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Coronavirus disease 2019 (COVID-19) has spread rapidly worldwide.+e rapid and accurate automatic segmentation of COVID-
19 infected areas using chest computed tomography (CT) scans is critical for assessing disease progression. However, infected
areas have irregular sizes and shapes. Furthermore, there are large differences between image features.We propose a convolutional
neural network, named 3D CU-Net, to automatically identify COVID-19 infected areas from 3D chest CT images by extracting
rich features and fusing multiscale global information. 3D CU-Net is based on the architecture of 3D U-Net. We propose an
attention mechanism for 3D CU-Net to achieve local cross-channel information interaction in an encoder to enhance different
levels of the feature representation. At the end of the encoder, we design a pyramid fusion module with expanded convolutions to
fuse multiscale context information from high-level features. +e Tversky loss is used to resolve the problems of the irregular size
and uneven distribution of lesions. Experimental results show that 3D CU-Net achieves excellent segmentation performance, with
Dice similarity coefficients of 96.3% and 77.8% in the lung and COVID-19 infected areas, respectively. 3D CU-Net has high
potential to be used for diagnosing COVID-19.

1. Introduction

Coronavirus disease 2019 (COVID-19) has rapidly spread
worldwide since its outbreak in December 2019 [1, 2]. In
March 2020, the World Health Organization declared
COVID-19 as a global pandemic [3].

+e reverse transcription polymerase chain reaction
(RT-PCR) test is the standard for COVID-19 detection.
However, this test has a high false negative rate, and it cannot
accurately detect the initial infection. Hence, infected pa-
tients cannot be diagnosed on time [4, 5]. Compared with
the RT-PCR test, chest computed tomography (CT) pro-
vides higher sensitivity in the diagnosis of COVID-19;
therefore, it can be used as one of the main clinical detection
methods [6, 7].

+e chest CT scans of patients with COVID-19 show
characteristic imaging features, such as ground-glass opacity
and occasional consolidation plaques in the lungs [8–10],
which are considerably useful for diagnosing COVID-19 and
evaluating the severity of a patient’s condition. However,
owing to a significant increase in the number of patients, it

has become quite challenging to use chest CT scans for
COVID-19 detection because of the large workload and
experience requirements for doctors.

Numerous deep learning methods have been used to
segment and quantitatively analyse infected areas in chest
CTscans [11–15]. Li et al. [11] proposed an automatic neural
network architecture to detect COVID-19 from chest CT
scans and distinguish it from other types of pneumonia and
lung diseases. Fan et al. [12] used a Siamese convolutional
neural network to assay COVID-19 and automatically
evaluate the severity of lung diseases. Gao et al. [13] im-
proved the detection capacity of the network for small le-
sions and improved the interpretability of the network using
a lesion attention module with a dual-branch combination
network and an attention mechanism. Paluru et al. [14]
proposed Anam-Net to address anomalies in COVID-19
chest CT images. A lightweight convolutional neural net-
work was embedded in Anam-Net, which contained sig-
nificantly fewer parameters compared to U-Net. +e use of
Anam-Net in embedded systems demonstrated its appli-
cability to point-of-care platforms. Yan et al. [15] proposed a
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high-accuracy network (COVID-SegNet) to segment
COVID-19 lesions from chest CT images. COVID-SegNet
used multiscale feature fusion and enhanced features to
segment lung and COVID-19 lesions accurately and auto-
matically. Although these methods play an important role in
the diagnosis and analysis of COVID-19, they are based on
CT slices. +ese methods frequently neglect the correlation
between continuous CT slices and cannot fully utilise the
spatial information of CT scans.

It is challenging to automatically segment the lesions of
COVID-19 pneumonia because of the complexity of CT
spatial imaging, the difficulty of marking infected areas, and
the difference between medical image characteristics. First,
infections may have different characteristic appearances,
such as ground-glass opacity and consolidation plaques.
Second, lesions have irregular shapes and fuzzy boundaries,
and a few lesions have a lower contrast compared to sur-
rounding areas. +ird, it is tedious and time consuming to
artificially mark pulmonary infection, and it is frequently
influenced by doctors’ knowledge and clinical experience of
lesions [9, 10, 12, 16].

We propose a deep learning method, named 3DCU-Net,
to improve the segmentation performance of the neural
network models for COVID-19. In addition, we propose a
new feature encoding module (residual channel attention,
Res_CA) for 3D CU-Net. In the feature extraction stage, the
channel attention mechanism of local cross-channel infor-
mation interaction is used to recalibrate the feature weight of
global information and enhance the performance of feature
representation. We propose a pyramid fusion module with
multiscale global information interaction in the bottom
encoder, which enhances the performance of the network by
fusing the feature information of different scales and im-
proving the performance of the network for lesion area
segmentation.

2. Related Work

2.1. U-Net Structure. U-Net [17] was proposed by Ronne-
berger et al. in 2015 for medical cell segmentation. It consists
of a contraction path to obtain context information and an
expansion path to recover a feature map. As high-level and
low-level semantic information has the same importance in
image segmentation, U-Net combines the high-definition
features of an encoder with the advanced semantic features
of a decoder stage to help restore the details of a target and
obtain an accurate output.

2.2. Variants of U-Net. Numerous methods based on
U-Net have achieved better results in different medical
image segmentation tasks by integrating the new design
concepts of networks. Oktay et al. [18] added an attention
mechanism based on U-Net for targets with different
shapes and sizes and used an attention gate to highlight
the salient features of a skip connection. Xiao et al.
proposed a model, named Res U-Net [19], with a weighted
attentional mechanism to deal with extreme changes in
the ocular vascular background. Feng et al. proposed

CPFNet [20], which improved the segmentation perfor-
mance by utilising two pyramid modules to fuse multi-
scale context information.

Wang et al. proposed a new cross-channel information
interaction method, named ECA-Net [21], to recalibrate
features. +ey prevented the adverse effect of dimensionality
reduction in SE-Net on channel attention. However, most
U-shaped networks use only abstract features, neglect cer-
tain details, and cannot effectively use multiscale context
information [20].

3. Proposed Method

3.1. Network Overview. We propose an automatic seg-
mentation model, named 3D CU-Net, for COVID-19 le-
sions. +e model is based on the 3D U-Net architecture, as
shown in Figure 1. +e network structure of 3D CU-Net is
composed of a feature encoding module (Res_CA) with an
attention mechanism, a pyramid dilated convolution
module (PDS block) for extracting and fusing multiscale
information at different resolutions, and a feature decoding
module for segmentation. A fixed-size 3D slice extracted
from a 3D CT image is used as the input of the network. +e
predicted segmentation result is obtained after a series of
upsampling and downsampling operations for feature
encoding and decoding. +e model can ensure continuity
between CT images and retain a certain amount of interlayer
information. +us, the 3D input contains more contextual
information compared to a 2D image.

In the feature encoding part, an efficient channel at-
tention mechanism [21] is used to reallocate feature weights
under the guidance of global information, and residual
networks are used to mitigate problems such as gradient
vanishing. Global average pooling is used to obtain multi-
scale global information under different receptive fields to
enhance the feature representation in the PDS module,
thereby improving the segmentation performance of the
network for the irregular shapes and sizes of lesions. Finally,
segmentation results are obtained by a feature decoding
module, which includes two consecutive 23× 3× 3 convo-
lutions and a residual connection with a 1× 1× 1
convolution.

3.2. Feature Encoding Block. As shown in Figure 2, the
feature encoding module mainly consists of the following
two parts.

3.2.1. Feature Extraction. In each encoding module, except
for the bottom encoder, two continuous 3× 3× 3 convolu-
tions are used to extract deeper feature information. +is
expands the receptive field, extracts more feature infor-
mation, improves the complexity of the network, and re-
duces the amount of calculation and number of parameters.
After each 3× 3× 3 convolution, we add the ReLU activation
function and batch normalisation to alleviate the problem of
gradient disappearance and increase the speed of network
learning.
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3.2.2. Feature Calibration Block. We introduce a channel
attention mechanism to obtain representative features and
highlight useful information. According to the correlation
between adjacent channels, cross-channel interactive fusion
methods are used to recalibrate the weights of the extracted
features. Cross-channel information communication can
effectively prevent the influence of the reduction in di-
mensions on channel attention and enhance the feature
representation of lesion areas.

3.3. Pyramid FusionModule for Dilated Convolutional Global
Information Interaction. Multiscale context information
helps improve the performance of semantic segmentation.
+us, we propose a pyramid fusion module that converts
low-scale global information into high-scale features. As
shown in Figure 3, a residual block is used to deepen the
network and extract feature information. +en, a parallel
expanded convolution with expanded sizes of 1, 2, and 4 is
used to obtain the multiscale information of advanced
features. Next, according to the correlation between feature

channel information at different scales, global average
pooling is used to obtain the global channel features and
their weights at different scales. +us, the global information
obtained in a small receptive field is used to enhance the
feature expression ability of a large receptive field. Finally,
the features at different scales are fused by stitching.

In the last part of this module, we connect the multiscale
feature information that has been recalibrated with feature
weights, normalise it using a 1× 1× 1 convolution, and then
fuse it with the original advanced features.

3.4. Feature Decoding Block. As shown in the decoding block
in Figure 1, two 3× 3× 3 convolutions and a residual con-
nection with a 1× 1× 1 convolution are applied to the feature
map after the series connection, and a feature map is obtained
with the same size as that of the original input image.

3.5. Loss Function. In the medical image segmentation task
(lesion detection), the high imbalance of the training data leads
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Figure 1: Overview of 3D CU-Net.
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to high precision and low recall. Lesion areas account for only
1.12% of the total area in our data. We employ the combination
of categorical cross-entropy loss and the Tversky loss as the loss

function of segmentation to resolve the problem of unbalanced
data category distribution and improve the performance of
network generalisation. +e loss function is expressed as
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Figure 2: Network structure of the feature encoding block.
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LossTotal � LossCE + LossTversky,

LossCE � −
1

N
∑
N

i�1

yilog fi(x),

LossTversky � N −∑
N

i�1

TP(c)

TP(c) + αFN(c) + βFP(c)
,

(1)

where x is the input value, yi is the true label corresponding
to category i, and f(xi) is the model output value. TP, FN,
and FP represent true positive, false negative, and false
positive, respectively.

4. Experiments and Results

4.1. Experimental Data. We train and evaluate 3D CU-Net
using the open COVID-19 CTdataset provided by Jun et al.

Table 1: Comparison of results obtained using 3D CU-Net and 3D U-Net.

Lung_left Lung_right Lesion

DSC Sens Spec DSC Sens Spec DSC Sens Spec

3D U-Net 0.925 0.943 0.997 0.948 0.959 0.997 0.705 0.707 0.999

3D CU-Net
Ours_1: α� 0.5, β� 0.5

0.966 0.968 0.998 0.964 0.975 0.997 0.778 0.738 0.999

3D CU-Net
Ours_2: α� 0.3, β� 0.7

0.960 0.969 0.998 0.963 0.966 0.998 0.771 0.837 0.998

Figure 4: Visualisation of segmentation results.
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(a)

(b)

(c)

Figure 5: Continued.
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[22]. In addition, MosMedData [23] provided by Forrest is
used as an independent test dataset to further verify the
performance of the model. +e COVID-19 CT dataset
consists of the chest CT scans of 20 COVID-19 patients
validated with annotations by a senior radiologist, in which
the left lung, right lung, and lesion areas are annotated. +e
dataset contains 3250 CT slices with sizes of 630× 630,
512× 512, and 401× 630. +e lesion area accounts for only
2.12% of the CTslice area, and the slices with lesion markers
account for 52.86% of the total slices. MosMedData was
provided by Moscow Municipal Hospital. It consists of the
chest CT scans of 50 confirmed COVID-19 patients, with
lesion areas annotated by a few experts.

Ma et al. [24] proposed a COVID-19 infection seg-
mentation benchmark based on 3D nnU-Net. +e Dice
coefficients of the COVID-19 CT dataset and MosMedData
are 0.673 and 0.588, respectively.

We normalise the training data and pixel values between
[0, 1] by considering −250 and 1250 as thresholds. In ad-
dition, 3D CT images are resampled at a fixed isomorphic

resolution to normalise them into the same voxel spacing.
We use random elastic deformation, random rotation,
random scaling, Gaussian noise, and other commonmedical
image data enhancement methods to enhance the training
data and prevent the overfitting problem caused by a small
amount of training data.

4.2. Experimental Details and Evaluation Metrics. 3D CU-
Net is compared with standard 3D U-Net [25] in terms of
segmentation results, and the performance of 3D CU-Net is
further analysed using MosMedData.

We build an operating environment on a Linux server.
+e NVIDIA Tesla P100 GPU is used, and the TensorFlow
2.0 deep learning framework is adopted. +e installation
environment comprises cuda10.0, cudnn7.6.5, python3.6,
opencv, gcc, etc. In the fitting process, we set the batch size as
2. We use Adam optimisation with an initial learning rate of
0.001 and a minimum learning rate of 0.00001. We reduce
the learning rate by 0.1 times when loss does not decrease in

(d)

(e)

Figure 5: Local details of COVID-19 segmentation results.
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15 epochs. +e training process ends when loss does not
decrease in 50 epochs.

We employ 5-fold cross-validation for model fitting.
Sixteen sets of CT images are used for fitting and the
remaining four sets for validation. After each fitting process,
the model is evaluated using the validation data.

In addition, after fitting, we utilise three widely used
metrics in medical image analysis to evaluate the segmen-
tation performance of the model for the left and right lungs
and COVID-19 lesion areas. +ese metrics are the Dice
similarity coefficient (DSC), sensitivity (Sens), and speci-
ficity (Spec).

4.3. Experimental Results. As shown in Table 1, the DSC is
77.8% and Sens is 73.8% for 3D CU-Net, compared with 3D
U-Net, and the DSC and Sens increased by 7.3% and 3.1%,
respectively. By adjusting the parameters of the Tversky loss
(α� 0.3 and β� 0.7), Sens for 3D CU-Net increases to 83.7%
with few losses of DSC. In addition, the accuracy of overall
lung segmentation improves.

Figure 4 shows the segmentation results obtained using
3D CU-Net and 3D U-Net for five different slices. +e
images from left to right are the original CT image, ground
truth, segmentation results of 3D U-Net, results of 3D CU-
Net, and results of 3D CU-Net with the Tversky loss pa-
rameters as α� 0.3 and β� 0.7.

Figure 5 shows the local details of the CT image slice
segmentation results shown in the third row of Figure 4. In
the first column of Figure 5, rows (a)–(e) show the original
CT image, ground truth, segmentation result of 3D U-Net,
segmentation result of 3D CU-Net, and segmentation result
of 3D CU-Net with the Tversky loss parameters as α� 0.3
and β� 0.7, respectively. +e second column shows the
details of the area enclosed by the red box in the first column.
3D U-Net shows poor segmentation performance, and a
large infected area is not identified, as shown in row (c). In
contrast, 3D CU-Net provides better segmentation perfor-
mance, and most infected areas are accurately identified, as
shown in row (d). +e area enclosed by the blue box in the
second column of Figure 5 shows that setting α� 0.3 and
β� 0.7 effectively reduces the false positive rate of 3D CU-
Net and improves the sensitivity of infection region
segmentation.

Furthermore, we compare the performance of the model
in terms of infected area segmentation on the basis of
MosMedData. As shown in Table 2, the performance of 3D
CU-Net is better than that of 3D U-Net, with a 5.9% im-
provement in the DSC and a 15% increase in Sens.

+e experiments performed using the COVID-19 CT
dataset and MosMedData show that 3D CU-Net provides
excellent segmentation performance. For the left lung, right
lung, and lesion areas, the DSC is 0.960, 0.963, and 0.771,
Sens is 0.969, 0.966, and 0.837, and Spec is 0.998, 0.998, and
0.998, respectively.

It has great potential in evaluating COVID-19 infection.
+e above results suggest that the 3D CU-Net model has
good performance in COVID-19 lesion segmentation.

5. Conclusion

We proposed a deep learning segmentation network (3D
CU-Net) for detecting COVID-19 pulmonary infection. +e
proposed network was based on 3D U-Net. An attention
mechanism was introduced for channel features in the
encoding stage to enhance the representation ability of
features. +e full utilisation of the multiscale global infor-
mation of high-level features extracted from the bottom
encoder improved the accuracy of COVID-19 detection.+e
proposed network has high potential to be used for diag-
nosing COVID-19.

However, 3D CU-Net has certain limitations. Its accu-
racy must be improved for the irregular shapes and different
sizes of lesions. In addition, the segmentation performance
can be improved via further research and by utilising high-
quality medical imaging data.
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