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The efficiency of crop breeding programs is evaluated by the genetic gain of a primary trait

of interest, e.g., yield, achieved in 1 year through artificial selection of advanced breeding

materials. Conventional breeding programs select superior genotypes using the primary

trait (yield) based on combine harvesters, which is labor-intensive and often unfeasible for

single-row progeny trials (PTs) due to their large population, complex genetic behavior,

and high genotype-environment interaction. The goal of this study was to investigate the

performance of selecting superior soybean breeding lines using image-based secondary

traits by comparing them with the selection of breeders. A total of 11,473 progeny rows

(PT) were planted in 2018, of which 1,773 genotypes were selected for the preliminary

yield trial (PYT) in 2019, and 238 genotypes advanced for the advanced yield trial (AYT)

in 2020. Six agronomic traits were manually measured in both PYT and AYT trials. A

UAV-based multispectral imaging system was used to collect aerial images at 30m

above ground every 2 weeks over the growing seasons. A group of image features

was extracted to develop the secondary crop traits for selection. Results show that

the soybean seed yield of the selected genotypes by breeders was significantly higher

than that of the non-selected ones in both yield trials, indicating the superiority of the

breeder’s selection for advancing soybean yield. A least absolute shrinkage and selection

operator model was used to select soybean lines with image features and identified 71

and 76% of the selection of breeders for the PT and PYT. The model-based selections

had a significantly higher average yield than the selection of a breeder. The soybean

yield selected by the model in PT and PYT was 4 and 5% higher than those selected

by breeders, which indicates that the UAV-based high-throughput phenotyping system

is promising in selecting high-yield soybean genotypes.

Keywords: high-throughput phenotyping, soybean breeding, machine learning, variety selection, Unmanned Aerial

Vehicle (UAV)
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INTRODUCTION

Crop breeding is the art and science of improving crop traits
to produce desired characteristics (Sleper and Poehlman, 2006).
The goal of crop breeding is to improve genetic gains, which is
the increase in the performance of a population achieved in 1
year through artificial selection (Fehr, 1991). From 10,000 years
ago, plants with preferable traits have been domesticated and
selected by humans for increased production and environmental
adaptability (Ahmar et al., 2020). Since the early 1900’s, crop
breeding has been systemized with the introduction ofMendelian
laws, followed by cross-breeding and hybrid breeding that
are referred to as conventional breeding strategies (Ahmar
et al., 2020). Conventional breeding programs still primarily
make selection decisions through phenotypic observations that
are time-consuming, labor-intensive, and subjective to the
experience of breeders (Araus et al., 2018). For example, the
development of a new soybean cultivar can take up to 8 years,
given the many phases of crossing, selection, and field trials
in multiple environments (Ahmar et al., 2020; Vieira et al.,
2021). Genetic gains can be increased by enhancing selection
intensity, shortening the breeding cycle, ensuring suitable genetic
variation in the population, and obtaining accurate estimates of
the genetic values (Xu et al., 2017; Araus et al., 2018; Moreira
et al., 2019). The selection intensity (or population size) is limited
by the phenotyping capacity to measure key agronomic traits of
breeding materials and selection accuracy by the lack of objective
and efficient phenotyping tools.

Thanks to the advances in high-throughput genotyping and
sequencing technologies, molecular breeding strategies have
been developed to shorten conventional breeding cycles and
increase selection accuracy with the aid of genetic markers
(Xu et al., 2017). Two commonly used methods, i.e., marker-
assisted selection and genomic selection that rely on marker-
trait associations, are routinely applied in modern plant breeding
programs (Arruda et al., 2016). Despite genomics and technical
advances, identifying plants with desirable traits is the ultimate
and most important goal in breeding pipelines (Ahmar et al.,
2020). However, it is well-acknowledged in the breeding
community that the phenotyping efficiency is still a bottleneck
in crop breeding (Araus and Cairns, 2014; Araus et al., 2018).
In addition, the lack of accurate phenotypic data has led to
poor associations between phenotypes and gene/QTL, limiting
the genome-based selection accuracy (Mammadov et al., 2012).

Soybean breeding programs include intensive field trials
starting from progeny trials (PTs), where a large number of
genotypes (e.g., 30,000) are planted in non-replicated one-row
breeding plots due to limited resources, such as seed availability,
land, and cost (Orf et al., 2004). In conventional breeding
programs, plant traits in PTs are manually collected, which
requires a large investment of resources, and data collected are
inaccurate due to the border effects of single rows and subjective
observations (Moreira et al., 2019). Therefore, critical soybean
traits, such as yield and maturity group (MG), are not feasible
to collect for all entries. A certain percentage of them will be
selected by visual examinations (by experienced breeders) for the
advancement in the following yield trials (YTs). In YTs, soybean
lines are often planted in four-row plots with two center rows

as effective rows while two side rows as buffer rows. Key traits
in YTs are manually measured and recorded for each plot and
the best performing lines are selected. This procedure will be
repeated in many environments for 2–3 years. The massive field
phenotyping workload represents a bottleneck in conventional
breeding, marker-assisted selection, or genomic selection.

High-throughput phenotyping (HTP) has demonstrated the
ability to efficiently acquire sensory data from plants leveraging
diverse kinds of spectral sensors, such as high-resolution digital,
multi-/hyperspectral, infrared thermal, and fluorescence cameras
as well as Lidar (light detection and ranging) devices. Advances
in statistical learning theories and application programming
interface packages for machine learning (ML) have enabled data
assimilation and feature identification for plant phenotyping.
ML approaches play key roles in plant HTP, such as detecting
corn kernels using convolutional neural networks (CNN) and
digital red-green-blue images (Khaki et al., 2020) and identifying
soybean flowers and seedpods using region-based CNN (RCNN)
(Pratama et al., 2020). ML approaches have also been used to
predict plant traits, such as yield by CNN (Zhou et al., 2021b),
maturity date by partial least square regression (Zhou et al., 2019)
and stress responses by artificial neural networks, decision tree
models, linear discriminant analysis, and support vector machine
(Bai et al., 2018; Zhou et al., 2020, 2021a).

Agronomic traits developed by HTP systems have been used
as secondary traits in the selection of superior soybean breeding
lines, which may decrease the population size tested in field
conditions and increase selection intensity (Richards, 2000).
Secondary traits can be measured at earlier growth stages or
generations, which may accelerate the selection procedure and
eventually shorten the breeding circles (Moreira et al., 2019).
Most importantly, HTP systems can quantify crop traits in
PTs that are not able to be collected efficiently in conventional
breeding programs (e.g., estimated yield and vegetation indices),
and provide data-driven references to select superior progeny
rows by learning from the selections of a breeder. To the best of
our knowledge, no studies have been conducted to evaluate the
performance of secondary traits from HTP systems in selecting
superior genotypes from PTs to advance yield.

Motivated by the need to improve the selection accuracy and
intensity in soybean breeding, the goal of this study was to
evaluate the performance in selecting superior soybean progeny
rows using UAV-based image features as secondary traits. There
were three objectives to achieve this goal: (1) modeling breeder’s
selection (selected/non-selected) using manually measured crop
traits (flower color, pubescence color, plant height, lodging,
maturity date, and yield) to quantify weights of the traits on
the final selections, (2) determining the growth stages when
the image features are effective in making selections, and (3)
evaluating the performance of model selections by comparing
their yield performances with breeder’s selection.

MATERIALS AND METHODS

Plant Material and Field Experiment
The field experiments were conducted from 2018 to 2020,
including a PT in 2018, a preliminary yield trial (PYT) in 2019,
and an advanced yield trial (AYT) in 2020. The PT included
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11,473 F4 : 5 soybean progeny rows and was conducted in a
3.64 ha field at the Greenley Research Center of the University
of Missouri (MU), Novelty, Missouri. The progeny rows were
planted without replicates in one-row plots of 2.59m in length
with 0.76m row spacing. The progeny rows were planted
using an Almaco cone plot planter (Almaco, Nevada, Iowa) on
May 29, 2018.

A group of 1,860 breeding lines was selected from the PT
based on overall yield potential and favorable agronomic traits
at maturity, among which 1,773 were advanced to the PYT in
2019 and were planted without replicates in four-row plots with
a row length of 3.6m and a row spacing of 0.8m. The PYT
plots were planted on June 3, 2019, at the Bay Farm Research
Facility, Columbia, Missouri. The 2020 AYT consisted of 238
breeding lines selected from the 2019 PYT based on multi-
environment yield performance and favorable agronomic traits
and were planted in a randomized complete block design with
two replicates at the Bay Farm Research Facility, Columbia,
Missouri, on June 2, 2020. Plot size, row length, and row spacing
for AYT were the same as PYT. In PT, PYT, and AYT, replicated
checks for MG III and MG IV were planted over the field as
maturity references.

Manually Measured Agronomic Traits
Six agronomic traits were manually measured for the four-row
soybean plots in the PYT and AYT, including flower color,
pubescence color, plant height, lodging, maturity date, and grain
yield. Soybean flower color was classified into three categories
[i.e., purple, white, segregating (mixed colors)], and pubescence
color into four categories (i.e., tawny, light tawny, gray, and
segregating). All color information was recorded by experienced
breeders or research staff. Plant height was measured as the
average height from ground level to the top node of the plants
in the two center rows of each plot at the maturity stage (R8).
Lodging was visually rated on a scale of 1–5 (i.e., 1 = all plants
erect; 2= 5–25% of the plants prostrate; 3= 25–50% of the plants
prostrate; 4 = 50–80% of the plants prostrate; and 5 = all plants
prostrate). Plant maturity was visually determined and recorded
as the number of days after September 1 (day 1) when 95% of
the pods in the two center rows of each plot achieved mature pod
color. The total seed weight of the central two rows of each plot
was measured by the plot combine Almaco R1 or Almaco SPC-
40 (Almaco, Nevada, Iowa). The final grain yield was converted
to kg·ha−1 on a 13% moisture basis (Beche et al., 2020).

UAV Data Collection
Imagery data were acquired using a UAV imaging system
consisting of a UAV platform (model: DJI Matrice 600 Pro, DJI,
Shenzhen, Guangdong, China) and a five-band multispectral
(Blue-Green-Red-RedEdge-NIR) camera (RedEdge-M,
MicaSense, Seattle, WA, USA). The multispectral camera
has an image resolution of 1,280× 960 pixels and was configured
to take time-lapse images at one frame per second (1 fps). The
spectral camera was calibrated using a Calibrated Reflectance
Panel (Micasense) following the procedure described in
Zhou et al. (2019). The multispectral camera has a Global
Navigation Satellite System (GNSS) receiver unit embedded and

preprogrammed to provide geo-referencing information for each
image in exchangeable image file format. Before each flight, a
calibration reflectance panel (CRP) was imaged by holding the
camera at about 1m above the CRP and looking vertically in an
open area to avoid the shadow.

Data were collected four times [75, 90, 108, and 121 days after
planting (DAPs)] in the 2018 PT, six times (45, 57, 74, 87, 109,
and 120 DAPs) in the 2019 PYT, and six times (51, 64, 78, 94,
107, and 120 DAPs) in the 2020 AYT. The UAV imaging system
flew at 30-m-above ground level with the camera in nadir view
for all data collections, resulting in a ground sampling distance of
20.8 mm·pixel−1 for the multispectral images. Before each flight,
the flight speed was set to 7 km·h−1, and the flight paths were
designed to ensure a forward overlap of≥ 70% and a side overlap
of ≥ 65% for all images using the flight control App Autopilot
(Hangar Technology, Austin, TX, USA).

About 12, 15, and 18 ground control points (GCPs) were
placed evenly for each data collection in the PT, PYT, and AYT
fields, as shown in Figure 1. The GCP was made of a 30 ×

30 cm wood square covered with a cross-patterned vinyl sheet
that was mounted on the top of a 1.1m plastic fence post. The
GNSS coordinates of the GCPs were obtained using a Real-Time
Kinematic (RTK) GNSS positioning system (Reach RS+, Emlid,
St. Petersburg, Russia) that consists of a base station and a rover
receiver. The base station was mounted on a tribrach that was
fixed in an open area in the fields to ensure sufficient satellite
reception for each data collection. The base position with an
averaged single accuracy (∼2.5m) was obtained for each field by
accumulating its GNSS coordinates for 5min (Emlid, 2021). The
base station was maintained stationary and horizontally during
every flight and its position was fixed over a growing season.
The rover receiver was mounted on a monopod that was placed
vertically in the holes after the GCPs were pulled out. The GNSS
coordinate of each GCP was recorded after accumulating for 10 s
using a manufacturer-developed App ReachView.

Image Processing
The images were processed using a pipeline shown in Figure 2,
which includes (1) generating orthomosaic images; (2) plot
separation; and (3) feature calculation, as shown in Figure 2.
The multispectral images were processed using Pix4D Mapper
(Pix4D, Lausanne, Switzerland) to generate orthomosaic images
and digital elevation models (DEMs) by importing all geo-
referenced five-band images and the CRPs for reflectance
calibration (Zhou et al., 2019). The generated orthomosaic
images and DEMs were then processed using the Mapping
Toolbox and Image Processing Toolbox of MATLAB (Version
2019a, The MathWorks, Natick, MA, USA).

Geo-references of the orthomosaic images were used to
efficiently separate individual plots from the time-series images.
GNSS positions (i.e., latitude and longitude) of the exported
orthomosaic images were extracted from the images using the
“pixcenters” function with a “makegrid” option in the Mapping
toolbox in MATLAB. The projected geographic coordinate
system of the multispectral images was converted into the World
Geodetic System 1984 (WGS84) using the function “projinv” with
required information read from the orthomosaic images. Two
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FIGURE 1 | Locations of field trials. (A–C) are fields and distribution of ground control points (GCPs) at the progeny trial (PT) in 2018, the preliminary yield trial (PYT) in

2019, and the advanced yield trial (AYT) in 2020, respectively. (D) Geographical locations of the fields.

matrices were finally returned and each of them had the same
dimension as the orthomosaic image fromwhich it was extracted.
One of the matrices includes latitude values, while the other
includes longitude values.

Individual plots were manually selected from the orthomosaic
image built with the images taken when soybean plants had full
canopy cover (e.g., DAP 87). A rectangular mask was created
to cover the full canopy of each plot and the associated latitude
and longitude matrices of the four corners were recorded. The
geo-reference information of each plot was used to identify the
location of individual plots in the orthomosaic images of other
days (e.g., DAP 57). Directional and heading shifts might occur
due to the GNSS and stitching errors. The shifts were identified
visually and adjusted manually by moving the masks to the
right positions. The masks were then applied to the orthomosaic
images of DAP 57 to separate the individual plots. The center
part of each plot was cropped by removing the image edge (a
quarter of image width on each width side and a quarter of

image length on each length side). About 38 image features
were calculated from the five-band images using the formula
summarized by Henrich et al. (2009) and Agapiou et al. (2012).
The formula and a brief description of the image features are
shown in Supplementary Table 1 and the full descriptions can
be found from the Index DataBase (https://www.indexdatabase.
de/).

Model Training and Validation
Soybean breeding lines in the PT and PYT were randomly split
into training (80%, i.e., 9,178 and 1,418 lines for the PT and PYT)
and testing (20%, i.e., 2,295 and 790 lines for the PT and PYT)
datasets to train and validate the variety selection model. The
least absolute shrinkage and selection operator (LASSO) model
was used in this study for the binary classification problem (James
et al., 2013). The LASSO performs both variable selection and
regularization to enhance model accuracy and interpretability by
adding a penalty term (the L1 norm ||β||1) to the least square
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FIGURE 2 | The image processing pipeline.

linear regression (Equation 1).

RSS+ ‖β‖1 =
∑

(yi − β0 −

p
∑

j=1

βjxij)
2 + λ

p
∑

j=1

∣

∣βj

∣

∣ (1)

where yi is the response of the ith observation, β0 is the intercept
of the LASSO model, βj is the LASSO coefficient of the jth
predictor, j = 1,2,. . . , p and xij is the value of the jth predictor
of the ith observation. λ is a tuning parameter of the shrinkage
penalty. When λ = 0, the penalty term has no effect, and the
LASSO model has little flexibility and will produce the least
squares estimates (high variance but no bias). However, as λ

approaches ∞, the impact of the shrinkage penalty grows, and
the LASSO coefficient estimates of predictors hardly contributing
to the model will approach zero. As λ increases, the flexibility of
the ridge regression fit decreases, leading to decreased variance
but increased bias. The LASSO model improves model accuracy
by balancing the bias-variance trade-off to reach the minimum
test error (a function of variance plus squared bias). The
Lasso model could eliminate potential multicollinearity in the

dataset by shrinking the regression coefficients for the highly
correlated ones.

Two LASSO models were trained separately for the PT and

PYT. The model was built using the “cv.glmnet” function in the

“glmnet” R package by specifying the model type argument alpha
= 1, standardize = “TRUE,” and response family = “Gaussian”
with other default arguments. The best shrinkage parameter λ

was returned by the “cv.glmnet” function (with 5-fold cross-

validation on the training set) of choosing the one with the lowest
cross-validation error. During the training stage, the LASSO
model took 38 image features as predictors and the two classes
(0 and 1 in numeric values) as responses and then outputted the
probability (0.0–1.0) of a sample being classified to either of the
two classes. Those with probabilities higher than the averaged
probability were classified as 1 and the rest were as 0. The code
for the LASSO model and the imagery datasets can be found
at: https://github.com/Heyphil/Soybean-variety-selection.git.

As our goal in this study was to assist breedzers to identify elite
lines that have higher yield potential in the following years from
their selected group, we focused on avoiding misclassification
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FIGURE 3 | Illustration of two metrics for evaluating model performance in

selecting superior soybean breeding lines. The testing sets (20%) included

2,295 and 790 breeding lines for the PT and PYT.

of the selected lines to the non-selected group, i.e., minimizing
the false negative (FN) rates, which can be quantified by the
classification recall (Eq. 2) of the testing sets. As shown in
Figure 3, the true positive (TP) class represents the overlapping
between the model selections and the selection of breeder, while
the FN class contains those who were not selected by the model
but selected by the breeder. In this study, the FN class needs
to be avoided, i.e., the minimum type 2 error. Recall measures
the proportion of the TP class out of all the breeder selections.
For imbalanced datasets like this case (only around 10% of one
class while 90% of the other), F1-score of the classification model
was calculated (Eq. 3) to take both the FN rates (recall) and
false positive rates (precision) and into account at equal weights
(Cao et al., 2020). It returns values between 0.0 (the worst model
performance) and 1.0 (the best model performance).

In breeding programs, it is always preferred that the
selected genotypes have an increased yield from one generation
to the next (Moreira et al., 2019). To evaluate the model
performance, yield means in the following YTs of the TP class
(the model selections) were compared to the yield means of
the FN class (the model non-selected group but selected by
breeders phenotypically).

Recall =
TP

TP + FN
(2)

F1-score =
2 × TP

2× TP + FP + FN
(3)

where, TP is the true positive class, FP is the false positive class,
and FN is the false negative class.

Data Analysis
Data analyses were conducted using R language (Team, 2021)
in RStudio (Ver. 1.3.1093, RStudio, Boston, MA, USA). A
one-way ANOVA with an honest significant difference Tukey
test was conducted to evaluate the differences in yield, plant
height, and lodging between the selected and non-selected
soybean breeding lines. Principal component analysis (PCA)

was performed to estimate the relationship among the manually
measured agronomic traits and model the selection criterion
of a breeder. PCA is an unsupervised approach allowing to
summarize a dataset with principal components (PCs). Each PC
is a normalized linear combination of features that collectively
explain most of the variability in the original set (James
et al., 2013). The PCA was performed using the “prcomp”
function to visualize the feature contributions to PC models and
their relationship.

RESULTS

Efficacy of the Manual Selection
Figure 4 shows the result of one-way ANOVA tests on the
manually measured agronomic traits that were collected in the
YTs. In the PYT, significant differences were observed in yield
between the selected and non-selected groups, with the selected
group yielding on average 5,120 kg·ha−1 with an SD of 584
kg·ha−1 and the non-selected group yielding 4,423 kg·ha−1

with an SD of 778 kg·ha−1 (Figure 4A). The yield difference
was observed consistently in the AYT, with the selected group
averagely producing 4,965 kg·ha−1 yield with an SD of 622
kg·ha−1 and the non-selected group 4,384 kg·ha−1 with an SD
of 770 kg·ha−1 (Figure 5A). In the PYT, plant height had a
dynamic range from 45.0 to 125.0 cm and the selected group
(89.6 cm, SD = 10.3 cm) was significantly taller than the non-
selected one (87.9 cm, SD = 11.2 cm), while in the AYT there
was no difference in plant height (55.0–105.0 cm) between the
two groups (Figure 5B). It is noted that the selected group had
higher lodging readings than the non-selected group, which was
possibly caused by the fewer variations in lodging, as most of the
breeding lines in the AYT (Figure 5C) had the lodging readings
within the range of 1–2, except for a few breeding lines over 3.
For the maturity date, the selected groups were mostly located
between 25–37 and 30–37 days after September 1 (Figure 5D).
From Figures 4E,F, 5E,F, flower and pubescence colors were
not the decisive factors as specific percentages of selection were
made from each of the colors. However, color segregating was an
indicator of the non-selection groups. The result indicates that
the breeders made selection primarily on yield performance and
eliminating those with undesired secondary traits, such as early
or late MG and high lodging rate.

Modeling Breeder’s Selection Criterion
The PCA analytical results on the manually measured agronomic
traits for the PYT and AYT are shown in Figures 6A, 7A. The
PCA revealed three PCs with eigenvalues > 1 capturing 65.3% of
the total variation for the PYT and two PCs capturing 51.1% for
the AYT. In both YTs, the first two PCs were mainly influenced
by yield, plant height, maturity date, and lodging. Yield and plant
height had the highest contributions to PC1 for both trials and
pointed in a similar direction. It was also noted from Figures 6C,
7C that plant height was positively correlated with yield. The
lodging andmaturity date had the second important contribution
to the PCA models. Among breeding lines with high rankings in
yield, those with severe lodging and not in the targeted MGs will
not be selected.
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FIGURE 4 | Comparisons of manually measured agronomic traits between the selected and non-selected groups in the PYT. In the PYT, 238 breeding lines were

selected, while 1,535 breeding lines were non-selected. (A–C) Boxplots of yield, plant height, and lodging for the selected and non-selected groups. The lower-case

letters above bars indicate the significant difference among these means at the above significance levels (p-values). (D) Histogram of the maturity dates. (E,F) Bar

plots of the flower and pubescence colors. The blue bars represent all plots, while the orange bars represent the selected plots.

Flower and pubescence color had little contribution to
the selection. In PYT, soybean breeding lines with the white
flower color had a higher yield than those with purple and
segregating, while those with the pure pubescence colors
had a higher yield than segregating lines. In AYT, however,
no significant difference was found among different colors,
which may be due to the fewer variations in the AYT
breeding lines. The relationship between yield and other
agronomic traits shown in Figures 6, 7 generally confirms the
variable contributions found in the first two PCs in the PYT
and AYT.

Figures 6B, 7B show the scatterplots of sample distribution
based on PCA regression scores, with different colors for
the selected and non-selected groups. The two groups mainly
overlapped with each other in the first two PCs for both trials.
However, it can be seen that the selected group tended to follow
the trend of high yield (i.e., negatively directing to the axis of PC1
for the PYT while positively directing to PC2 for the AYT). There

was no clear difference between the two groups in the axis of PC2
that were dominated by maturity date and lodging.

Differences in Image Features Between
Selected and Non-selected Breeding Lines
Figure 8 shows the significance of the differences in 38 image
features collected multiple times in the PT, PYT, and AYT. Each
square indicates the type of difference (significantly higher, lower,
or no difference) in themean of an image feature (all listed above)
between the selected and non-selected groups. The vertical axes
were the DAPs when data were collected in each trial, and trials
were indicated on the right side of the graph. In the PT, there were
37, 35, 31, and 31 image features significantly different between
the two groups, collected on the DAPs of 75, 90, 108, and 120,
respectively. There were 31, 32, 24, 4, 28, and 7 image features
in the PYT and 34, 33, 28, 26, 18, and 3 image features in the
AYT that showed significant differences from the first to the last
data collection. Among the 38 image features, 17 had consistently
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FIGURE 5 | Comparisons of manually measured agronomic traits between the selected and non-selected groups in the AYT. In the AYT, 44 breeding lines were

selected, while 194 breeding lines were non-selected. (A–C) Boxplots of the comparisons in yield, plant height, and lodging, respectively. The lower-case letters above

bars indicate the significant difference among these means at the above significance levels (p-values). (D) Histogram of the maturity dates. (E,F) Bar plots of the flower

and pubescence colors. For (E,F), the blue bars represent all breeding lines, while the orange bars represent the selected breeding lines.

significant patterns (i.e., the selected group consistently higher or
lower than the non-selected group) for the three trials. In general,
there was a less significant difference in advanced trials due to
the less variation among selected breeding lines than those in
previous trials.

The PT maintained a relatively consistent number of image

features with significant differences from the mid- (DAP 78)
to late- (DAP 120) growth stages. While in the PYT and

AYT, most of the image features were significant before the

90 DAPs; however, there were fewer distinguishable features
when the plants started entering the maturity stages (R6).

Therefore, the image features at early- to mid-stages (R3–R5)
show more potential to select superior breeding lines, especially
YTs. It is expected that model-based selection may shorten the
breeding cycle by eliminating less-potential breeding lines at
early stages.

Performance of the Model-Based Breeding
Line Selection
The yield performance of the selected breeding lines based on
the LASSO model (model-based selection) for the PT and PYT
is shown in Figure 9. As the LASSO model has the advantage
of handling multicollinearity effects among model input, all the
38 image features were used in the model without preliminary
feature selection. The numbers below the bar plots show the
classification recalls representing the proportions of the selection
of breeder that were also selected by the models and F1-scores
representing the overall model performance, based on imagery
data collected at different times. For both PT and PYT, the recalls
were above 0.60 for the testing sets, indicating that the models
were able to identify over 60% of the selections of a breeder.
The highest recalls were 0.71 (90 DAPs) and 0.76 (102 DAPs)
for the PT and PYT, respectively. In all the breeder’s selected
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FIGURE 6 | Manually measured agronomic traits in PYT. (A) The visualization plots of the variables’ contributions and directions in the plane of the first two PCs. YD,

yield; HT, plant height; MD, maturity date; LG, lodging; fc, flower color; pc, pubescence color. (B) The projection of sample variables on the first two PCs. (C) The

scatterplot of yield vs. plant height. (D,E) The boxplots of the yield of three groups of flower color and three groups of pubescence color. The p-value above (C–E)

indicates the significance level of estimation.

breeding lines in PT, the breeding lines also selected by the
LASSO model had a significantly higher yield in PYT than the
non-selected lines, when the model used image features collected
at 75, 90, and 108 DAPs (Figure 9A). No significant difference
in yield was observed when using the image features on the 120
DAPs. However, Figure 9B shows that there was no significant
difference in yield between the two groups in the 2020 AYT.
Figures 9C,D show the performance of model-selected breeding
lines based on imagery data collected in PYT. Figure 9C shows
that in the selection of breeder of the PYT breeding lines, the
yield of breeding lines selected by models was significantly higher
than those not selected by models when using image features
at earlier stages (45, 57, and 74 DAPs). However, there was no
significant difference in yield between breeding lines selected and
non-selected by models in the AYT, except at the 57 DAPs.

Compared the breeding lines selected by models with the
breeding lines selected by breeders in PT, yield in the PYT of
the model selection (90 DAPs) were up to 4% (201 kg·ha−1)

higher than the selection of breeder and 2% (103 kg·ha−1) higher
in the AYT. In addition, the yield of the model selection (57
DAPs) was up to 2% (112 kg·ha−1) higher than the selection of
breeder in the PYT and 5% (223 kg·ha−1) higher in the AYT.
It is noted from Figure 9C that the highest recall (0.76) and
the highest F1-score (0.27) in the PYT selections were obtained
using image features on the 102 DAPs, but the PYT yield of the
model selection was not significantly higher than the remaining
breeding lines in the selection of a breeder. A similar situation
was observed for PT selections on the 120 DAPs. Therefore, the
high classification recall or F1-score did not necessarily lead to
higher yield performance in the following trials.

The model selections based on image features collected before
the maturity stage (i.e., 75, 90, and 108 DAPs in Figure 9A) had
significantly higher PYT yield than the non-selections. Although
there was no significant difference in the AYT yield in the
corresponding DAP due to higher variations, the mean yield of
breeding lines selected by the model on the 75 and 90 DAPs
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FIGURE 7 | Manually measured agronomic traits in AYT. (A) The visualization plots of the variables’ contributions and directions in the plane of the first two PCs. YD,

yield; HT, plant height; MD, maturity date; LG, lodging; fc, flower color; pc, pubescence color. (B) The projection of sample variables on the first two PCs. (C) The

scatterplot of yield vs. plant height. (D,E) are boxplots of the yield of three groups of flower color and three groups of pubescence color. The p-value above (C–E)

indicates the significance level of estimation.

was higher than that of the selection of a breeder. Similarly, the
significance was observed in the PYT model selections at even
earlier stages before the 87 DAPs (the beginning of seed fill).
Thus, image-based crop traits collected before maturity tended
to perform better in selecting higher-yielding progeny breeding
lines and, the appropriate time point (at the R3–R5 stages) for
making selections for YTs should be even earlier due to the less
variation in these trials.

DISCUSSION

Grain yield is the only trait that had significant differences
between selected and non-selected breeding lines (Figures 4A,
5A) in both PYT and AYT and yield consistently and highly
contributed (Figures 6A, 7A) to explain the variations in
collected agronomic traits. Yield estimation using UAV-based
remote sensing technologies has been a hot topic in the area of
HTP, and yield has shown high correlations with image features

(Herrmann et al., 2019; Moreira et al., 2019; Maimaitijiang et al.,
2020). In one of our previous studies (Zhou et al., 2021b), we
found that yield was highly correlated with vegetation indices that
were also shown to be significantly distinguishable for selecting
superior soybean breeding lines in all three trials (Figure 8). The
results imply that the reliability of using these features to make
selections in scenarios where yield collection is unfeasible, i.e.,
the PT.

Similar to yield, plant height is another agronomic trait that
highly contributed to explaining the variations in both YTs,
which might be due to the significantly positive correlation
between yield and plant height (Figures 6C, 7C). However, plant
height is not necessarily correlated with yield in soybean breeding
experiments as soybean genotypes with different growth habits
or MGs developed different strategies for nutrient partitioning
and sink/source distribution of energy (Purcell et al., 2014). It
should be noted that the soybean materials in this study were
all indeterminate (IND) varieties that continue their vegetative
growth and produce nodes on the main stem until the beginning
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FIGURE 8 | The significance map of the differences in image features between the selected and non-selected groups. Each square represents if there is a significant

difference in an image feature collected at single times (p < 0.05) between the two groups.

of seed fill (R5) (Purcell et al., 2014). Compared to those with
a determinate (DET) growth habit, i.e., stop vegetative growth
and producing nodes before the flowering stages, IND soybeans
usually are tall and have a high yield. However, they are more
susceptible to lodging. It was reported by Wilcox and Sediyama
(1981) that seed yield would increase 350 kg·ha−1 and lodging
score would increase 0.008 (on a score scale of 1–5) when
plant height increased every 10 cm for DET breeding lines. On
the other hand, seed yield increased 112 kg·ha−1 and lodging
score increased 0.3 for every 10 cm increase in plant height for
IND breeding lines. Therefore, plant lodging is non-negligible
in soybean breeding, and those with severe lodging have to be
avoided, especially among the IND varieties because of its tall
plant height due to elongation of the main stem after flowering
(Kato et al., 2015).

Severe lodging was not observed in this study with only six
and seven breeding lines having lodging scores >3 in the PYT
and AYT, respectively. Moreover, there was not a consistently
incremental or decremental relationship shown between lodging
and yield (Figures 6D, 7D). It has been shown that lodging
from R3 (beginning pod filling) to R5 (beginning seed filling)
have the greatest impact on yield, while lodging before R2 (full
flowering) and after R6 (full seed) does not significantly impact
yield, but lodging at the maturity stage can have negative impacts
on harvest ability (Koester et al., 2014). As the lodging scores

were taken when soybeans reached their R8 stages, they did not
necessarily reflect the adverse effects on the yield of potential
lodging in the middle of the growing seasons.

Figure 8 gives a general idea of how differentiable the
image features were between selected and non-selected breeding
lines over the growing seasons and the consistent differences
in multiple years and locations. Significant differences were
observed in many image features between the selected and
non-selected breeding lines in all three trials. The PT had
consistent differences from the mid- to late-growth stages. On
the contrary, the PYT and AYT breeding lines had fewer
distinguishable features after around 80 DAPs. In soybean
breeding, the selection on progeny row is usually based on the
breeder’s visual examinations. The breeding lines with a similar
appearance to the surrounding checks would be preferable and
have desired performance regarding yield potential and maturity
date. Therefore, the selected progeny rows are expected to have
low variations compared to all the materials planted in the PT.

Compared to the selections of a breeder, the model selections
based on image features collected at early growth stages had
better performance in selecting superior breeding lines. The
model selections had a significantly higher yield in the next
year. Due to higher variations in the PT materials, superior
progeny rows were easier to be identified with image features
collected through early reproductive stages (75–108 DAPs). With
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FIGURE 9 | Model performance on selecting superior soybean breeding lines from the PT and PYT. (A,C) Comparison of the PYT yield means. Yield unit: kg·ha−1.

(B,D) Comparison of the AYT yield means. (A,B) are for the PT selections, while (C,D) are for the PYT selections. Orange and blue bars represent the model

selections (the TP class) and model non-selections but selected by breeders (the FN class), respectively. Error bars show the standard deviations. *, **, and *** indicate

the significance levels of p = 0.05, 0.01, and 0.001 for testing the hypothesis that there is no difference in yield means between model selections and non-selections.

NS represents no significance. The numbers below the bar plots are the classification recall and F1-score for the model on each day.

the model selection, nearly 30% of soybean breeding lines could
be cut off in the following YTs, consequently saving 30% of land
usage, human labor, and other resources. With the aid of efficient
data collection and selection, human error could be reduced
from the traditional breeding pipeline, and the limitation on the
number of progeny rows could be boosted. Hence the genetic
gain could be increased by a higher selection intensity benefited
from higher population size.

CONCLUSION

This study evaluated the performance of a UAV-based HTP
system in the selection of superior soybean breeding lines for a
breeding program. A total of 11,473 progeny rows were planted
in 2018 (PT), and 1,773 among them were selected for the PYT
in 2019 and 238 were then selected for the AYT in 2020. Six
agronomic traits, including yield, plant height, maturity data,

flower and pubescence color, and lodging, were measured for
soybeans in PYT and AYT. Unmanned Aerial Vehicle-based
images were collected every 2 weeks over the growing seasons,
and a group of image features was extracted from five-band
multispectral images for each trial. Research results show that
yield is the primary trait for selecting superior soybean lines by
breeders as there were significant differences in yield between
the selected and non-selected groups for both PYTs and AYTs. It
was also found that progeny rows had the most variation among
the trials, and the images collected at earlier stages (before R5)
explained more variation than those at later stages, consistently
for the PT, PYT, and AYT. The LASSO model for selecting
soybean breeding lines with image features correctly identified
71% and 76% of the selection of breeder for the PT and PYT.
The PYT yield in PT model selections before 120 DAPs and the
PYT model selection before 87 DAPs was significantly higher (p
< 0.05) than the model non-selection but selected by breeders.
The model selections in PT and PYT had, respectively, 4 and 5%
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higher yield in the following year’s trial, comparing the selection
of a breeder. It could be concluded that the proposed model is
promising in making selections on soybean breeding trials.
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