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Original article

Improved accuracy in the determination
of flexural rigidity of textile fabrics by the
Peirce cantilever test (ASTM D1388)

Nicolas Lammens, Mathias Kersemans, Geert Luyckx,

Wim Van Paepegem and Joris Degrieck

Abstract

Within the field of composite manufacturing simulations, it is well known that the bending behavior of fabrics and

prepregs has a significant influence on the drapeability and final geometry of a composite part. Due to sliding between

reinforcements within a fabric, the bending properties cannot be determined from in-plane properties and a separate test

is required. The Peirce cantilever test represents a popular way of determining the flexural rigidity for these materials,

and is the preferred method in the ASTM D1388 standard. This work illustrates the severe inaccuracies (up to 72%
error) in the current ASTM D1388 standard as well as the original formulation by Peirce, caused by ignoring higher-order

effects. A modified approach accounting for higher-order effects and yielding significantly improved accuracy is presented.

The method is validated using finite element simulations and experimental testing. Since no independent tests other than

the ASTM D1388 standard are available to determine the bending stiffness of fabric materials, experimental validation is

performed on an isotropic, homogeneous Upilex-50S foil for which the flexural rigidity and tensile stiffness are related.

The flexural rigidity and elastic modulus are determined through both the cantilever test (ASTM D1388) and tensile

testing. The results show that the proposed method measures an elastic modulus close to that determined through

tensile testing (within 1%), while both the Peirce formulation (+18%) and ASTM standard (+72%) over-estimate the
elastic modulus. The proposed methodology allows for a more accurate determination of flexural rigidity, and enables

the more accurate simulation of composite forming processes.

Keywords

testing, fabrication, properties, materials, textile care/wrinkling, management of systems, product and systems

engineering

The increasing popularity of composite materials has

led to the development of several simulation tools pre-

dicting the final shape and strength of a composite pro-

duction process.1–5 When fabric reinforcements are

used, an important part of this simulation tool is

drape prediction. Fish-net algorithms have been devel-

oped, using the assumption of inextensibility along the

reinforcing directions, and pivot-points where warp and

weft cross.6–9 These algorithms are capable of predict-

ing basic drape behavior, without requiring any

material parameters or accounting for tool–fabric inter-

actions. As a consequence, however, these algorithms

predict the same shape, regardless of the reinforcing

material and constraints, limiting their usability and

accuracy.4 A different approach is through the use of

finite element analysis taking into account all important

material parameters that dictate the forming capabil-

ity.10–16 It is generally agreed that the parameters (i)

tensile stiffness, (ii) shear stiffness (and its locking

angle), (iii) tool-ply and inter-ply friction and (iv)

bending stiffness are dominant factors in the
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material model.1 In addition, it is known that the finite

element simulation of fabric draping requires a specia-

lized framework to follow the fiber directions.17 Several

authors have presented different finite element imple-

mentations, incorporating a number of these param-

eters with good results.10–19

The comparison of finite elements with experimen-

tal results will, at some point, require the determin-

ation of the necessary material parameters. A couple

of procedures for these tests were originally published

by Peirce,20 and later implemented as ASTM stand-

ards.21 This work focuses on the determination of

bending stiffness as described by Peirce and ASTM

D1388-08. Hamila et al.13 have shown the influence

of bending stiffness on predicted final geometry and

wrinkling behavior in draping simulations. Based on

finite element models, inaccuracies in both approaches

are traced back, and a modified solution method is

proposed. Both the ASTM and Peirce method are

compared to the newly proposed method through

experimental testing of samples of Upilex-50S foil.

Although the ASTM standard is designed to be used

with fabric materials, the fundamental equations on

which the method relies were developed for any type

of flexible material.22 In order to compare the absolute

accuracy of the different methods, a reference value

has to be determined through an independent test.

Using fabric materials, the bending stiffness stated

by the manufacturer would most likely be based on

the ASTM standard discussed in this work. This

would inevitably result in the incorrect conclusion

that the ASTM standard achieves the most accurate

results. As a consequence the tests have been con-

ducted on an isotropic, homogeneous Upilex-50S

material for which the bending stiffness can be related

to the tensile modulus determined through tensile test-

ing (ASTM D882). The choice for Upilex-50S was

found to be sufficiently flexible to be tested in the

cantilever test, while still having a sufficiently thick

cross-section in order to be accurately tested in the

tensile testing facilities available.

The experimental results illustrate the increased

accuracy of the new method, yielding more accurate

determination of the bending behavior, and as a conse-

quence enabling a more accurate simulation of drape

behavior in composite forming simulations.

Peirce cantilever test

The ASTM standard for determination of bending stiff-

ness in fabric materials suggests the use of Peirce’s can-

tilever test (Figure 1) as the preferred methodology to

measure bending stiffness.

A specimen of the fabric is cut to the correct dimen-

sions (200mm� 25mm) and gradually slid over the

edge (P) of the top-surface, until the leading edge

of the fabric makes contact with the angled surface

of the device (L1, L2). Using a graduated ruler (S),

the overhanging length l of the specimen is measured

(Figure 2). Within the ASTM standard, a fixed

angle �¼ 41.5� is used for the inclined surface. Some

research has proposed to increase this angle to �¼ 43�,

stating that this would increase the sensitivity of

the method.23 The original formulas presented by

Peirce can be modified to provide results for any

inclination.

According to the original research paper by

Peirce, the measured length l (mm) should then be mul-

tiplied with a factor f1 �ð Þ leading to the so-called

Figure 1. Peirce cantilever device.

Figure 2. Schematic representation of Peirce cantilever test

and relevant parameters.20
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bending length c ¼ l � f1 �ð Þ. This scaling factor is deter-

mined as

f1 �ð Þ ¼
cos �=2

8 � tan �

� �1=3

ð1Þ

The choice of �¼ 41.5� within the ASTM standard is

mainly related to practical aspects as for this angle

f1 41:5�ð Þ � 0:5.

If c has units of mm and the areal weight w is

expressed in g/m2, the flexural rigidity, in units of N

m according to Peirce is found as

GPeirce ¼ 9:81 � 10�12 � w � c3 ð2Þ

The ASTM standard differs from the Peirce formu-

lation in the addition of a (significant) scaling factor,

for which no explanation is given. Using the same units

for c and w, the flexural rigidity according to ASTM is

found as (units of N m)

GASTM ¼ 1:421 � 10�11 � w � c3 ð3Þ

Comparing Equations (2) and (3), it is easily found

that GASTM ¼ 1:45 � GPeirce. As a result, applying both

the ASTM and Peirce formulations, ASTM will con-

sistently result in a bending stiffness, which is 45%

higher than that according to Peirce.

The ASTM standard provides no details as to why

this scale factor is introduced. In addition, according to

this standard, G is expressed in units of mJ/m, equating

to mN rather than the expected (m)Nm. It should also be

noted that this scale factor has only been introduced in

the latest revisions of the standard (D1388- 08). The

scale factor is not present in older versions of the

standard.

Finite element modeling of cantilever test

Current computational power available in the average

computer is more than sufficient to perform a finite

element simulation of the cantilever bending experi-

ment. A finite element model was created in

ABAQUS in order to compare the finite element pre-

dictions to the analytical approaches proposed by

Equations (2) and (3).

Since Equations (2) and (3) are essentially derived

from beam theory, two models were built: one using

beam elements, the other using S8R quadratic shell

elements. Both models have an approximate element

size of 0.25mm (see Figure 3). The shell model has a

fixed width of 20mm in accordance with the ASTM

standard procedure. The length of the part is swept

between 25 and 200mm and the resulting inclination

angle � is calculated from the finite element results,

giving the relation between l and �.

The finite element analysis is performed on an iso-

tropic Upilex-50S material. Upilex material is a poly-

imide foil material mainly used in high-temperature

applications, such as aerospace. This material has a

density of � ¼ 1:47 g/cm3, a theoretical thickness of

50 mm and a tensile modulus of E ¼ 8042MPa (inter-

polated between manufacturer-provided values for

Upilex-25S and Upilex-75S, since no data is provided

for Upilex-50S) and a Poisson’s ratio of � ¼ 0:25.

Using this data, we find an areal weight of

w ¼ 73:5 g/m2, and assuming beam theory

G ¼ E�t3

12
¼ 8:377 � 10�5 Nm. Filling in these values in

Equations (2) and (3), we find the relationship between

l and � according to Peirce and ASTM, respectively.

Figure 4 shows the result of the finite element simu-

lations, together with the ASTM and Peirce

formulations.

These results show that at an angle � ¼ 41:5�, the

Peirce formulation is close to the finite element results

assuming beam theory, while the ASTM standard pre-

dicts a significantly different length. The correspond-

ence between Peirce and finite element beam theory

becomes worse for larger angles. In addition, finite

element predictions using beam and plate theory

result in small differences, suggesting that plate effects

might need to be taken into account. This is to be

expected given the rather high width-to-length ratio

Figure 3. Finite element model of the Peirce cantilever test.

Lammens et al. 3
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of the samples as specified by the ASTM standard.

Depending on the Poisson’s ratio, beam assumptions

might be invalid.

The exact overhanging lengths at � ¼ 41:5� are

stated in Table 1. Even though Figure 4 suggests that

finite element beam theory and Peirce closely match,

Table 1 shows that a difference of 2mm in overhanging

length exists between both. An additional 2mm differ-

ence exists between beam theory and plate theory for

this specific material and geometry.

Note that the reverse process of starting from a

known overhang length and angle and trying to deter-

mine the corresponding bending stiffness would require

an iterative finite element process, which would hinder

the practical applicability of using finite element tech-

niques to determine the bending stiffness from a canti-

lever test.

Revised Peirce equations

Beam theory

Equations (1) and (2) given by Peirce are the solution to

a differential equation expressing the equilibrium of a

small part of a beam under large bending deform-

ations.20,22 This differential equation is written as

d2�

ds2
¼ �s cos�

�

c3 ð4Þ

In Equation (4), s represents the distance of a point

P along the strip from the free end, � the angle between

the tangent there and the horizontal and c ¼ G=wð Þ1=3,

as shown in Figure 2.

Peirce20 states that there is no analytical solution

available to this differential equation. Instead, an

expansion of � in a power series was used to approxi-

mate the solution. This laborious work was performed

by Hummel and Morton,22 who actually focused on

solving the bending of thin flexible strips and used a

pen-steel strip as an example, illustrating that the

method can be used for any type of material and is

not limited to fabric materials. Based on the calcula-

tions of Hummel and Morton, a smooth curve is fitted

to the data:

G ¼ w � l �
cos �=2

8 � tan �
ð5Þ

Equation (5) is the known formula stated above, and

– after application of a correction factor – used by

ASTM as a standard for testing. However, Peirce20

contains a warning stating ‘‘for satisfactory accuracy

more terms are necessary in the expansion, but. . . ’’

before going on to Equation (5). This warning is even

more clear in Hummel and Morton,22 where the reader

is warned that the usability of the expansion is only

accurate for small angles, and the power series expan-

sion requires many more terms for larger angles (such

as � ¼ 41:5� in ASTM).

Nowadays, computing power allows the accurate

solving of differential equations through numerical

techniques. The solving technique described by

Hummel and Morton22 was implemented in

MATLAB, using an ordinary differential equation

(ODE) solver to find the solution rather than relying

on the previously discussed power series. Using a stand-

ard computer, solving the equation for a range of

�¼ 1 . . . 70� in steps of 0.5� takes less than 60 s, and

therefore does not hinder the practical usability of

this technique.

Compensation for plate effects

The finite element results shown in Figure 4 illustrate

that plate effects have an influence on the bending

behavior of the sample under investigation. Due to

Poisson effects, the cross-section of the foil will warp

in regions of high curvature, resulting in a locally

Figure 4. Bend angle versus overhanging length according to

finite element simulations, Peirce and ASTM formulations for a

Upilex-50S foil.

Table 1. Overhanging length according to American Society for

Testing and Materials (ASTM), Peirce and finite element (F.E.) for

a Upilex-50S foil.

ASTM Peirce
F.E.

Beam theory Plate theory

l (mm) 84.7 95.8 97.6 99.6

4 Textile Research Journal 0(00)
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increased inertial moment, thereby resulting in a stiffer

response as illustrated in Figure 4.

Compensating exactly for these plate effects would

require solving of large-deflection cantilever plate equa-

tions. This would increase the computational difficulties

tremendously and would severely hinder the practical

use of the method presented.

Therefore, it is chosen to use the flexural rigidity

definition from small deflection linear-elastic plate

theory, while using the differential equation in

Equation (4):

G ¼
E � t3

12 � 1� �2ð Þ
ð6Þ

Figure 5 shows the difference in calculated overhang-

ing length between finite element simulations and the

ODE-technique described for both beam theory

(G ¼ E � I) and plate theory (Equation (6)).

As can be seen from Figure 5 there is a near-perfect

correspondence between the ODE technique and finite

element implementation when beam theory is utilized.

A somewhat larger difference exists when plate theory is

used, which is to be expected considering that the plate

equations were not solved numerically in this approach,

and a simplified methodology was used. Nonetheless, at

� ¼ 41:5�, the error between the ODE technique and

finite element is 0.16mm using plate theory (and just

30 nm using beam theory). It is more than likely that

the measurement accuracy and repeatability of the can-

tilever test will exceed this value and therefore these

errors can be neglected.

Implications of different solving techniques

Up to now, the results have only focused on the l–�

relationship, showing that different techniques lead to

a different relationship. Assuming that the finite elem-

ent model using plate theory is the most accurate tech-

nique, we find that for a Upilex-50S foil as defined

previously an overhang length of 99.5668mm is neces-

sary to achieve the angle � ¼ 41:5�. Using this length as

a starting point, we can now compare the predicted

E-modulus using the different techniques discussed.

The results of this analysis are gathered in Table 2.

The results in Table 2 clearly illustrate the increased

accuracy of the proposed ODE techniques over the cur-

rently available methods. Based on the data in Table 2,

the ASTM standard severely overestimates the E-mod-

ulus (and correspondingly, the bending stiffness). While

Peirce provides a much better prediction, a lot of accur-

acy can still be gained by implementing the ODE meth-

odology. Even assuming beam theory (when the

Poisson’s ratio is unknown), significant improvements

can be achieved.

Experimental results

In order to validate the improved accuracy of the pre-

sented method over the current standard method, a

series of experimental tests have been conducted.

While comparisons between different techniques can

be made for any type of material (e.g. fabrics), state-

ments about absolute accuracy can only be made when

a reference value is known. Using fabric materials, the

bending stiffness stated by the manufacturer would

most likely be based on the ASTM standard discussed

in this work. This would inevitably result in the incor-

rect conclusion that the ASTM standard achieves the

most accurate results. As a consequence only isotropic

materials can be used. The bending stiffness of continu-

ous, isotropic materials can be related to the in-plane

tensile modulus, which can be measured by independ-

ent tensile tests. For the purpose of this work, tests were

performed on Upilex-50S foil.

Sample specifications

In accordance with the ASTM standard, five samples of

Upilex-50S foil were cut along the material direction

Figure 5. Difference in predicted overhanging length between

ordinary differential equation technique and finite element for

plate and beam theory.

Table 2. Calculated E-modulus based on different techniques.

ASTM Peirce
ODE technique

Beam

theory

Plate

theory

E-modulus (GPa) 13.076 9.027 8.536 8.002

Deviation (%) +62.6% +12.25% +6.14% – 0.5%

ODE: ordinary differential equation; ASTM: American Society for Testing

and Materials.
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(MD) and five perpendicular to the MD. The width of

each sample was measured to an accuracy of 0.05mm.

The edges were found to be parallel to within 0.5%.

The thickness was measured at several locations on

each sample to an accuracy of 0.001mm. Thickness

variations were found to be less than 3%.

Test set-up

Cantilever test. The samples were first tested in a com-

mercial cantilever test device as required by the ASTM

D1388 standard. The device was made out of transpar-

ent Plexiglas with an etched line inclined at 41.5� on

each face of the set-up. In order to improve the accur-

acy of the measurements, a laser plane was aligned pre-

cisely with the inclined lines on the test device (Figure

6(a)). This allowed for a much more precise determin-

ation of overhanging length to achieve precisely the

desired angle of 41.5� (Figure 6(b)). For each sample,

the face and back of both ends were tested, leading to a

total of four measurements per sample.

Tensile test. After the cantilever test, the tensile modulus

was determined according to ASTM D882. The tests

were performed immediately after the cantilever test

at the same environmental conditions. In order to pre-

vent slippage in the grips, rubber padding was used.

The tests were performed at the required rate of 25

mm/min and the entire load-displacement curve was

recorded for each sample. All samples were loaded up

to fracture and showed a clean break in the mid-section

of the sample.

Results

The results of the tensile test are shown in Table 3. A

distinction is made between samples parallel to the MD

and those perpendicular to it because a difference in

stiffness for both directions was found. The tensile

modulus was determined as described in the ASTM

D882 standard.

As was done with the tensile tests, the results for the

cantilever test are separated into samples parallel to the

MD and those perpendicular to it. The four measure-

ments per sample were averaged before calculating the

bending stiffness of a single sample. For each sample,

the tensile modulus was determined according to

ASTM, Peirce and both ODE approaches. The aver-

aged values over all samples in a certain direction are

given in Table 4 and compared to the reference values

given in Table 3.

Discussion of results

The results in Table 4 clearly show the improved accur-

acy of the proposed method over those currently avail-

able. Even under the assumptions of beam theory, the

MATLAB implementation shows clear improvements

over both Peirce and ASTM formulations. As was

already shown previously, the ASTM standard pro-

vides a poor estimate of actual E-modulus and bending

stiffness. The original formulation by Peirce achieves

better results, although errors up to 18% can be

found for the parallel samples.

In the parallel samples, the ODE plate theory imple-

mentation slightly underestimates the E-modulus as

found through tensile testing. This is to be expected

Figure 6. (a) Peirce cantilever test device with aligned laser plane. (b) Projection onto a sheet of paper showing Upilex-50s foil

crossing the laser plane.

Table 3. Tensile modulus for Upilex-50S

foil according to ASTM D882.

E-modulus

k MD (MPa) 9191� 341

? MD (MPa) 8214� 303

6 Textile Research Journal 0(00)
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due to the simplified technique used to compensate for

plate effects. The perpendicular samples, on the other

hand, result in an overestimation of the E-modulus.

Because the Upilex-foil was stored on a roll, the foil

material had a small (yet noticeable) pre-curvature.

This small curvature is averaged out in the parallel sam-

ples since measurements on both face and back ends

were made. In the case of the perpendicular samples,

however, the pre-curvature leads to a slightly curved

cross-section with an increased moment of inertia

resulting in a stiffer response of the foil in cantilever

tests. Since this curvature is not accounted for in the

ODE implementation, this inevitably leads to an over-

estimation of the E-modulus. Nonetheless, even with-

out compensating for this effect the correspondence

between the ODE implementation and the stiffness

determined through tensile testing is very good.

Conclusions

This work has illustrated that the methodologies

described by Peirce and the American Society for

Testing and Materials (ASTM) do not correspond to

the results of finite element simulations. The origins of

this discrepancy were traced back and a modified tech-

nique was proposed using numerical solving of the gov-

erning differential equations. It was shown theoretically

that these modifications lead to results that correspond

perfectly to those predicted by finite element beam

theory. In addition, finite element simulations revealed

the importance of plate effects in the samples, which

should be accounted for if accurate measurements are

to be achieved. The proposed methodology was

adapted to account for these effects, showing only min-

imal differences between finite element results and the

new methodology.

The usability of the method was shown to not only

produce theoretical increases in accuracy, but also

measurable improvements by a series of experimental

tests on Upilex-50S foil. The results show that the new

methodology is capable of measuring the E-modulus to

within 1% of the reference value, while Peirce (+11%)

and ASTM (+61%) produce far less accurate results.

The proposed method produces results that are com-

parable to finite element predictions. However, in order

to use finite element software to determine bending

stiffness based on a given overhang length, an iterative

process would be needed increasing computational

efforts and time, hindering the practical usability of

finite element simulations. Using standard computer

equipment, the proposed methodology requires less

than 60 s to determine the flexural rigidity based on

the overhanging length and therefore does not limit

the practical usability.

The presented model is found to produce more

accurate results than currently available tests at min-

imal computational effort, and consequently enables

the more accurate simulation of composite forming

processes.
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