’ and NP collections have more stereochemical complexity and shape 
complexity in comparison to CC collection, and interestingly, small molecules in DC’ and NP collections were 
shown to be more specific binders with less fraction of promiscuous binders in comparison to small molecules in 
CC collection. We have compared the distribution of stereochemical complexity and Fsp3 across 9596 IMPPAT 

Figure 4. Comparison of the physicochemical properties of IMPPAT phytochemicals with other small 
molecule collections. (a) Box plot shows the distribution of the stereochemical complexity of the small molecule 
collections CC, DC’, NP, IMPPAT phytochemicals and TCM-Mesh phytochemicals. The median, mean and 
standard deviation (SD) of the stereochemical complexity for each small molecule collection is shown below 
the box plot. (b) Box plot shows the distribution of the Fsp3 for the small molecule collections CC, DC’, NP, 
IMPPAT phytochemicals and TCM-Mesh phytochemicals. The median, mean and SD of the Fsp3 for each 
small molecule collection is shown below the box plot. Note the lower end of the box shows the first quartile, 
upper end of the box shows the third quartile, brown line shows the median and green line shows the mean 
of the distribution of stereochemical complexity or Fsp3 in the two box plots. (c) Median, mean and SD of six 
physicochemical properties, namely, molecular weight, logP, TPSA, number of hydrogen bond donors, number 
of hydrogen bond acceptors and number of rotatable bonds for the small molecule collections CC, DC’, NP, 
IMPPAT phytochemicals and TCM-Mesh phytochemicals.
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phytochemicals with CC, DC’ and NP collections from Clemons et al.78 and 10140 TCM-Mesh16 phytochemicals 
from Chinese medicinal plants (Fig. 4a-b; Methods). Interestingly, we find the mean and median of stereochemi-
cal complexity of IMPPAT phytochemicals is higher than CC and DC’ collections while being closer to NP collec-
tion (Fig. 4a). Furthermore, the mean and median of stereochemical complexity of IMPPAT phytochemicals was 
found to be much closer to TCM-Mesh phytochemicals in comparison to DC’, CC or even NP collection (Fig. 4a). 
We also obtain similar trends for the mean and median of shape complexity (Fsp3) of IMPPAT phytochemicals 
(Fig. 4b). These observations underscore that the IMPPAT phytochemicals are closer to small molecule libraries 
of natural products or phytochemicals from Chinese medicinal plants in terms of stereochemical complexity and 
Fsp3, and thus, are more likely enriched with specific binders than promiscuous binders.

In a later study, Clemons et al.98 have also shown that the small molecules in CC, DC’ and NP occupy differ-
ent regions in the physicochemical space. By considering six physicochemical properties studied by Clemons 
et al.98, namely, molecular weight, logP, TPSA, number of hydrogen bond donors, number of hydrogen bond 
acceptors and number of rotatable bonds, we have compared the physicochemical properties of CC, DC’, NP and 
TCM-Mesh phytochemicals with IMPPAT phytochemicals (Fig. 4c). In terms of the six physicochemical proper-
ties, the IMPPAT phytochemicals are found to be more similar to TCM-Mesh phytochemicals in comparison to 
NP, DC’ or CC (Fig. 4c). The above results underscore the importance of our curated collection of 9596 IMPPAT 
phytochemicals from Indian medicinal plants which will be a valuable addition to natural product-based screen-
ing collections.

Druggability analysis of phytochemicals of Indian medicinal plants. We evaluated the druggability 
of 9596 IMPPAT phytochemicals based on multiple rules or scoring schemes, namely, RO523, Traffic Lights24, 
GSK’s 4/40025, Pfizer’s 3/7526, Veber rule27 and Egan rule28 which were computed using FAF-Drugs4 webserver20 
(Methods). The horizontal bar plot in Fig. 5a gives the number of IMPPAT phytochemicals that satisfy differ-
ent druggability scores. From this figure, it is seen that the majority of IMPPAT phytochemicals satisfy Veber 
rule or Egan rule in comparison to Pfizer’s 3/75 rule or net Traffic Lights value of zero. Furthermore, we find 
that the same set of 8712 IMPPAT phytochemicals satisfy both the Veber rule and Egan rule for drug-likeliness. 
The vertical bar plot of Fig. 5a shows the overlap between sets of phytochemicals that satisfy different drugga-
bility scores. We found that 960 out of 9596 IMPPAT phytochemicals satisfy all evaluated druggability scores 
(Fig. 5a). Subsequently, we designated this filtered list of 960 IMPPAT phytochemicals as druggable. Among the 
1742 Indian medicinal plants in our database, Brassica oleracea, Catharanthus roseus, Zea mays, Oryza sativa, 
Vigna radiate, Pisum sativum, Anethum sowa, Allium cepa, Cassia obtusifolia and Camellia sinensis produce 
the highest number of druggable phytochemicals, and Supplementary Table S3 gives the number of druggable 
phytochemicals for each plant in IMPPAT database. In Fig. 5b, we show the distribution of the 960 druggable 
IMPPAT phytochemicals across different chemical super-classes obtained using ClassyFire50. Among the chem-
ical super-classes, phenylpropanoids and polyketides, organoheterocyclic compounds, and lipids and lipid-like 
molecules are the top three with 218, 182 and 137 phytochemicals, respectively (Fig. 5b; Methods). Among the 
chemical classes, organooxygen compounds, prenol lipids, and flavonoids are the top three with 111, 97 and 96 
phytochemicals, respectively. Moreover, organooxygen class includes many carbohydrates, carbonyl compounds 
and alcohols while the prenol lipids class mainly comprises different types of terpenes and terpenoids. Figure 5c 
shows the distribution of QEDw91 scores for the 960 druggable IMPPAT phytochemicals with mean score of 0.57 
and standard deviation of 0.17 (Methods). From this figure, it is seen that 14 druggable phytochemicals have a 
QEDw score ≥0.9 and 98 druggable phytochemicals have a QEDw score ≥0.8.

By comparing the 2069 FDA approved drugs from the DrugBank19 with the 960 druggable IMPPAT phyto-
chemicals, we found that only 32 FDA approved drugs are among the 960 phytochemicals while the remaining 
928 phytochemicals are potential new hits. By investigating the structural similarity between 2069 FDA approved 
drugs and 960 druggable IMPPAT phytochemicals, we found that 249 and 302 druggable phytochemicals are 
similar to FDA approved drugs based on ECFP4 or MACCS keys molecular fingerprints, respectively (Fig. 5d; 
Methods). Combined, ECFP4 and MACCS keys based fingerprints identified 369 out of 960 druggable IMPPAT 
phytochemicals that are similar to FDA approved drugs (Methods). Thus, almost 40% of the druggable IMPPAT 
phytochemicals are similar to at least one FDA approved drug which testifies to our systemic approach to iden-
tify potential druggable phytochemicals of Indian medicinal plants. Importantly, the remaining 591 druggable 
IMPPAT phytochemicals which have no similarity with any of the FDA approved drugs are novel candidates for 
designing new drugs based on natural products from Indian medicinal plants.

For subsequent analysis, we selected 14 druggable phytochemicals with QEDw score91 ≥0.9 which were des-
ignated as the most-druggable phytochemicals. Of these 14 phytochemicals, 12 were found to be similar to at 
least one of the FDA approved drugs based on either ECFP4 or MACCS keys based molecular fingerprint. The 
remaining 2 most-druggable phytochemicals, Onosmone (CID:102212116) and Truxillic acid (CID:78213), were 
found to have no similarity with any of the FDA approved drugs. Supplementary Figure S1a displays the similar-
ity matrix based on Tc obtained using ECFP4 molecular fingerprint for the 14 most-druggable phytochemicals 
(Methods). From the similarity matrix, it is seen that 75 of the 91 Tc values between the 14 most-druggable 
phytochemicals are <0.5 implying high structural diversity. Moreover, the similarity matrix can be transformed 
into a similarity network for the 14 most-druggable phytochemicals by using a stringent threshold value of Tc 
≥0.5 to determine edges in the graph (Supplementary Figure S1b; Methods). The similarity network for the 14 
most-druggable phytochemicals has 16 edges and can be partitioned into a large connected component (cluster) 
of 7 phytochemicals, a smaller connected component of 2 phytochemicals and 5 remaining isolated phytochemi-
cals. We highlight that the 2 phytochemicals, Onosmone and Truxillic acid, that have no similarity with any of the 
FDA approved drugs are among the isolated nodes in the similarity network (Supplementary Figure S1b). Based 
on plant-phytochemical associations in our database, Onosmone and Truxillic acid are phytochemicals of Indian 
medicinal plants, Onosma echioides and Erythroxylum coca, respectively, and a survey of the literature shows that 
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Figure 5. Druggability analysis of phytochemicals in IMPPAT database. (a) Evaluation of drug-likeliness of 
phytochemicals based on multiple scores. The horizontal bar plot shows the number of phytochemicals in the 
IMPPAT database that satisfy different druggability scores (Methods). The vertical bar plot shows the overlap 
between sets of phytochemicals that satisfy different druggability scores. The pink bar in the vertical plot gives 
the 960 phytochemicals which satisfy all druggability scores. This plot was generated using UpSetR105 package. 
(b) Classification of the 960 druggable phytochemicals into chemical super-classes obtained from ClassyFire50. 
(c) Distribution of QEDw91 scores for the 960 IMPPAT phytochemicals which satisfy all druggability scores. 
(d) Venn diagrams summarizing structural similarity analysis of 960 druggable phytochemicals in IMPPAT 
database and FDA approved drugs. Based on ECFP4 and MACCS keys molecular fingerprints, 249 and 302 
druggable phytochemicals, respectively, were found to be similar to FDA approved drugs.
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these phytochemicals are under active investigation for their therapeutic uses99–103. We also highlight that none of 
the 14 most-druggable phytochemicals are captured by Phytochemica11 database while 6 of the 14 phytochemicals 
are captured by Nutrichem9,10 database.

We also investigated the physicochemical properties of the 14 most-druggable phytochemicals. A principal 
component analysis (PCA) of the 14 most-druggable phytochemicals based on their physiochemical properties 
revealed that the first and second principal components together explained 69% of the total variance in the data-
set (Supplementary Figure S1c). We find that some of the 7 most-druggable phytochemicals which are clustered 
together in the structural similarity space (Supplementary Figure S1b) are not clustered together in the physico-
chemical space (Supplementary Figure S1c). These observations based on limited analysis of 14 most-druggable 
phytochemicals suggest that a combined exploration of structural similarity space, physicochemical space and 
biological activity space of IMPPAT phytochemicals will facilitate identification and design of novel drugs. Thus, 
in future, it will be also worthwhile to compile biological activity profiles for phytochemicals of Indian medicinal 
plants.

Comparison with phytochemical space of Chinese medicinal plants. We have compared the set of 
9596 IMPPAT phytochemicals produced by Indian medicinal plants with the set of 10140 TCM-Mesh16 phyto-
chemicals produced by Chinese medicinal plants (Methods). By comparing the 9596 IMPPAT phytochemicals 
with 10140 TCM-Mesh phytochemicals, we find that less than 25%, specifically 2305 phytochemicals, are com-
mon between the two databases (Fig. 6a). Among the 9596 IMPPAT phytochemicals, a subset of 960 phytochem-
icals were found to be druggable based on multiple druggability scores, namely, RO523, Traffic Lights24, GSK’s 
4/40025, Pfizer’s 3/7526, Veber rule27 and Egan rule28 (Fig. 5a). Among the 10140 TCM-Mesh phytochemicals, we 
found a subset of 972 phytochemicals to be druggable based on multiple druggability scores listed above (Fig. 6b). 
Thus, the relative size of the filtered subset of druggable phytochemicals is very similar for IMPPAT database 
(10%) on Indian medicinal plants and TCM-Mesh database (9.6%) on Chinese medicinal plants. Figure 6c shows 
the distribution of QEDw91 scores for the 972 druggable TCM-Mesh phytochemicals with mean score of 0.58 and 
standard deviation of 0.16, and thus, this distribution is similar to that for 960 druggable IMPPAT phytochemicals 
shown in Fig. 5c. By comparing the set of FDA approved drugs with the subset of druggable phytochemicals in 
IMPPAT and TCM-Mesh, we find that 32 approved drugs are contained in 960 IMPPAT phytochemicals while 19 
approved drugs are contained in 972 TCM-Mesh phytochemicals. Thus, we find that majority of druggable phy-
tochemicals in both IMPPAT (928 phytochemicals) and TCM-Mesh (953 phytochemicals) are potential hits for 
future drug discovery. Lastly, we find only a small overlap of 242 phytochemicals between the set of 960 druggable 
IMPPAT phytochemicals and 972 druggable TCM-Mesh phytochemicals (Fig. 6d), and thus, phytochemicals 
from both Indian herbs and Chinese herbs offer extensive opportunity for novel drug discovery.

Discussion and future directions
Cheminformatics can accelerate drug discovery from diverse natural sources5. We here incorporate cheminfor-
matic principles to build an extensive resource on phytochemistry and ethnopharmacology of Indian medicinal 
plants. Here we present, IMPPAT, a curated database of 1742 Indian Medicinal Plants, 9596 Phytochemicals, And 
1124 T herapeutic uses which is the largest, freely accessible, digital resource on natural products from Indian 
herbs to date. IMPPAT provides chemical classification, 2D and 3D chemical structure, physicochemical proper-
ties, predicted ADMET properties, drug-likeliness scores and predicted human target proteins for phytochemi-
cals in the database, and the available information in the database can be used for virtual screening. IMPPAT also 
captures limited information on the associations between Indian medicinal plants and their use in traditional 
Indian medicinal formulations. Thus, IMPPAT provides a unifying platform for the application of computational 
approaches to elucidate mechanistic links between phytochemicals of Indian medicinal plants and their thera-
peutic action.

Following Clemons et al.78, we have compared the distributions of stereochemical complexity and shape com-
plexity (Fsp3) across 9596 IMPPAT phytochemicals with small molecule collections, CC, DC’ and NP and 10140 
TCM-Mesh16 phytochemicals from Chinese medicinal plants (Fig. 4a–b). Interestingly, we show that the mean 
and median of stereochemical complexity or shape complexity of IMPPAT phytochemicals is closer to NP or 
TCM-Mesh phytochemicals than CC or DC’ collections. Following Clemons et al.98, we have also compared 
six physicochemical properties of CC, DC’, NP and TCM-Mesh phytochemicals with IMPPAT phytochemicals 
(Fig. 4c) to show that IMPPAT phytochemicals are closer to TCM-Mesh phytochemicals in physicochemical 
space (Fig. 4c). These results suggest that the IMPPAT library of phytochemicals is more likely to be enriched for 
specific protein binders rather than promiscuous binders78, and thus, our phytochemical library is expected to be 
a valuable addition to natural product-based screening collections.

Using cheminformatic approaches, we found that 960 of the 9596 IMPPAT phytochemicals of Indian medic-
inal plants are potentially druggable based on multiple scoring schemes. Of the 960 IMPPAT phytochemicals 
which satisfy all druggability scores evaluated here, a subset of 14 phytochemicals were found to have a QEDw91 
score ≥0.9 (Supplementary Figure S1). Interestingly, the occurrence of these 14 most-druggable phytochemicals 
across 1742 Indian medicinal plants in our database is very rare with none of the 14 phytochemicals being found 
in more than 3 Indian medicinal plants. Specifically, the 14 most-druggable phytochemicals are constituents of 
only 17 Indian medicinal plants in our database. Also, 4 of the 14 most-druggable phytochemicals are constit-
uents of 3 phylogenetically close Indian medicinal plants, Iris germanica, Iris nepalensis and Iris kemaonensis, 
which are from the same genus. However, we find that only 2 out of 17 Indian medicinal plants that produce the 
14 most-druggable phytochemicals are in the priority list of Ministry of AYUSH, Government of India. This anal-
ysis suggests a possible revision in the AYUSH priority list to include the remaining 15 Indian medicinal plants 
that produced the majority of the most-druggable phytochemicals in our database. Thus, our resource will also 
aid in future expansion of the chemotaxonomy104 of Indian medicinal plants.
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Lastly, we have also compared the IMPPAT phytochemicals from Indian herbs with the TCM-Mesh16 phy-
tochemicals from Chinese herbs to show that roughly 75% of the phytochemicals are unique to each database 
(Fig. 6). Moreover, we found that the filtered subsets of druggable phytochemicals in IMPPAT and TCM-Mesh 

Figure 6. Comparison of the phytochemical space of Indian and Chinese medicinal plants. (a) Venn diagram 
shows the overlap of the phytochemicals in IMPPAT and TCM-Mesh database. (b) Evaluation of the drug-
likeliness of TCM-Mesh phytochemicals based on multiple scores. The horizontal bar plot shows the number of 
phytochemicals in the TCM-Mesh database that satisfy different druggability scores (Methods). The vertical bar 
plot shows the overlap between sets of TCM-Mesh phytochemicals that satisfy different druggability scores. The 
pink bar in the vertical plot gives the 972 phytochemicals in TCM-Mesh database which satisfy all druggability 
scores. (c) Distribution of QEDw91 scores for the 972 TCM-Mesh phytochemicals which satisfy all druggability 
scores. (d) Venn diagram shows the overlap between the druggable phytochemicals in IMPPAT database and 
TCM-Mesh database.
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are similar in size with roughly 75% of druggable phytochemicals unique to each database (Fig. 6). Furthermore, 
among the 960 and 972 druggable phytochemicals in IMPPAT and TCM-Mesh, respectively, a small fraction of 32 
and 19 approved FDA drugs are contained in IMPPAT and TCM-Mesh, respectively. In sum, our results under-
line the vast potential of both Indian and Chinese herbs for future drug discovery.

In the future, we hope to update IMPPAT database with the following additional information. Firstly, it will 
be important to update our database with more detailed information on the parts of the Indian medicinal plants 
such as leaves, stem or root, that produce the different phytochemicals along with relative composition of phyto-
chemicals in different parts of the plants. Such detailed information on the relative phytochemical composition 
of parts of Indian medicinal plants will be crucial for evaluating and developing traditional Indian medicine for-
mulations74. However, significant manual curation and literature mining will be needed to expand our database 
to include the relative phytochemical composition of the different parts of 1742 Indian medicinal plants which 
is beyond the scope of the present work. Secondly, it will be important to enrich our database by incorporating 
more traditional Indian medicinal formulations. For example, TKDL (http://www.tkdl.res.in) has made only 1200 
of their documented 250000 traditional Indian medicinal formulations openly accessible, and future efforts to 
associate this wealth of information to our database will shed mechanistic information on the therapeutic action 
of traditional formulations. Thirdly, it will be important to compile known biological activity information for 
phytochemicals of Indian medicinal plants. In conclusion, IMPPAT database will serve as a valuable resource in 
herbal drug discovery.
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