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Summary

The fault tree diagram defines the causes of the system failure mode or "top event" in terms of
the component failures and human errors, represented by basic events. By providing
information which enables the basic events' probability to be calculated the fault tree can then

be quantified to yield reliability parameters for the system.

Fault tree quantification enables the probability of the top event to be calculated and in addition
its failure rate and expected number of occurrences. Importance measures, which signify the
contribution each basic event makes to system failure can also be determined. Due to the large
number of failure combinations (minimal cut sets) which generally result from a fault tree
study, it is not possible using conventional techniques to calculate these parameters exactly and
approximations are required. The approximations usﬁally rely on the basic events having a
small likelihood of occurrence. When this condition is not met it can result in large
inaccuracies. These problems can be overcome by employing the Binary Decision Diagram
approach. This method converts the fault tree diagram into a format which encodes Shannon's
decomposition and allows the exact failure probability to be determined in a very efficient
calculation procedure.

“This paper describes how the Binary Decision Diagram method can be employed in fault tree

quantification.
1. Introduction

The Binary Decision Dié.gram (BDD) method, developed by Rauzy (Ref. 1), converts the fault
tree to a binary decision diagram which encodes an If-Then-Else (ite) structure. An attractive
feature of the BDD method is that the ite structure derives from Shannon's formula (Ref 2),
such that if f(x) is the Boolean function for the fault tree top event then by pivoting about any
variable X1 the Shannon formula can be written as:

X1.f1+X1.f2 (D



where f1 and f2 are Boolean functions with X1=1 and X1=0 respectively which are of one
ﬁ order less than f. The corresponding ite structure is ite(X1, f1, £2). A detailed account of this
procedure is given in Ref 3 and Ref 4.

i |
The size of the resulting BDD is very dependent upon the ordering chosen for the basic event
g pivot variables in the fault tree. Usually a2 Top-Down ordering is used, where the basic events
occurring higher up the tree are considered as being less than those which occur lower down.
This ordering of variables is discussed in Ref. 3 and covered in more detail in the paper,
g "Improved Efficiency in Qualitative Fault Tree Analysis" (Ref 5). ‘

Example

Consider the simple fault tree illustrated in figure 1.

i | Top

Figure 1. Example Fault Tree

The minimal cut sets for this fault tree are:

(1) {X1, X2, X3}
(2) {X3, X4}

Therefore, its structure function, ¢(x) is :

o(x)=1-(1-X1.X2.X3)(1-X3.X4) (2)

A Top-Down ordering of basic events would give;
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X1<X2<X3<X4 3)

since all basic events are on the same level. This ordering will yield the BDD shown in figure 2
(ﬁghre 2a with the Boolean equations to show its development from the structure function and
the simplified form in figure 2b).
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Figure 2a. BDD with Boolean Equations
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Figure 2b. BDD for the fault tree shown in figure 1

To obtain the cut sets of the fault tree paths are traced through the BDD from the top or root
vertex to a terminal 1 vertex. Only the basic events that lie on a 1 branch (indicating the failure
of that basic event) for each component are included in the cut set. Therefore the cut sets of the
BDD shown in figure 2b are:

(1) X1.X2.X3
(2) X1.X3.X4
(3) X3.X4

The resulting BDD for this basic event ordering is not minimum, as it produces one redundant
cut set. To obtain the minimal cut sets either the resulting cut sets can be reduced or the BDD '
can undergo a minimising procedure, whose details are given in Ref. 3. However for the

purposes of quantiﬁcatidn, the non-minimal BDD is used.
2. Top Event Probability

The conventional approach (see Andrews and Moss Ref (6), Henley and Kumamoto Ref (7)) to
obtain the exact probability of the top event is to use the formula:

nc nc i—1
P(Top) = '21 P(C)= T I P(C;NC; Yoot (DT PG A G A Gy @)
1= 1=2 )=
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Where C;, i=1,.......... nc are the minimal cut sets of the top event.

Clearly if the fault tree has many minimal cut sets, calculating P(Top) will require extensive
calculations to evaluate each term in expression (4). For many complex fault trees this
processing requirement is beyond the capability of the available machines.” In order to reduce
the caleulations to a practical size approximations can be used. The Rare Event Approximation,
Pyp (Top), is commonly used:
nc
Prg (Top) =} P(G) 5)

=1

However a more accurate approximation is the Minimal Cut Set Upper Bound:

nc
Pyesus (Top) =1- [ 4= P(C,)) (6)
i=1

The Binary Decision Diagram method, avoids the need to utilise these approximations as the
probability of the top event is obtained directly from the diagram.

Since the ite structure for the top event of a fault tree is derived from Shannons' formula, i.e.,
if f(x)=ite(X1, f1, f2) then the corresponding Boolean function or structure function is
f(x)=X1.f1+ X1 f2. When a Boolean function is expressed in this form the probability of

the top event is obtained by taking the expectation of each term:
E[f(X)]=q;.E[f1]+(1-¢;).E[f2] (7
where g;=E[X1], the probability that event 1 has occurred.

Therefore the pro‘bability of occurrence of the top event (Q sys)’ can be expressed as the sum of

the probabilifies of the disjoint paths through the BDD. The disjoint paths through the BDD are
found by simply inéluding in a path from the root vertex to a terminal 1 node, all events which
Jie on the 1 branch and the 0 branches for each the basic events. Basic events which lie on a 0
branch are indicating in the paths as Xi. Disjoint paths through the BDD shown in figure 2b

are:

(1) X1.X2.X3
(2) X1.X2.X3.X4
(3) X1.X3.X4



' Before performing with the calculation of Qg the basic events in the fault tree need to be

assigned probabilities. For the fault tree shown in Figure 1 the component data provided on
table 1 will be used.

basic event i g; A w; =A(1-q;)
X1 0.004 1.2E-6 4.8E-9
X2 0.003" " 43E6 1.29E-8
X3 0.002 '2.5E-6 5.0E-9
X4 0.001 3.1E-6 3.1E-9

Table 1. Basic Event Data.

In table 1 q; is the Unavailability of component i, A; is the Conditional failure intensity of
component i, and wj is the Unconditional failure intensity of component i.

Using this data the top even probability Q sys can be calculated as follows;

-Ooys = P(X1.X2.X3+X1.X2.X3.X4+X1.X3.X4)

=qx1-9x2-9x3+ qx1-(1- 9x2)-9x3-9x4 + (1 qx1)-9x3-9x4
= 2.023976E-6

3. Unconditional System Failure Intensity

For some systems it is required to calculate the unreliability for the top event i.e., the
probability it will not work continuously over a given time period. An upper bound for this

is the expected number of top event occurrences, W(0, t):
' t
W(0,1) = [wgydt ®)
0

where Wy, is the system unconditional failure intensity. This can be expressed as:
Weys = LG (@)-w; | ©)
1

where G;(q) is the criticality function for each component.



The criticality function G;(q) is defined as the probability that the system is in a critical state
with respect to component i and that the failure of component i will then cause the system to go
from the working state to the failed state, i.e., the probability that the system fails only if

component i fails. Therefore:

G ()= 00;,9-2(0;,9) (10)
Where:
0(1;,q) —is the probability of system failure with g;=1.
0(0;,q) —is the probability of system failure with g;=0.

Since Qg is a linear function in each g; then G;(q), for each basic event can also be given by:

30,5

7 1D

G (q)=

i

Evaluating each of the two terms Q(1;,9) and Q(0;,q) for each component could be achieved
by first substituting g;=1 and then ¢;=0, i.e., the probability that component i fails is set to 1
and 0 respectively, and re-running all the system failure probability calculations. This would

require the equivalent of 2n evaluations of the top event probability where 7 is the number of
components in the system, to deduce all terms required in the expression for wg,; in eq. (9).

_ However a more efficient way of calculating the criticality function can be achieved directly

from the BDD using the formula:

G; (@)= Y pry (DL pok (@) — pog;(a)] (12)

Where:

pr,;(€)- is the probability of the path section from the root node to node xi

(Probprev).
pol .(q)— is the probability of the path section from the 1 branch of node xi to a terminal 1
xi y P i

-node (Probpost 1 branch).
po2(q) - is the probability of the path section from the O branch of node xi to a terminal 1

node (Probpost 0 branch).
n — is the number of nodes in the BDD.

Using equation (12) calculating G;(q) requires one pass of the BDD to calculate pr;(q),

po}d(q) and pogi(q) for each node. With this information each G;(q) can be evaluated from
eq. (12) and Weys formed.
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The algorithm Probpost used to calculate POL(Q) and po%(q) is given in figure 3. The

~ calculation of pr,;(q) can be achieved by the algorithm Probprev given in figure 4 and the

criticality function G;(q) for each basic event is calculated as shown in figure 5.

Probpost(F)=

Do for all F, end vertices to Root Vertex

F=ite(x, G, H)

pos,(q)=prob(G)

po3 (q)=prob(H)
insert in Probtable, R<—Probtable(x, poi (q), pog (@)
Q<«p(x).prob(G)+(1-p(x)).prob(H)
insert - in - computation - table ({<prob, F, ->, Q})
return R
return Q

next F
Figure 3. Probpost Algorithm

Set Probprev(Fi)=0 for all i.
Probprev(F)=
start at Root Vertex, F
Probprev(F)=1 }
Add Probprev(F) to Probtable, i.e., Probtable(x, polx(q), pog (q), pry(q))
Do for all F, Root Vertex to end vertices
F=ite(x, H1, H2)
if H1=0 or 1 Goto [A]
Probprev(H1)=Probprev(H1)+p(x).Probprev(F)
Add Probprev(H1) to Probtable

[A] if H2=0 or 1 next F
Probprev(H2)=Probprev(H2)+(1-p(x)).Probprev(F)
Add Probprev(H2) to Probtable
next F.

Figure 4. Probprev Algorithm
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Set G(xi)=0 for all i

Do for all F
if F=Probtable(x, q1, g2, q3)
G(x)=G(x)+43(g91-92)
insert - in Criticality table G(x)

next F.

Figure 5. Algorithm for Calculating the Criticality Function Gy;

The implementation of these algorithms can be demonstrated by their application to the example
BDD given in figure 2. The ite table indicating how the BDD in figure 2b is stored within the

computer program which performs these calculations is given in table 2:

Node Label Variable 1 branch pointer 0 branch pointer
F1 X1 F2 F4
F2 X2 F3 F4
F3 X3 1 0
F4 , X3 F5 0
E5 X4 1. 0

Table 2. ITE table for the BDD

. 0., .
Performing one pass of the BDD to evaluate poi,-(q) and po;(q) for each node using

Probpost gives:

Probpost(F5S).
F5=ite(X4, 1, 0)
R«Probtable(X4, 1, 0)
Qp(X4).p(1)+(1-p(X4)).p(0)=0.001

Probpost(F4)
F4=ite(X3, F5, 0)
R<——Probtab1e(X3, prob(F5), 0)«—(X3, 0.001, 0)
Q«p(X3).(0.001)+(1-p(X3)).(0)=2.0E-6

Probpost(F3)
F3=ite(X3, 1, 0)
R«Probtable(X3, 1, 0)
Q«p(X3).p(1)+(1-p(X3)).p(0)=0.002



Probpost(F2)
F2=ite(X2, F3, F4)
R« Probtable(X2, prob(F3), prob(F4))«(X2, 0.002, 2.0E-6)
Q=p(X2).(0.002)+(1-p(X2)).(2.0E-6)=7.994E-6 '

Probpost(F1)
Fl=ite(X1, F2, F4)
R« Probtable(X1, prob(F2), prob(F4))«(X1, 7.994E-6, 2.0E-6)
=p(X1).(7.994E-6)+(1-p(X1)).(2.0E-6)=2.023976E-6

As can be seen the probability of the top event, Q (calculated for F1 above) agrees with the
probability calculated previously using the disjoint paths of the BDD.

The values of Probpost 1 branch and Probpost 0 branch for each node are entered into the node
probability table, PROBTABLE shown in figure 6.

Next Probprev is calculated and entered into the 5th column of the PROBTABLE.
Probprev Algorithm:
Probpfev.(Fl)=Probprev(F2)=Probprev(F3)=Pfobprev(F4)=Probprev(F 5)=0
Probprev(F1)=1

Fl=ite(X1, F2, F4) .
Probprev(F2)=0+p(X1).Probprev(F1)
=(0.004).(1)=0.004
Probprev(F4)=0+(1-p(X1)).Probprev(F1)
=(1-0.004).(1)=0.996

F2=ite(X2, F3, F4)
Probprev(F3)=0+p(X2).Probprev(F2)
=(0.003).(0.004)=1.2E-5
Probprev(F4)=0.996+(1-p(X2)).Probprev(F2)
=0.996+(1-0.003).(0.004)=0.999988

10



F3=ite(X3, 1, 0)
Hl=1
H2=0

F4=ite(X3, F5, 0)

Probprev(F5)=0+p(X3).Probprev(F4)
=(0.002).(0.999988)=1.999976E-3

H2=0

F5=ite(X4, 1, 0)

Hi=1
H2=0
PROBTABLE

Node Label "Variable post '1' post '0’ Probprev
F1 X1 : 7.994E-6 2.0E-6 1
F2 X2 0.002 2.0E-6 0.004
F3 X3 1 0. 1.2E-5
F4 X3 0.001 0 0.999988
F5 X4 1 0 1.999976E-3

Probtable(i, 1)=Node Label

Probtable(i, 2)=Basic event of node Fi
Probtable(i, 3)=Probability of post '1' branch
Probtable(i, 4)=Probability of post '0' branch
Probtable(i, 5)=Probability of previous

Figure 6. PROBTABLE Array

Calculation of the criticality function is then straight forward using the algorithm provided in

figure 5. The following values of the criticality function for each basic event are obtained.

Gx1=5.994E-6, Gx2=7.992E-6, Gx3=1.011988E-3,

Since we have calculated the criticality function for each component, the system parameter w

Gx4=1.999976E-3

can now be evaluated using the basic event frequency data from table 1 and eq. (9).

Weys = Gx1wx1 + Gxawxs + Gxswys + Gyawxy

=1.1391734E-11

11
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The expected number of top event occurrences in time, t, can be obtained from eq. (8).
4. Importance Measures

A very useful piece of information which can be derived from a fault tree study is the-
importance measure for each component or each minimal cut set. An importance analysis
provides sensitivity measures which identifies weak areas of the system. This information can
be very valuable particularly at the design stage. For each component its importance signifies
the role that it plays in either causing or contributing to the occurrence of the top event. In
general a numerical value is assigned to each basic event or minimal cut set which allows it to
be ranked along with other failure events according to the extent of its contribution to the

occurrence of the top event.

Probabilistic importance measures can be categorised in two ways: (i) those which are
appropriate for system availability assessment (top event probability) and (ii) those which are
concerned with system reliability assessment (expected number of top event occurrences), here

we are concerned only with component measures in the first group.

(i) Birnbaum Measure of Component Importance

The Birnbaum Measure of importance (I ) was first introduced in 1969 (Ref. 8). This

measure is defined as the rate at which the system failure probability changes as the failure
probability of component i changes:

00 5y
Iy = 85

(13)

As defined in eq. (11) Ij; is also the criticality function for component i, G;(g). The

calculation procedure to evaluate the criticality function from the BDD structure has been

described previously. Hence the calculation of this importance measure for each component is
performed in the calculation of wy, and can therefore be extracted from those calculations.

(ii) Criticality Measure of Component Importance

The criticality measure of importance (/..) is defined as:

"The probability that the system is in a state at time t which is critical for component i and that
component i has failed at time t conditional on system failure at time t."

12
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I, = {04;,9)-0(0;.9)}g;
oq)
- G; (9). g;
- Qo

(14)

All terms in eq. (14) have been evaluated in calculating O, and w,,; and are readily available

to determine this importance measure.
(iii) Fussell-Vesely Measure of Component Importance

This measure of Importance is usually close in numerical value to the criticality measure. The
Fussell-Vesely Importance ( /gy ) is defined as the probability of the Union of the Minimal Cut

Sets which contain event i divided by the top event occurrence probability. Iry therefore gives
the probability that when the system fails, component i contributed to the failure. Calculating
I'py for each component requires the use of both the minimal BDD to track the minimal cut sets
and the non-minimal BDD for the probability calculations. The calculation of Iy is performed

in 4 steps:

(1) First a counter for the number of times each variable is encountered in a minimal cut set is
initialised.

(2) A search is then performed on each path of the minimum BDD which will correspond to a
minimal cut set. For each variable in the path i.e. the path passes out of the 1 branch, the
occurrence counter is incremented. Once the search has been completed, it is known how
many minimal cut sets contain each basic event.

(3) For events with more than one obcurrence a search is made for the nodes in the non-
minimal BDD that have this variable. For each basic event:

> 4;Pr () poy(Q)
IFVi _x n)odes (1 5)

Q_S’ys

(4) If a variable has just one occurrence in a minimal cut set, ¢; then:

p(c;)
FVi 0o (16)

13
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5. Applications

The BDD quantification method was benchmarked against a test example fault tree called
Dresden-3' used by Platz and Olsen (Ref. 9). The structure file and data file for this tree are
contained in appendix A. The input file gives the gate name (a number over 1000), the gate
type, the number of gate inputs, the number of basic event inputs, followed by a list of the
inputs themselves. Each basic event in the fault tree has two lines of data to specify its failure
and repair characteristics, the first line gives the name of the basic event and the model type, in
this case model type F was used for each component. The second line gives, for this failure
model, parameters, 4 and 7 (4 must be multiplied by 1E-6). A represents the component
constant failure rate and 7 its mean time to repair (MTTR)

The following calculations are then used for the model type F, to obtain 'qi and w; for each

basic event.

g;=AT/(A.7+1) v a7
wi=A(1-q;) (18)

A summary of the quantification results is given in table 3. The code runs on a Sun

_ workstation, the execution time is given in seconds.

Name Dresden-3
Nd. of Gates 60
No. of Basic Events 57
No. of Minimal Cut Sets 11,934
Time (s) 0.6
Osys 4.70085E-7
Wsys _ 2.87887E-8

Table 3. BDD quantification results for Dresden-3 fault tree

As a comparison , Dresden-3 was analysed using a state-of-the art conventional Fault Tree

Analysis package, whose results can be seen in table 4.

No. of Minimal Cut Sets 11,934
Time 4hrs 10min 28s
Osys 4.81119E-7
Wsys - 2.97304E-8

Table 4. FTA quantification of Dresden-3 fault tree

14



Hence, for this example the BDD method is significantly faster than conventional quantification

techniques. Also, along with great savings in computation time the BDD technique gives exact
probability values for Qs and wgy;, whereas the conventional method results in a loss in

acéuracy of 2.34% and 3.27% respectively for these parameters.
6. Accuracy - Comparison with FTA
To compare the accuracy of the BDD technique with the conventional Kinetic Tree theory

approach, 10 example fault trees were analysed, the results of which are given in table 5.

Some of these benchmark fault trees are taken from industry and the others are produced as |

simple structures to test different aspects of the analysis code.

Tree No. of | No. of { No. of BDD FTA BDD FTA
Gates basic | Minimal Osys - Qsys Wsys Wsys
events [ Cut Sets
1 17 11 43 2.08587E-2 0.0209883 7.52376E-6 8.03221E-6
2 63 32 8,716 4.272258E-7 4.27248E-7 | 2.777932E-4 | 0.000277835
3 21 40 416 1.317774E-6 1.31778E-6 | 8.990849E-4 0.0008991
4 10 10 13 6.43795E-2 0.068559 1.96564E-4 0.000211151
5 4 . 6 3 3.39397E-8 3.4E-8 2.74191E-10 | 2.7474E-10
6 4 6 6 ‘ 7.06927E-5 7.10911E-5 3.09498E-6 3.12839E-6
7 3 4 2 3.0776E-4 0.00030é 6.07692E-7 6.0836E-7
8 10 8 10 123233E-5 | 12371E-5 | 22733287 | 2.28347E-7
9 3 4 2 2.0239$E‘-6 2.02656E-6 1.13917E-11 1.1392E-11
10 30 60 7,056 437184687 | 41723367 | 3.002103E-4 | 0.000207212

Table 5. Quantification Results of 10 example fault trees

It is evident from the results in table 4 that when the fault tree has a small number of minimal
cut sets the conventional approximation method has only a small error — an average over
estimate of 1.22% for the system failure probability and 2.3% for the system unconditional
failure intensity. However, for tree 10, which has a large number of minimal cut sets, there is
an error of 4.56% for Oy, and 3.88% for wyy;. These inaccuracies should be avoided when a
risk assessment is performed on an industrial system.

15
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7. Conclusion

The use of BDDs to improve the efficiency of calculating the minimal cut sets and prime
implicants of a fault tree has been proven for large complex fault trees by Rauzy Ref. (1) and
Ref. (4).

This paper extends the use of the BDD method to calculate top event parameters, such as
system failure probability, failure intensity and expected number of top event occurrences. The
added advantage of obtaining these parameters directly from the BDD, when compared to
traditional Kinetic tree theory approach (Ref. (10) and Ref. (11)), is that the resulting values
are exact. Approximations used in conventional fault tree analysis are shown to be inadequate

for some fault trees.

The paper has also shown that the commonly used component Importance measures for top
event probability can be calculated directly from the BDD. Further, the BDD method has
proven to be extremely efficient as a means of quantification. Only one pass of the BDD
structure is required to calculate all parameters.
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Appendix A

Input file for Dresden-3

1060
1058
1059
1057
1055
1053
1045
1044
1043
1052
1051
1042
1050
1049
1048
1041
1040
1047
1039
1046
1038
1037
1034
1032
1036
1025
1033
1020
1056
1031
1024
1035
1030
1028
1029
1009
1027
1017
1015
1008
1014
1007
1006
1013
1012
1005
1004
1003
1002
1001

1026

1022
1019
1023
1021
1054
1018
1016
1011
1010

and
and
and
and
and
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
and
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
or
and
or
or
or
or

18

e =]
N O ONNNOONONHOOONNHRORONNOOONOONONNNOONNIFOFHONNMNKEFOFRONNMNWWNNLN

01058
01057
01053
01037
01026
01052
01044
249
11042
257
11050
01041
01049
254
11047
246
11039
01057
01055
250
243
01036
01033
01056
241
11024
237
224
01030
235
228
238
01029
01027
233
11008
231
11015
11014
01007
01013
29

27
215
11005
01004
26
01002
24

22
01025
01021
01054
226
222
01016
220
11015
11010
11009

1059
1055
1045
1034
1022
1051
1043
48
47
56
55
1040
1048
53
52
45
44
1046
1038
51
42
1025
1020
1031
40
1035
36
23
1028
34
27
38
1009
1017
32
10
30
18

16

1006
1012

14
13
1003

1001

.1023

1020
1018
25
21
1011
19
17
12
11

1032
1018

29



.0009,48

00,334

14
9.009,48
15
9.009,48
16

1,5

17

5,8

18

1,5

19

5,8

20

5,3

21

5,8

22

10,3

23
10,200
24

1.5

25

10,3

26

5,8

27
9.009,48
28
9.009,48
29

1,5

30

5,8

31

10, 3

Data file for Dresden-3

F

F

32
5,8
33
10,3
34
5,8
35
5,3
36
5,8
37
10,3
38
1,70
39
10,10
40
5,8
41
10,3
42
5,8
43
10,3
44
1,5
45
9.009, 48
46
9.009, 48
47
1,5
48
5,8
49
10,3
50
5,8
51
10,3
52
1,5
53
9.009, 48
54
9.009, 48
55
1,5
56
5,8
57
10,3



