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Improper Gaussian Signaling for Broadcast
Interference Networks

A. A. Nasir, H. D. Tuan, T. Q. Duong and H. V. Poor

Abstract—The use of improper Gaussian signaling (IGS) helps
to improve the achievable rate of interference-limited wire-
less multiple-input-multiple-output (MIMO) communication net-
works. For a general multi-user multi-cell network, which suffers
both intra-cell and inter-cell interference, this letter considers the
design of signals’ augmented covariance matrices to maximize the
users’ minimum rate subject to transmit power constraint. This
is a nonconvex matrix optimization problem, which cannot be
solved by popular techniques such as weighted minimum mean
square error minimization or alternating optimization. This letter
proposes a path-following algorithm, which iterates a sequence
of improved feasible points for its computation. The provided
simulation results for three cells serving 18 users show that the
use of IGS offers a much better max-min rate compared to
that achieved by the conventional proper Gaussian signaling. Its
extension to the problem of maximizing the energy efficiency in
IGS is also considered.

Index Terms—Multi-user interference system, multi-input
multi-output (MIMO), improper Gaussian signaling (IGS), aug-
mented covariance matrix, nonconvex optimization, quality-of-
service (QoS).

I. INTRODUCTION

The massive data demand in today’s wireless networks
triggers sharing wireless spectrum among users. This may result
in intra-cell and inter-cell interference, which can be managed
with the help of advanced signal processing techniques. Re-
cently, it has been shown that improper Gaussian signaling
(IGS) can improve the achievable rate in interference-limited
scenarios [1], [2]. In contrast to conventional proper Gaussian
signaling (PGS), under which the transmit signals are proper
Gaussian and are fully characterized by their covariance matrix,
IGS relaxes the Gaussian properness to augment the degree of
freedom. Hence, improper Gaussian signals are characterized
by the so called augmented covariance matrices, which are
composed from both covariance and pseudo-covariance matri-
ces [3]. As such, improper Gaussian signals can be generated
from proper Gaussian information bearing sources through
widely linear precoding [3].

The superiority of IGS over PGS in terms of achievable
rates in single-input single-output (SISO) interference channels
(ICs) has been analyzed in [4]–[7]. Considering multiple-input
multiple-output (MIMO) ICs, the dominance of IGS over PGS
has been studied in terms of degree of freedom [1], [2], [8],
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in terms of Qos feasibility [9], or in terms of achievable rates
[10]. However, the degree of freedom is an appropriate metric
only under very high signal-to-noise ratios. In [10], the authors
addressed the design problem of widely linear precoding to
maximize the weighted sum-rate.

This letter considers IGS for multi-user multi-cell MIMO
interference networks, where the base stations (BSs) broadcast
signals to their users. Different from the existing works, we
are interested in designing of signals’ augmented covariance
matrices to maximize the users’ minimum rate subject to trans-
mit power constraint. This is a computationally challenging
nonconvex optimization problem. On one hand, the augmented
covariance matrices are no longer structure-free and thus cannot
be analytically factorized into outer products of structure-free
precoder matrices for applying the popular techniques such
as weighted minimum mean square error (WMMSE) [11],
[12] to computational solution. On the other hand, alternating
optimization for broadcast channels in multi-user multi-cell
MIMO interference networks is not computationally tractable
either because each alternating iteration still involves a non-
convex matrix optimization problem. Nevertheless, we propose
a path-following algorithm, which improves feasible points
after each iteration and converges at least to a locally optimal
solution to address this problem. In addition, we extend our
algorithm to solve an interesting problem of maximizing the
energy efficiency of the network. We compare the performance
of the proposed algorithm with the ones that solve the said
problems under PGS. Our simulation results show that the use
of IGS offers a much better max-min rate and energy efficiency
compared to that achieved by the conventional PGS.

The rest of the paper is organized as follows. Section II is
devoted to the problem statement and analysis of computational
difficulties. A path-following algorithm for computational so-
lution is proposed in Section III, which is supported by simu-
lations conducted in Section III. The conclusions are given in
Section IV.

Notation: In is the identity matrix of size n× n. XH , XT ,
and X∗ are the Hermitian transpose, normal transpose, and
conjugate of the matrix X , respectively. The inner product
〈X,Y 〉 of the matrices X and Y is defined as trace(XHY ).
Denote by 〈A〉 the trace of the matrix A, and by |A| its
determinant. ‖·‖ stands for matrix’s Frobenius norm or vector’s
Euclidean norm. C is the set of all complex numbers. E{·}
denotes the expectation operator. Only design variables are
boldface typed. X � 0 means that the matrix X is positive
definite.
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II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider the downlink of a multiuser multi-cell wireless
communication system which consists of N cells, where the
base station (BS) of each cell is equipped with Nt antennas to
serve K users (also called user equipments, or UEs) within its
cell. Each UE is equipped with Nr ≥ 1 antennas. Let us define
I := {1, 2, . . . , N} and J := {1, 2, . . . ,K}. The jth UE in
the ith cell is referred to as UE (i, j). Let Hm,i,j ∈ CNr×Nt

be the MIMO channel matrix from the BS m to UE (i, j).
Accordingly, Hi,i,j and Hm,i,j for m 6= i are the direct and
interfering channels with respect to UE (i, j). The complex
baseband signal yi,j ∈ CNr received by the UE (i, j) is given
by

yi,j =

N∑
m=1

Hm,i,jxm + ni,j

= Hi,i,jxi,j + zi,j + ni,j , (1)

where
• xm ∈ CNt is the broadcast signal from the BS m, which

is a superposition of the signals xm,k ∈ CNt intended for
users (m, k): xm =

∑K
k=1 xm,k;

• Hi,i,jxi,j is the signal of interest;
• zi,j ,

∑
(m,k)∈I\{(i,j)}Hm,i,jxm,k is the interfering

signal;
• ni,j ∈ CNr is the background noise and its entries

represent i.i.d. Gaussian noise samples with zero-mean and
variances σ2.

We are interested in IGS, under which each xm,k is complex
Gaussian (not necessarily symmetric) with zero means and thus
is characterized by the so called augmented covariance CA

m,k

defined as [13]

CA
m,k , E

{[
xm,k
x∗m,k

] [
xm,k
x∗m,k

]H}
=

[
Cm,k C̃m,k

C̃∗m,k C∗m,k

]
, (2)

which is the covariance of the augmented signal
[
xm,k
x∗m,k

]
. In

the expression (2), Cm,k , E{xm,mxHm,k} and C̃m,k ,
E{xm,kxTm,k} respectively are the covariance matrix and
pseudo-covariance matrix of xm,k. In fact, Cm,k and C̃m,k

are qualified as the covariance and pseudo-covariance matrices
of xm,k if and only if they satisfy the following semi-definite
constraint to make CA

m,k positive-definite:[
Cm,k C̃m,k

C̃∗m,k C∗m,k

]
� 0, (m, k) ∈ I × J . (3)

We express the augmented signal of interest[
Hi,i,jxi,j

(Hi,i,jxi,j)
∗

]
=

[
Hi,i,j 0Nr×Nt

0Nr×Nt H∗i,i,j

] [
xij
x∗ij

]
to derive the augmented covariance of Hi,i,jxi,j as the follow-
ing congruent transformation of CA

i,j :

Λi,j(C
A
i,j) ,[

Hi,i,j 0Nr×Nt

0Nr×Nt H∗i,i,j

]
CA
i,j

[
Hi,i,j 0Nr×Nt

0Nr×Nt H∗i,i,j

]H
(4)

which is a linear mapping of CA
i,j .

Analogously, we express the augmented interfering signal[
zi,j
z∗i,j

]
=

∑
(m,k)∈I\{(i,j)}

[
Hm,i,j 0Nr×Nt

0Nr×Nt
H∗m,i,j

] [
xm,k
x∗m,k

]
to derive the augmented covariance matrix of zi,j as

Mi,j(C
A) =

∑
(m,k)∈J\{(i,j)}

[
Hm,i,j 0Nr×Nt

0Nr×Nt H∗m,i,j

]
CA
m,k

×
[
Hm,i,j 0Nr×Nt

0Nr×Nt
H∗m,i,j

]H
(5)

which is obviously a linear mapping of CA , (CA
i,j)(i,j)∈I×J .

The rate (in nats) at UE (i, j) is then defined by [14]

ri,j(C
A) ,

1

2
ln
∣∣∣I2Nr

+ Λi,j(C
A
i,j)
(
Mi,j(C

A) + σ2I2Nr

)−1∣∣∣ . (6)

Accordingly, the design of IGS to maximize the users’ min-
imum rate is formulated as the following max-min rate opti-
mization problem:

max
CA

Ψ(CA) , min
(i,j)∈I×J

ri,j(C
A) s.t. (3), (7a)

K∑
j=1

〈Ci,j〉 ≤ Pi, i = 1, . . . , N, (7b)

where Pi is the maximum power budget at the BS i. The
objective function in (7) is not only non-concave but also
non-smooth, making it computationally difficult. Due to the
structure of the augmented covariance CA

m,k in (2), it is
impossible to analytically factorize it into outer products of
precoder matrices so the popular WMMSE [11], [12] is not
applicable. It is also obvious that the objective function in (7)
remains nonconcave in CA

i , (CA
i,1, . . . ,C

A
i,K) with other

CA
` , (CA

`,1, . . . ,C
A
`,K), ` 6= i held fixed, so alternating

optimization, which is used in [10] for ICs (K = 1), is
not workable. Furthermore, although each ri,j(CA) is the d.c.
(difference of two concave functions) function [15]

1
2 ln

∣∣(1 + σ2)I2Nr
+ Λi,j(C

A
i,j) +Mi,j(C

A)
∣∣

− 1
2 ln

∣∣Mi,j(C
A) + σ2I2Nr

∣∣ ,
and so (7) can be addressed by the d.c. iterations [16], which
however are not efficient by involving optimization of logarithm
determinant functions at each iteration with no known solver
of polynomial time complexity.

III. PROPOSED ALGORITHM

In this section, we propose a path following algorithm to
solve the max-min rate optimization problem (7). First, let us
recall the following result [17].

Proposition 1: For X � 0, X̄ � 0, Y � 0 and Ȳ � 0 of
sizes (2Nr)× (2Nr), it is true that

ln |I2Nr
+ X(Y + σ2I2Nr

)−1| ≥
a− 〈X̄ + Ȳ + σ2I2Nr

, (X + Y + σ2I2Nr
)−1〉

−〈(Ȳ + σ2I2Nr
)−1,Y〉 (8)

with a = ln |I2Nr
+ X̄(Ȳ + σ2I2Nr

)−1| + 4Nr − σ2〈(Ȳ +
σ2I2Nr )−1〉. The function defined by (8) is concave in (X,Y)
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Algorithm 1 IGS-based Proposed Algorithm to solve Max-min
Rate Optimization Problem (7).

Initialization: Set κ := 0 and a feasible point CA,(0) using
random covariance C

(0)
i,j and pseudo-covariance matrices

C̃
(0)
i,j , ∀ (i, j) ∈ I ×J , satisfying the power constraint (3).

1: repeat
2: Solve the convex optimization problem (10) to obtain

the optimal solution CA,(κ+1).
3: Set κ := κ+ 1.
4: until Convergence of the objective in (7).

because its second term is a concave function [18], while its
third term is obviously a linear function. �

Now, let CA,(κ) , (C
A,(κ)
i,j )(i,j)∈I×J be a feasible point for

(7) that is found at the (κ− 1)th iteration, where

C
A,(κ)
i,j =

 C
(κ)
i,j C̃

(κ)
i,j(

C̃
(κ)
i,j

)∗ (
C

(κ)
i,j

)∗
 .

With regard to the function ri,j(C
A) in (7a), applying in-

equality (8) for X = Λi,j(C
A
i,j), Y = Mi,j(C

A) and
X̄ = Λi,j(C

A,(κ)
i,j ), Ȳ =Mi,j(C

A,(κ)) yields the following
lower concave function approximation

ri,j(C
A) ≥

a(κ) −
〈

Λi,j(C
A,(κ)
i,j ) +Mi,j(C

A,(κ))

+σ2I2Nr , (Λi,j(C
A
i,j) +Mi,j(C

A) + σ2I2Nr )−1
〉

−
〈

(Mi,j(C
A,(κ)) + σ2I2Nr

)−1,Mi,j(C
A)
〉
,

r
(κ)
i,j (CA), (9)

with a(κ) = ln
∣∣∣I2Nr

+ Λi,j(C
A,(κ)
i,j )(Mi,j(C

A,(κ))

+σ2I2Nr
)−1
∣∣+ 4Nr − σ2

〈
(Mi,j(C

A,(κ)) + σ2I2Nr
)−1
〉
.

Thus, at the κ-th iteration, we solve the following convex
optimization problem to generate the next iterative feasible
point CA,(κ+1) for (7):

max
CA

Ψ(κ)(CA) , min
(i,j)∈I×J

r
(κ)
i,j (CA) s.t. (3), (7b). (10)

The computational complexity of this problem is
O
(
(2KNN2

t )3 (KN +N)
)

[19].
Algorithm 1 outlines the steps to solve the max-min rate

problem (7). Note that Ψ(κ)(CA,(κ+1)) > Ψ(κ)(CA,(κ))
because CA,(κ+1) is the optimal solution of (10) while
CA,(κ) is its feasible point. Therefore, Ψ(CA,(κ+1)) ≥
Ψ(κ)(CA,(κ+1)) > Ψ(κ)(CA,(κ)) = Ψ(CA,(κ)), where the last
equality follows from the equality r(κ)i,j (CA,(κ)) = ri,j(C

A,(κ)),
which is easily checked using the definition (9). Algorithm
1 thus generates a sequence {CA,(κ)} of improved feasible
points for (7). Using similar arguments as in [20], it can be
easily shown that Algorithm 1 at least converges to a locally
optimal solution of (7), which satisfies the Karush-Kuh-Tucker
(KKT) optimality condition. It is noteworthy to point out that
the simulation results in [20] show that this type of solution
is often globally optimal.
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Fig. 1. A multi-cell network setup where triangles at the center of the cells
denote the BSs and circles show the users’ positions.

Remark. The problem of energy-efficiency maximization
under QoS constraints,

max
CA

∑
(i,j)∈I×J

ri,j(C
A)/ϕ(CA) s.t. (3), (7b), (11a)

ri,j(C
A) ≥ rmin

i,j , (i, j) ∈ I × J , (11b)

can be addressed similarly, where rmin
i,j is the rate threshold

to express the required QoS for UE (i, j) and ϕ(CA) =∑
(i,j)∈I×J 〈Ci,j〉 + Pnon is the power consumed by all the

BSs, where Pnon = NNtPu is the non-transmission power and
Pu is the per antenna circuit power at the BSs. Initialized by a
feasible point CA,(0), which can be located by using Algorithm
1, at the κ-th iteration, we solve the following convex problem
instead of (10) to generate the next feasible point CA,(κ+1):

max
CA

Φ(κ)(CA) ,
∑

(i,j)∈I×J

r
(κ)
i,j (CA)− θ(κ)ϕ(CA) (12a)

s.t. (3), (7b), r
(κ)
i,j (CA) ≥ rmin

i,j , (i, j) ∈ I × J , (12b)

where θ(κ) ,
∑

(i,j)∈I×J ri,j(C
A,(κ))/ϕ(CA,(κ)), is the

value of the objective function in (11) at CA,(κ). Note
that Φ(κ)(CA,(κ)) = 0, so Φ(κ)(CA,(κ+1)) > 0 at
the optimal solution CA,(κ+1), which means θ(κ+1) ,∑

(i,j)∈I×J ri,j(C
A,(κ+1))/ϕ(CA,(κ+1)) > θ(κ), i.e. {CA,(κ)}

is a sequence of improved feasible points for (11), which at
least converges to a locally optimal solution.

IV. SIMULATIONS

As shown in Fig. 1, users are randomly placed in a three-cell
network, N = 3. Each cell radius is 500 meters. In our simula-
tions, the channel Hm,i,j from BS m ∈ I to UE (i, j) at a dis-
tance of d meters is generated as Hm,i,j =

√
10−σPL/10H̃m,i,j ,

where H̃m,i,j ∈ CNr×Nt is a normalized Rayleigh fading
MIMO channel matrix, σPL = 38.46+10β log10(d) is the path-
loss in dB, where the loss factor 38.46 is the free space path
loss at a reference distance of 1 meters at carrier frequency of 2
GHz, and β = 3.1 is the path-loss exponent [21]. For simplicity,
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Fig. 2. Optimized max-min user rate for varying values of transmit power
budget, P .
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Fig. 3. Optimized max-min user rate versus different number of transmit
transmit antennas, Nt, at the BS.

we set the same power budget for each cell, i.e., Pi ≡ P ,
∀ i ∈ I. We set noise power desnity σ2

B = −174 dBm/Hz with
bandwidth B = 20 MHz. To analyze the proposed algorithm
through simulations, we assume K = 6 users per cell, where
each user has Nr = 2 receive antennas. Unless stated otherwise,
each BS is equipped with Nt = 4 antennas and the BS transmit
power is set to P = 26 dBm.

We compare the performance of the proposed Algorithm 1,
which employs IGS, with the conventional PGS Algorithm,
which will solve for similar problem (7) with zero pseudo-
covariance matrix, i.e., C̃i,j = 0Nt×Nt ∀ (i, j) ∈ I × J .
Alternatively, WMMSE Algorithm [12] is also applicable for
designing Fm,k ∈ CNt×Nt such that Cm,k = Fm,kF

H
m,k,

which achieves a similar performance to Alg. 1 for PGS in
our computational experience. Fig. 2 plots the achievable max-
min rate versus the transmit power budget, P , which clearly
demonstrates the advantage of using IGS over conventional
PGS. As expected the max-min rate increases with the increase
of the available power budget, where the performance gap
between IGS and PGS is wider with the increase in the available
transmit power budget. This might be because of potential
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Fig. 4. Optimized energy efficiency versus different number of transmit
transmit antennas, Nt, at the BS.

better pseudo-covariance design for IGS in the presence of
increased power budget. Fig. 3 plots the achievable max-min
rate versus the number of transmit antennas, Nt, at the BS,
where the performance gain of IGS over conventional PGS is
also seen.

TABLE I
AVERAGE NUMBER OF ITERATIONS REQUIRED BEFORE CONVERGENCE BY

THE IGS AND PGS ALGORITHMS FOR Nt = 4 ANTENNAS

Algorithm P = 20 dBm P = 24 dBm P = 28 dBm
IGS 17 23.5 32.1
PGS 11.4 13.9 15.6

Due to the additional pseudo-covariance matrices, the
computational complexity of the proposed IGS Algo-
rithm 1 is O

(
(2KNN2

t )3 (KN +N)
)

[19] compared to
O
(
(KNN2

t )3 (KN +N)
)

of its PGS implementation. The
average number of iterations required before convergence for
the two algorithms is shown in Table I.

To simulate the energy-efficiency (EE) problem (11), we set
rmin
i,j ≡ 0.5 bps/Hz and set the per antenna circuit power at the

BSs, Pu = 189 mW [22]. Fig. 4 plots the achievable energy
efficiency versus the number of transmit antennas, Nt, at the
BS. Again, we can see the sizable performance gain of IGS
over conventional PGS. The energy efficiency though increases
with the increase in the number of transmit antennas but the
increase is not linear. There is marginal increase in the EE for
the number of transmit antennas, Nt, increases from 5 to 6
due to increase in the non-transmission power, Pnon, which is a
constant factor, proportional to Nt, in the denominator of EE.

V. CONCLUSIONS

The paper has considered the advantageous IGS for a multi-
user multi-cell MIMO network. Accordingly, a path-following
algorithm of low computational complexity has been proposed
for computation. The numerical examples have supported its
practical efficiency, where IGS has been shown clearly outper-
form PGS in terms of the max-min rate and energy efficiency.
Extensions to the case of secure IGS or comparing IGS and
PGS in time-sharing context [23] can be considered in future
research.
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