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Improved 8- and 16-State Space-Time Codes for

4PSK with Two Transmit Antennas
D. Mihai Ionescu, K. Kiran Mukkavilli, Zhiyuan Yan, and Jorma Lilleberg

Abstract— New space-time codes for 4PSK constellations,
designed via a modified determinant criterion, send 2b/s/Hz
and show improved performance in quasistatic flat fading.

Keywords— Diversity methods, Fading channels, Trellis
coded modulation.

I. Introduction

Space-time coding provides a means for achieving di-
versity in fading channels by implementing both space
and time redundancy at the transmitter. While space-
time coding implies, in general, encoding both across time
and across antennas, this letter addresses the problem
of constructing good trellis space-time codes in the set-
ting when all transmit antennas use the same M -PSK
complex modulator constellation M of unit average en-
ergy, and exactly log2 M bits are transmitted during each
multiple-channel use—i.e. coding redundancy is distributed
in space. Extensions of the construction discussed herein
to non-M -PSK constellations are natural. Consider a sys-
tem with L transmit antennas and N receive antennas,
designed so that fading across antennas be uncorrelated.
Let l be the number of symbol epochs—with respect to
an arbitrary transmit antenna—required to send a code-
word (a frame in [6]). If l is regarded as the number
of adjacent symbol epochs processed, to some extent, to-
gether in the detector, then a codeword is the concatena-
tion of all symbols sent over all of the L antennas dur-
ing the corresponding l consecutive symbol epochs; e.g.,
a generic codeword c starting at discrete time instant κ

is c = [c
(1)
κ c

(2)
κ . . . c

(L)
κ c

(1)
κ+1 . . . c

(L)
κ+1 . . . c

(1)
κ+l−1 . . . c

(L)
κ+l−1]

T ,

where c
(i)
k is a complex symbol fromM transmitted at dis-

crete time k over transmit antenna i. A more meaningful
representation for the codeword c is the code matrix

Dc=
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κ+l−1· · ·c

(L)
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. (1)

For two codewords c, e, let the code difference matrix be
Dec=De−Dc. Let any transmitted symbol have energy
Es. Let the sequence of complex channel coefficients be-
tween transmit antenna i and receive antenna j, denoted
αi,j(·), be white complex Gaussian with E{|αi,j |2}=1, ∀i, j.
Assume that each αi,j(·) is constant over one frame (quasi-
static flat fading) and that the αi,j(·) sequences are un-
correlated across antennas. Let γ

(i,j)
k =

√
Esαi,j [k]. At

receive antenna j the sampled version of the signal re-

ceived during a frame is x
(j)
k =

∑L
i=1 αi,j [k]c

(i)
k

√
Es+η

(j)
k ,

k=κ, . . . , κ+ l− 1, and becomes, in quasistatic flat fading

(QFF),

x
(j)
k =

∑L
i=1 c

(i)
k γ(i,j) + η

(j)
k , (2)

where η
(j)
k is complex Gaussian noise with variance N0/2

per dimension. In [6] it was shown that Pr(c 	→ e), the
pairwise error probability (PEP)—of transmitting c and
deciding in favor of e—is upper bounded via Pr(c 	→ e) ≤
(
∏r

i=1 λi(c, e))−N (Es/(4N0))
−rN , where r and λi(c, e)

are, respectively, the rank and the nonzero eigenval-
ues of D

†
ec

Dec. In quasistatic fading, the minimum—
over all codeword pairs—of the exponent rN of Es/N0

is the diversity gain, and the minimum over all c,e of
(
∏r

i=1 λi(c, e))1/r is the coding gain; the maximization of
each is deemed desirable, respectively, by the rank and de-
terminant criteria [6]. In fast fading the role of r is assumed
by the minimum symbol Hamming distance (MSHD), while
a product distance determines the coding gain in place of
the eigenvalue product [6]. In [4], [5] it was shown that
the determinant criterion can be strengthened by requir-
ing that the eigenvalues of D

†
ec

Dec be as close to each
other as possible, for any codeword pair c, e. It can be
shown [5] that this condition maximizes the product dis-
tance, given the Euclidean distance between c and e. This
modified determinat criterion is applied to construct codes
for space-time trellis coded modulation (STTCM), which
use 4PSK constellations and send 2 b/s/Hz by encoding
over two modulator symbol epochs at a time, similar to
the approach taken in multiple trellis coded modulation
[3]. The design presented herein does not observe the var-
ious gain parameters from [7]—e.g. ηAP (·), ηCP (·).

II. Review of a Modified Determinant Criterion

The equal eigenvalue criterion [4], [5] states that in i.i.d.
L-transmit-antenna Rayleigh fading with perfect channel
state information (CSI), an upper bound to the PEP is
made as small as possible iff, for all pairs Dc, De, the
Euclidean squared distances tr(D†

ec
Dec) are made as large

as possible and the non-square matricesDec behave as uni-
tary matrices—up to appropriate proportionality factors—
in the sense that D

†
ec

Dec =
(

tr(D†
ec

Dec)/L
)

IL. Subop-

timal codes should be characterized by matrices D
†
ec

Dec

whose main diagonal elements are as close as possible both
to each other and to tr(D†

ec
Dec)/L, and for which the row-

wise sum of the absolute values of the elements off the main
diagonal is as small as possible for each row. Essentially,
for any pair c, e, one should enlarge the Euclidean distance
between c, e while rendering the eigenvalues of the square
matrix D

†
ec

Dec to be equal, or as close as possible; the
latter is equivalent to D

†
ec

Dec being as close to a diagonal
matrix as possible. Necessarily, diversity is maximized in
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quasistatic fading (rank of D
†
ec

Dec is L). The proportion-
ality of tr(D†

ec
Dec) to the Euclidean distance between c

and e is crucial for identifying a constellation partitioning
that is characteristic of trellis coded modulation schemes.

In order to enforce the desirable equal singular value
(ESV) structure to valid l×LmatricesDec it suffices to en-
force it on submatrices. Suppose that L divides l. Let Dc,
De, Dec be viewed as block vectors, i.e. (l/L)×1 matrices
whose entries are L × L sub-matrices with elements from
M. Then any code matrix can be regarded as a sequence
of l/L, L × L square sub-matrices, resulting from the un-
folding of a trellis whose branches span, each, L modulator
symbol epochs, with each branch labeled by a valid L × L
sub-matrix. A path through the trellis is selected as a func-
tion of the current state and a block of new input symbols.
The set of all L×L matric building blocks can be regarded
as a super-constellation. If these constituent blocks have
the property that the Gram matrix of any valid pairwise
difference is optimal—or close to optimal—then the prop-
erties mentioned above are transfered fromDc, De toDec.
For L=2 and 4PSK, the 16 orthogonal complex matrices
discussed by Alamouti [1] do have the aforementioned ESV
structure (optimal) for pairwise differences. However, in or-
der to achieve the desired log2 M=2 b/s/Hz one must have
enough 2×2 constituent matrices in the super-constellation;
this requires augmenting the optimal matric set—e.g., by
a reflection of itself, see Table II—to the effect that some
codematrix pairs in the augmented set will not obey the
ESV structure. The design goal becomes insuring that dif-
ference code matrices pertaining to an error event path
(EEP) of length k ≤ k′ transitions (kL modulator sym-
bols) be optimal for k′ as large as possible, and as close
to optimal as feasible for k > k′. Note that Alamouti’s
transmit diversity scheme [1] for L= 2 transmit antennas
can be employed by simply appending, to some encoder’s
output, a mapper from encoded symbols to constellation
points, followed by a Hurwitz-Radon transformer applied
to two consecutive complex symbols. This provides only
diversity gain and is not the approach taken herein. It
is worth realizing that Alamouti’s scheme with 4PSK and
two transmit antennas over additive white Gaussian noise
(AWGN) has the same bit error probability as uncoded
4PSK in AWGN. In subsequent plots, Alamouti’s scheme
serves as a diversity two reference with no coding gain.

III. New Space-Time Trellis Codes

Consider the L = 2 case and assume that each transmit
antenna uses 4PSK modulation; other M -PSK constella-
tions can be accommodated using similar steps. A trellis
coded modulation scheme with q states, where each trellis
transition covers two symbols, can be obtained naturally by
constructing a super-constellation whose points are 2 × 2
matrices chosen so as to facilitate the existence of the struc-
ture discussed above; the matrix elements are from a 4PSK
constellation and there must be enough super-constellation
points to allow the transmission of 2 bits per channel use.
Table II shows 32 matrices Ci, i = 0, . . . , 31, whose en-
tries represent indices of complex points from the 4PSK

constellation (Table I). Each Ci defines the 4PSK sym-

TABLE I

Indexing for the 4PSK constellation points.

s0 s1 s2 s3

1√
2
+ j 1√

2
− 1√

2
+ j 1√

2
− 1√

2
− j 1√

2
1√
2
− j 1√

2

TABLE II

The 2×2 matrices Ci, i=0, . . . , 31, along with relevant cosets

Cl and corresponding uncoded bits, vs. number of states q.

i = 0 q i = 8 q i=16 q i=24 q
. . . 7 8 16 . . . 15 8 16 . . . 23 8 16 . . . 31 8 16

[

1 3
0 0

] C0
00

C0
0

[

3 3
0 2

] C0
01

C2
1

[

3 1
0 0

] C5
00

C8
0

[

1 1
0 2

] C5
01

C10
1

[

1 2
1 0

] C1
00

C1
0

[

3 2
1 2

] C1
01

C3
1

[

3 0
1 0

] C4
00

C9
0

[

1 0
1 2

] C4
01

C11
1

[

1 1
2 0

] C0
10

C2
0

[

3 1
2 2

] C0
11

C0
1

[

3 3
2 0

] C5
10

C10
0

[

1 3
2 2

] C5
11

C8
1

[

1 0
3 0

] C1
10

C3
0

[

3 0
3 2

] C1
11

C1
1

[

3 2
3 0

] C4
10

C11
0

[

1 2
3 2

] C4
11

C9
1

[

0 3
0 1

] C3
00

C5
0

[

2 3
0 3

] C3
01

C7
1

[

2 1
0 1

] C6
00

C13
0

[

0 1
0 3

] C6
01

C15
1

[

0 2
1 1

] C2
00

C4
0

[

2 2
1 3

] C2
01

C6
1

[

2 0
1 1

] C7
00

C12
0

[

0 0
1 3

] C7
01

C14
1

[

0 1
2 1

] C3
10

C7
0

[

2 1
2 3

] C3
11

C5
1

[

2 3
2 1

] C6
10

C15
0

[

0 3
2 3

] C6
11

C13
1

[

0 0
3 1

] C2
10

C6
0

[

2 0
3 3

] C2
11

C4
1

[

2 2
3 1

] C7
10

C14
0

[

0 2
3 3

] C7
11

C12
1

TABLE III

Single shift register implementation of the coset selector is

described by matrix G, given vs. the number of states q.

q 8 16

G
T

[

0 1 0 0 1
1 0 0 1 0
0 0 1 0 0

]





0 0 1 0 0 0 1
0 1 0 0 0 1 0
1 0 0 0 1 0 0
0 0 0 1 0 0 0





bols to be sent over the L = 2 transmit antennas, during
two consecutive symbol epochs. The squared Euclidean
distance between Ci and Cj is tr

(

(Ci − Cj)
†(Ci − Cj)

)

.
The super-constellation is partitioned in the usual way pro-
ducing, as a function of q, the appropriate cosets as shown
also in Table II. The elements within one coset are distin-
guished by means of uncoded bits, via the mapping listed
in Table II. Finally the convolutional code selecting the
cosets is described in terms of a matrix G, similar in struc-
ture with the matrices used to describe the convolutional
STCs reported in [7], [2]. The new STTCM codes verify:
• The minimum Euclidean distance between any two
branches leaving (arriving into) a given state is maximized.
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• D
†
ec

Dec has equal eigenvalues for anyDec corresponding
to EEPs of length k ≤ 2 (i.e. up to four 4PSK symbols).
• TheMSHD between any two parallel transitions is 2, thus
the diversity order remains 2 in rapid fading [6], despite of
parallel transitions. When the new 8- and 16-state STTCM
codes are compared with, e.g., Tarokh’s 16- and 32-state
codes—equal complexity, respectively,—the latter have a
MSHD of 3 hence exhibit higher diversity in rapid fading.
For 130 symbol frames, at equal spectral efficiency in

QFF with perfect CSI, Figures 1, 2 compare the average
frame error probability (FEP) of the new STTCM codes,
several other trellis STCs [6], [2], [7] of correspondingly
equal complexity, and Alamouti’s scheme. Complexity is
judged in terms of the product between the number of
states and the number of transitions emerging from each
state, normalized to one modulator symbol epoch; e.g.,
since each transition in the new, 8-state STTCM code cov-
ers two symbol epochs, and sixteen transitions (including
parallel ones) emerge from each state, the complexity is
16 × 8/2 = 64—equal to that of Tarokh’s 16-state trellis
STC. Figure 3 compares the new 8-state STTCM code
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2 b/s/Hz, L=2, N=1, Alamouti [1]  
2 b/s/Hz, L=2, N=1, q=16, convo−  
lutional STC, Tarokh et al. [6]   
2 b/s/Hz, L=2, N=1, q=16, convo−  
lutional STC, Baro et al. [2]     
2 b/s/Hz, L=2, N=1, q=16, opti−   
mum convolutional STC, Blum [7]   
2 b/s/Hz, L=2, N=1, q=8, new STTCM

Fig. 1. Some 2 b/s/Hz, 4PSK STCs in quasistatic fading. New code
and all 16-state convolutional STCs are equally complex.

with the same trellis STCs from [6], [2], [7], for N =2 re-
ceive antennas. When receive diversity is present, the new
STTCM code performs worse than the optimum convolu-
tional STC from [7] (by less than 0.3 dB) and better than
the other STCs. The performance-wise reversal between
the first two codes—relative to the N = 1 case—may be
due to the distance spectrum of the new STTCM code,
which was not optimized beyond insuring that all length-
two EEPs obey the ESV criterion.

IV. Conclusions

New 2b/s/Hz STCs for two transmit antennas and 4PSK
constellations show improved performance in QFF with
no receive diversity. Characterization, and optimization
thereof, in terms of various gain parameters from [7]—e.g.
ηAP (·), ηCP (·)—are topics for future investigations.
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Fig. 2. Some 2 b/s/Hz, 4PSK STCs in quasistatic fading. New code
and all 32-state convolutional STCs are equally complex.
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Fig. 3. Some 2 b/s/Hz, 4PSK STCs in quasistatic fading. New code
and all 16-state convolutional STCs are equally complex.
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