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Abstract

New test point selection algorithms to improve test point

insertion quality and performance of multi-phase test point

insertion scheme, while reducing the memory requirement

of the analyses are proposed. A new memory eÆcient prob-

abilistic fault simulation method, which also handles the re-

convergences to a limited extent for increased accuracy, is

introduced. Synergistic control point insertion is targeted

for higher test point insertion quality. Experiments con-

ducted on various large industrial circuits demonstrate the

e�ectiveness of the new algorithms.

1 Introduction

Steady increase in the complexity of integrated circuits
requires a signi�cant increase in the testing e�ort. Auto-
matic Test Pattern Generation (ATPG) process consumes
considerable amount of computing resources. Resulting
large test data volumes require larger expensive Automatic
Test Equipment (ATE) memory and longer test application
times. Furthermore, limited increase in pin counts limits
the increase in test application bandwidth, worsening the
test application problems.

Built in Self Test (BIST) with pseudo-random patterns
is an attractive alternative to overcome these diÆculties.
It o�ers low hardware overhead and simple test pattern
generation and test application. However it su�ers from
reduced test coverage due to existence of random pattern
resistant faults.

One solution to increase the pseudo-random pattern
testability of the circuits is to insert test points to enhance
controllability and observability of internal nodes. The �rst
systematic test point insertion method was proposed in [5].
In that work, simulations are performed to obtain fault
propagation pro�les and correlations among signals. Sig-
nal correlations are eliminated by analyzing reconvergences
and breaking them by the insertion of test points to facili-
tate propagation of blocked faults. Similarly, [6] uses fault
simulation to identify gates that block fault propagation
and inserts test points to allow propagation. Path tracing
method described in [11] uses test points to ensure that
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there are sensitized fault activation and propagation paths
for every fault for the given test set.

To reduce CPU time requirements of test point insertion
process, approximate testability measures such as COP [3]
is also used to analyze random pattern testability prob-
lems [7]. The work presented in [9] further develops COP
based gradient method described in [8]. Cost reduction,
i.e. reduction in average expected test length of all faults,
as the result of selecting a signal as a test point is cal-
culated for each signal in a circuit. A limited number of
promising candidates are then selected for time consuming
actual evaluation step and best one is inserted as the next
test point. Methods described in [10, 12, 13] use similar
analysis methods, but also consider the e�ects of test point
insertion on area and timing.

To achieve a reasonable coverage, most practical circuits
require a large number of control and observation points.
During test application, typically, all test points are acti-
vated in a single test session and control points are driven
by independent, equi-probable signals. There are 2K pos-
sible combinations of values for K equi-probable control
points. Many of these combinations may have conicting
control point values. This may result in reduced coverage
after a certain number of control points are inserted. The
method described in [11] activates the control points only
for the test patterns they are needed, through a pattern
decoding logic. However, it requires the prior knowledge of
test patterns, which may not always be the case.

Multi-Phase Test Point Insertion (MTPI) BIST scheme
proposed in [4] utilizes a constructive divide and conquer
approach. The test session is partitioned into multiple
phases. Each phase adds to the coverage obtained so far,
converging towards full coverage. Within each phase, test
points (observation points in the �rst phase, control points
in other phases) maximally adding to the fault coverage
achieved so far are identi�ed using a probabilistic fault sim-
ulation technique. Actual fault simulation is performed at
the end of each phase, to eliminate newly detected faults as
a result of test point insertion. Control points are held at
a constant 0 or 1 throughout the phase they are selected.
This approach has several advantages: First, it makes eas-
ier to predict the impact of multiple control points, since in
each phase a new control point is selected in the presence of



control points selected so far in the phase. In this manner, a
group of control points operating synergistically is enabled
within each phase. Second, power dissipation during test
mode is potentially reduced due to the usage of �xed values
at control points. Finally, the sharing of the logic driving
the control points is inherently determined. Determination
of logic sharing among control points is not straightforward
in general.

In this paper we propose methods to reduce compute
time and memory requirements of procedures to place con-
trol and observation points. Since we implemented the pro-
posed method into the existing infrastructure for the Multi-
Phase Test Point Insertion method, for the sake of clar-
ity we present our procedure in this context even though
the same methods can be used with other procedures for
inserting test points, the work presented in this paper
preserves the constructive BIST methodology (MTPI) de-
scribed in [4]. While achieving higher test quality and per-
formance, memory requirements of the test point selection
analysis, which can be quite signi�cant for large industrial
circuits, is considerably reduced compared to MTPI. A new,
memory eÆcient probabilistic fault simulation methodology
is developed for this purpose. To increase the accuracy of
calculations without degrading the performance, reconver-
gent fan outs are handled to a limited extent during the
calculations. Analysis to identify synergistic control points,
i.e. control points that can be inserted together, is intro-
duced to increase test quality. Experiments demonstrated
that test quality is increased, while the use of computing
resources are reduced signi�cantly, especially for some large
industrial designs.

2 Background and Motivation

Figure 1 illustrates the main components of the MTPI
scheme [4]. The outputs of the phase decoder drive the
control points and indicate the current phase in progress.
The phase decoder block can be synthesized with the num-
ber of outputs ranging from dlog2Ne to N � 1, where N is
the number of phases, depending on the routing and area
constraints. In Figure 1 the entire test is divided into four
phases: Ph0-Ph3. Non-overlapping phase enable signals
�0-�3 and the output functions of the control points C1
and C2 in all phases are also shown.

An observation point is implemented at a node by means
of an additional fan out from that node, which is con-
nected to an output response analyzer. Observation points
in MTPI scheme are enabled for the entire duration of the
test.

The control point and observation point selection algo-
rithms of MTPI rely on a probabilistic fault simulation
technique. In this technique, �rst, signal probabilities of
circuit nodes are determined by a logic simulation of ran-
dom inputs. Then a fault f is initiated at its location, with
a detection probability equal to its excitation probability.
Forward propagation of the set of all undetected faults is
then performed utilizing the equations derived in [4], in a
levelized, event driven fashion. Propagated faults are kept
in lists at every circuit node they reach, with the corre-
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Figure 1. MTPI scheme

sponding local probabilities of detection. Although prob-
abilistic fault simulation accurately predicts the detection
probabilities of faults at various circuit nodes, the memory
requirement of this technique can be quite large. To reduce
the memory requirement, MTPI does not include the faults
in a list if the detection probability of the fault at that loca-
tion is less than a certain threshold. However, the memory
requirement for the probabilistic fault simulation can still
be quite high, especially for very large circuits. Therefore,
developing an algorithm with a lesser memory requirement,
while keeping the same accuracy level would be useful.

Another issue is related to the selection of control points.
MTPI analysis determines some initial control point candi-
dates whose signal probability values are extreme (w.r.t. a
pre-speci�ed threshold). Then the algorithm inserts those
candidates one by one, performs a probabilistic fault simu-
lation in the presence of already selected control points and
the current candidate. Finally, the candidate that causes
the propagation of most faults to observable points is se-
lected. However, this method may not accurately identify
synergistic control points. For example consider the sit-
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Figure 2. Potential pitfall for MTPI

uation shown in Figure 2. Assume that a and b are two
points with very low signal probabilities and are allowed
to be control points (there may be some restrictions on the
circuit lines where a control point can be inserted). The low
signal probability at the output of AND1 is blocking the
propagation of faults in the input cone of the second input
of AND2. If a is already selected as a control point (pro-
viding a high signal probability at a) previously, because it
increases detection probability of some other faults, MTPI
can recognize that insertion of another control point at b



unblocks the propagation path of the depicted faults. How-
ever, if both a and b are not control points at the moment,
trying to insert control points at a and b separately will not
result in propagation of those faults, and neither of them
will be selected as a control point. Therefore, an algorithm
that detects such cases, may increase the achieved fault
coverage.

As previously mentioned, MTPI selects observation
points only in the �rst phase, and control points in the
remaining phases. However, insertion of observation points
after the selection of control points can be essential, if prop-
agation of some faults to already observable points is very
diÆcult to achieve, even after control points are inserted.
Selecting observation points after control point insertion
could increase the fault coverage. However, observation
points will still be active in all phases, even if they are se-
lected after the �rst phase. This may require re-simulation
of inputs used during phases earlier than when additional
observation points are selected.

3 A new probabilistic fault simulation

method

As mentioned before, MTPI [4] initiates faults at fault
sites and propagates them forward using fault lists. In this
approach, fault list at the output of a gate is calculated
from the lists at the inputs of that gate. A fault can propa-
gate throughout its fanout cone. However, using a two level
method of detection probability calculation becomes more
memory eÆcient. In this technique, faults are �rst propa-
gated until they reach the outputs of their corresponding
fanout free regions (FFRs). Then for each FFR output that
has a fault list, a representative of all of the faults in that
list, called surrogate fault, is initiated. After this point,
only the surrogate faults are propagated on behalf of the
faults in their respective lists. The complete list of faults at
a node can then be obtained by expanding these surrogate
faults into original faults, while scaling the detection prob-
abilities of original faults with the detection probabilities of
their surrogate faults.

Surrogate fault propagation is equivalent to the calcu-
lation of conditional detection probabilities throughout the
circuit, given that the output of the FFR is faulty. MTPI
propagation procedure does not perform any conditional
probability calculation. Hence a new propagation proce-
dure needs to be developed.

3.1 Basic formulation

Assume, a section of a fault propagation path is shown in
Figure 3. Assume propagation starts at A and probabilities
of having 0; 1; D and D at A are given.

A B C
. . .

Figure 3. Part of a fault propagation path

Then the probabilities at point B can be found according
to the following equation:

PBx = PA0

Bx
PA0

+ PA1

Bx
PA1

+ PAD
Bx

PAD + P
A
D

Bx
PA

D
(1)

where x 2 f0; 1; D;Dg. Here, for example, PB0
denotes

total probability of having a 0 at node B, and PA1

B0
denotes

probability of having a 0 at node B given the value at node
A is 1. These equations can be put into matrix form:
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or

PB = P
A

B PA (3)

Here, PB and PA are the probability vectors at A and B.
Matrix PA

B gives the conditional probabilities at B given
the probabilities at A. If similarly, equations for node C is
written in terms of the probabilities at node B, and Equa-
tion 1 is substituted in it,

PC = P
B

CP
A

B PA (4)

is obtained. This formulation shows that, as we cascade
sections of paths from A to B and B to C, conditional
probability matrices are cascaded in the reverse order so
that we can obtain the probabilities at node C given the
probabilities at node A.

Exact computation of conditional signal probabilities in
a circuit is proven to be #P -hard [1]. However, a practi-
cal approximate surrogate fault propagation method can be
developed based on the formulation derived above.

3.2 Propagation rules

Surrogate fault propagation starts with an initial iden-
tity probability matrix I at its fanout stem. Detection prob-
ability values of 1:0 through the main diagonal represents
the initial conditional detection probabilities of 0; 1; D and
D, given the logic value at the stem is 0; 1; D and D respec-
tively. Then, this matrix is propagated through the gates
according to the propagation rules of those gates. During
the propagation, o�-path signals are assumed to be inde-
pendent. Figure 4 shows a matrix originated at stem s and
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Figure 4. Matrix Ps

b at the input of an AND gate

reached to input b of an and gate. The signal probability
of the o�-path input a is Pop. Then the entries of Ps

c are
given by:

P sx
c1 = P sx

b1
� Pop

P sx
cD

= P sx
bD

� Pop

P sx
c
D

= P sx
b
D

� Pop

P sx
c0 = 1:0� P sx

c1 � P sx
cD

� P sx
c
D

(5)

where x represents 0; 1; D or D. The equations for other
types of gates are derived similarly.



During the course of propagation, two probability ma-
trices can meet at a reconvergence gate. In such a case,
output probability matrix is obtained from the input matri-
ces, by appropriately processing the corresponding columns
considering the type of the reconvergence gate.

3.3 Handling of the reconvergences

As mentioned earlier, MTPI [4] assumes fault e�ects are
independent to simplify fault propagation. When reconver-
gence of fault e�ects occur, this assumption causes inaccu-
rate calculation of detection probabilities.
Example 1:
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Figure 5. Fault on a reconvergent fanout stem

Assume the signals a; b and c are independent, and the
signal probabilities on the lines are as shown in Figure 5.
Suppose that there is a s-a-0 fault at stem c. If fault e�ects
are propagated independently, the fault will be detected on
c with a probability of 0:5, and on d and e with probabilities
of 0:3 and 0:1 respectively. Then the detection probability
on f will be:

P f
D = P d

D � SigPre + P e
D � SigPrd + P d

D � P e
D

= 0:3 � 0:1 + 0:1 � 0:3 + 0:3 � 0:1 = 0:09

However, given c is faulty, it is not possible to have a 1 value
neither on d nor on e. Hence the �rst two terms in the above
equation must be zero. The third term, P d

D � P e
D includes

the fault probability twice, that is (0:5�0:6) � (0:5�0:2).
If the above calculation is carried out conditional on the
probability of having a fault on c the result will be (1:0 �
0:6) � (1:0 � 0:2) � 0:5 = 0:06. This can also be veri�ed,
by noting that the given circuit is in fact equivalent to a
3-input AND gate, with inputs a; b and c.

The same answer can also be obtained using the matrix
formulation. Calculation starts with an identity matrix I

at c, and it is propagated to d and e:
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3.4 Fault propagation through paths

Surrogate fault propagation can be carried out, by �rst
partitioning the propagation paths into sections that can be
cascaded, then calculating conditional probability matrices
between the end points of those sections, and �nally cas-
cading the sections to form propagation paths, and hence
cascading the corresponding matrices and �nding resultant
propagation probabilities over the paths. During the par-
titioning process the sections must be selected as large as
possible. However, it must allow the handling of reconver-
gences too. To achieve these goals, propagation paths are
divided into segments as de�ned below:
De�nition 1: A segment is a section of a fault propagation
path, which starts at a reconvergent fanout stem or at the
output of a reconvergence gate, and ends at a reconvergent
fanout stem or reconvergence gate.
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Figure 6. Surrogate fault propagation example

Following example demonstrates how segments are cas-
caded to obtain propagation probabilities.
Example 2: Consider the circuit in Figure 6. Suppose, a
surrogate fault is initiated at stem a. Using De�nition 1, we
can identify three segments of fault propagation paths. Seg-
ment (a; b; c) starts and ends at reconvergent fanout stems
a and c, segments (c; d) and (c; e) starts at reconvergent
fanout stem c and ends at a reconvergence gate. Assume
the o�-path signals have signal probabilities as shown in
the �gure. The surrogate fault of stem a will be propa-
gated to f . An identity matrix I is initiated at a, and it
is propagated to b and c �rst. At this point it is necessary
to handle conditional propagation from c to f �rst, which
was done in Example 1. Then the probabilities at f given
the probabilities at a are obtained as Pa

f = Pc

f P
a

c , and the
probability vector at f is obtained as Pf = Pa

f Pa:

Pf=
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As mentioned above, the propagation procedure requires
knowledge of reconvergent fan out stems. This information
is extracted and stored during a preprocessing step which
extracts stem regions of the circuit. Stem region concept is
explained in Section 3.5.

Previous examples demonstrated cases where matrices
initiated at the same stem reconverge. When there are more
than one reconvergent fanout stem, new identity matrices
are initiated at each one of them and propagated forward.



Hence it will be necessary to keep track of the source of
propagated matrices, by attaching appropriate labels indi-
cating the source of the matrix. If two matrices initiated at
di�erent stems reconverge at a gate, they can not be imme-
diately used for calculating gate output probability matrix.
These calculations must be made w.r.t. the same source.
This is done by appropriately cascading the paths, until two
inputs has the same source.
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Figure 7. Propagation path labeling

Figure 7 shows fault propagation paths for the surrogate
fault of stem a. Nodes a; b and c are fanout stems, nodes
d and e are reconvergence gates. The matrix initiated at
a is labeled as L1. This label is attached to the matrices
during propagation as long as no new identity matrix is cre-
ated along the way. In the �gure, label L1 is carried along
the segments (a; b) and (a; d). When propagation reaches
stem b, a new identity matrix is created, hence the matrices
propagated after this point are labeled as L2. Note that,
stem c is not reconvergent, hence no new matrix is initiated
at that point and there is no need for a new label. When
matrices reconverge at d, the output matrix of the recon-
vergence gate, Pb

d, can not be calculated immediately. Be-
cause, probability matrix at d1 input of the reconvergence
gate is expressed w.r.t. a and matrix at d2 input is ex-
pressed w.r.t. b. The probability matrix at d2 must also be
expressed w.r.t. a. This is done by cascading the segments
(b; d2) and (a; b) to obtain the matrix P

a

d2
= Pb

d2
Pa

b. Now,
Pa

d can be calculated using P
a

d1
and Pa

d2
. This means that,

output matrix of d is now expressed w.r.t. stem a, therefore
after that point, propagated matrices are labeled as L1.

The matrices reconverging at e are both labeled as L2,
hence output at e can directly be calculated from those two
matrices. However, labeling can be returned to the point
where reconvergence originated by calculating Pa

e = Pb
e P

a

b.
By doing so, labeling is kept as close to the original stem
as possible.

During the course of propagation, matrices are never
saved at a node unless it is a reconvergent fanout stem. It
is necessary to save those matrices to be able to do segment
cascade operations. On the other hand, as matrices are
propagated forward, local probability of detection of the
original surrogate fault is calculated and kept in surrogate
fault lists at every node. As a matter of fact, there is no
need to keep a fault list if the node is not observable or
allowed to be a an observation point, because in the test
point evaluation step, only such lists will be considered.
This can help to reduce the fault list size, since attened
circuit descriptions are used during the analyses and many
nodes are not allowed to be observation points.

The method described until now, captures correlation
among the reconvergent signals correctly, if there is a sin-

gle source of correlation, by calculating probabilities at the
point of reconvergence conditional on the source. How-
ever, if reconverging signals are correlated by more than
one source, this method can not calculate probabilities ac-
curately.

3.5 Region of fault propagation

MTPI [4] propagates the faults throughout their fanout
cones. The method presented here tries to capture, at least
partially, the e�ects of reconvergences. Carrying out such
calculation throughout the fanout cone of each surrogate
fault can be costly. Limiting the calculation to a region
smaller than the fanout cone of a surrogate fault will be
useful. In [2] Maamari and Rajski de�ne stem region of
a fanout stem, which is at most as big as fanout cone of
the stem. A deterministic fault simulation framework in
which there is no need to explicitly simulate stem faults be-
yond their respective stem regions is also given in [2]. This
concept can be adopted for a probabilistic fault simulation
framework.

Informally, stem region of a stem can be described as
follows: It is bounded by the lines called exit lines. An exit
line is the immediate dominator of the stem for a subset
of outputs of the circuit, that is, every path between the
stem and any of the outputs in that subset goes through
that particular exit line, and it is the closest such line to the
stem itself. The subsets of outputs that can be reached from
di�erent exit lines are disjoint. This means that di�erent
exit lines never reconverge.

The deterministic fault simulation method described in
[2] states that, a stem fault will be detected, if it is de-
tected on an exit line, and the line is critical, i.e. a change
in its logic value changes the logic value of a primary out-
put. Therefore there is no need to explicitly simulate the
fault any further. The detection is guaranteed in such a
case, because exit lines never reconverge, and fault e�ects
reaching di�erent exit lines can not mask each other.

The same property of exit lines can be used to stop prob-
abilistic fault simulation close to those points. In fact, after
reaching an exit line, probabilistic simulation of a fault is
continued until it reaches the output of the FFR it is cur-
rently in. There is no need to propagate that surrogate
fault any further, because it can be represented by another
surrogate fault which will be initiated at the stem it now
reached. The new surrogate fault will now represent two
kinds of faults: Surrogate fault(s) already propagated up
to that point and local faults (if there are any) of its own
FFR. This results in a multi-level surrogate representation.
Hence, when fault lists are evaluated during observation
point or control point selection, a surrogate fault must be
expanded into the local faults it represents, as well as the
local faults of the surrogate faults it represents. Note that,
any previous level surrogate fault may also be represent-
ing some other surrogate faults. Therefore, this backward
expansion should continue as long as there are surrogate
faults to be expanded.

Since exit lines of a stem region do not reconverge, sur-
rogate faults corresponding to FFR of those exit lines do



not reconverge either. Therefore, surrogate faults recon-
verging at some point in the circuit can not represent some
common faults. This implies that it is enough to explicitly
propagate a surrogate fault within its stem region to handle
reconvergences, and implicitly propagate thereafter, using
multi-level surrogate representation.
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Figure 8. Multi-level surrogate fault representation

Figure 8 demonstrates multi-level surrogate representa-
tion. Local faults of FFR-A, fA1

; fA2
; ::: have been prop-

agated to stem A, as well as some surrogate faults sX and
sY . A new surrogate fault sA, which is initiated at stem
A, represents all of those faults. Then sA is propagated
throughout its stem region. When it reaches an exit line,
propagation continues until it also reaches to the output of
the FFR of that exit line. In the �gure above, this case is
shown for the exit line e1. After reaching e1, propagation
of sA continued until it reaches output of FFR-B. When
sA reaches stem B, it is placed into the stem faults list of
B and a new surrogate fault sB is created at that point.
Now sB represents its own local faults fB1

; fB2
; :::, and the

faults that sA represents. When sB is expanded during the
evaluation process, it must be expanded into the local faults
of B: fB1

; fB2
:::, local faults of A: fA1

; fA2
; :::, as well as

the local faults of stems X and Y (not shown in the �gure):
fX1

; fX2
; ::: and fY1 ; fY2 ; :::

4 Test point selection

Selection of observation points is is based on the prob-
abilistic fault simulation method described in the previous
section. The selection algorithm is essentially the same as
the the one used in [4], except in the evaluation step, the
surrogate faults must be expanded properly. Hence, it is
not discussed here in detail.

Selection of control points however, depends on the use
of COP testability measures and is discussed next.

4.1 Control point selection

Signals with extreme signal probabilities in the circuit
are good candidates for control points, because they cause
fault inactivation and block fault propagation paths. How-
ever, trying every such point as a control point during the
analysis would be very time consuming. Hence, it is neces-
sary to determine an initial set of control point candidates,
which are likely to be e�ective, before the actual evaluation
step.

4.1.1 Selection of control point candidates

Control point candidates are selected among failing sig-
nals, which are determined using the following de�nition:

De�nition 2: Let LTh and HTh be two pre-speci�ed
threshold values for low and high signal probabilities re-
spectively. Then, a signal with signal probability sp is said
to be a failing signal if sp > HTh or sp < LTh.

To determine control point candidates, fault propagation
paths within a stem region are analyzed �rst, and failing
signals that blocks fault propagation paths are determined.
As a heuristic method, two paths from a stem to each of
its exit lines are chosen: A path with a minimum number
of blocking signals on it, because it is the easiest to un-
block. Another one with a maximum number of blocking
signals on it is also chosen. Targeting blocking signals on
such a path can unblock some untargeted paths as well, be-
cause the origin of blockages on di�erent paths can be the
same. This point will be more clear in a moment. All such
blocking signals within a stem region are marked. Blocking
signals from exit lines through output of their correspond-
ing FFRs are also marked. Next, propagation paths from
fault locations to FFR outputs for individual faults are ex-
amined. The signals hindering fault propagation through
FFR outputs are marked. Finally, failing signals that cause
inactivation at fault sites are added to this list.

The potential candidates are now reduced to a subset
of all failing signals. However, since the e�ect of a failing
signal can propagate throughout circuit, it is possible that
some of the signal probability failures at blocking signals
have some common origins, called source of the failure. To
�nd such sources, blocking signals are traced back in the
circuit as long as the signal probability failure continues
w.r.t. threshold values LTh and HTh. When all of the in-
put signal probabilities of a gate are no longer failing, back
trace is stopped and the output of the gate is considered as
the source of the signal probability failure.

4.1.2 Evaluation of control point candidates

Source signals are the candidates for the insertion of con-
trol points. E�ectiveness of each of these points as a control
point is evaluated by calculating the detection probabilities
of undetected faults before and after inserting them as con-
trol points.

First step of the evaluation process is to calculate ini-
tial fault detection probabilities, at the presence of already
selected control points (if there are any), but without any
candidate control point. Signal controllability values are
obtained by logic simulation of random vectors. Observabil-
ity values are then calculated from primary outputs through
primary inputs using COP observability calculation rules.

To evaluate the e�ect of control point candidates, they
are inserted into the circuit one candidate at a time, at the
presence of already selected control points, if there are any.
Appropriate constant values are injected at control points,
and their e�ects are propagated throughout the circuit,
with the method described in [4]. Then the new observ-
ability values within the fan in cone of the region e�ected
by controllability changes are obtained. Both signal prob-
ability and observability calculations are not carried out
beyond points where changes are less than a pre-speci�ed
delta threshold DeltaTh.



Once the new observability and controllability values
are calculated, the change in detection probabilities of the
faults in the e�ected region is calculated, and the number
of new faults to be detected by the candidate is estimated.
Formally speaking, let Csel = fCsel1 ; Csel2 ; :::; Cselkg de-
note the set of k control points selected so far, and Ccan =
fCcan1 ; Ccan2 ; :::; Ccanlg denote the set of l control point
candidates. The ith candidate Ccani 2 Ccan is evaluated
by inserting the set Cinsi = Csel [ Ccani into the circuit.
Let Pdj0 be the detection probability of fault j when only
selected control points are inserted, and Pdji be the detec-
tion probability of fault j when the set Cinsi is inserted into
the circuit. Fault j is covered by candidate i if Pdj0 < DTh
and Pdji > DTh, where DTh is the detection threshold,
at which point a fault is assumed to be detected.

To limit the runtime of the evaluation process described
above, the number of control points inserted into circuit is
limited with a window size w, and at most last w�1 selected
control points and the next control point candidate are in-
serted into circuit for analysis. This con�nes the control
point analysis to a smaller region and reduces runtime.

The analysis based on the detection probabilities alone
may not be enough, due to the existence of synergistic con-
trol point candidates. Consider the case in Figure 2. a and
b are two signals with very low signal probabilities. Trying
either a or b alone as a control point will not increase the
detection probabilities of depicted faults considerably, be-
cause the signal probability on line c will not change signif-
icantly. However, this diÆculty may be overcome by using
logic implications rather than relying on probabilistic anal-
ysis. If a = 0 is implied with all other signals are initially
unknown, it possible to observe that, propagation of de-
picted faults are blocked regardless of the value of b, hence
a must be selected as a control point in order to propagate
those faults.

Such blockage analysis is carried out in two steps like
probabilistic analysis. First step is the forward implica-
tion of logic values, which is carried out in an event driven
manner. The gates e�ected by the implications are marked
during the implication process. Then, a backward tracing
is done in the reverse direction, by determining the blocked
inputs of the gates, due to implied logic values. This block-
ages are pushed backwards, to the gates connected to those
blocked inputs. A gate with multiple fan outs is marked
as blocked if all of its fanout branches are blocked. The
backward trace stops either at primary inputs, or there are
no more blockages to push backward. Meanwhile, number
of undetected faults within the blocked region are also de-
termined and saved for each candidate Ccani .

The candidate that provides the maximum bene�t is
then selected as the next control point. Bene�t provided by
a candidate is given by the number of faults it covers (given
by the probabilistic analysis) or by the number of faults
it blocks (given by the implication analysis), whichever is
larger. The control points are selected as long as the num-
ber of control points do not exceed the number of maximum
control points for that phase, and the bene�t provided by
the control point meets a bene�t-per-cost (BPC) criterion.

5 Results

The proposed algorithms for test point selection are im-
plemented to run in conjunction with an MTPI [4] imple-
mentation. Experiments were then conducted on full scan
versions of various industrial circuits, using MTPI and the
proposed procedure.

The test point insertion is performed with a pre-speci�ed
number of control and observation points and fault cover-
ages are obtained after application of a pre-speci�ed number
of pseudo-random vectors. Same patterns are used for both
sets of experiments. All experiments are conducted using
4 phases. Easy to detect faults are eliminated in a pre-

phase fault simulation, whose vectors are repeated in the
�rst phase, to simplify the analysis. Detection probability
threshold DTh is set to 4=DPhi , where DPhi is the duration
of phase Phi. Minimum BPC value is set to 4 for circuits
A, B and D and it is set to 1 for circuits C and E. This is
because MTPI was rejecting control point candidates in the
runs for the latter circuits, even though maximum allowed
number of control points is not reached yet. A value of
0:1 for the low signal probability threshold LTh is used in
MTPI experiments. HTh is given by 1:0 - LTh. However,
for circuit E, LTh is set to 0:01 to reduce the number of
control point candidates and hence the run time of MTPI.
For the proposed procedure, LTh value is set to 0:1 and the
window size for control points injected into circuit together
for evaluation is set to 4 for circuit A, and to 3 for other
circuits.

The proposed procedure also inserts observation points
in phases other than Ph0. A pre-speci�ed percentage of
observation points are placed in Ph0. For other phases, the
number of observation points are determined by dividing
the remaining number of observation points by the number
of remaining phases. A limited number of control points
are also selected in Ph0 depending only on the blockage
analysis. If a failing signal causes blockage of more than
1% of the remaining faults, it is inserted as a control point.
The maximum number of such control points is also pre-
speci�ed. A �nal simulation of all test vectors is carried
out to capture the e�ects of those control points and the
observation points inserted after Ph0.

Table 1 lists the number of test points and the �nal cov-
erage results for both procedures. For the proposed pro-
cedure, percentage of observation points inserted in Ph0 is
listed in OP0 column. These results show that the proposed
procedure achieves better coverage than MTPI in all of the
circuits except circuit D. At the same time, the number
of control points are also improved for circuits B, C and E.
Improvement is especially signi�cant for the large circuit E.
All of the available observation points are placed by both
procedures. This is because the relative cost of an observa-
tion point is 1/4th of a control point. Also most of them are
placed when there are many undetected faults as indicated
by OP0 column (for MTPI these values are all 100%).

Run times and memory usages of both procedures are
also listed in Table 1. These results are obtained on a Sun
Ultra Sparc 60 machine with 4GB of memory.

Run times of the proposed procedure shows signi�cant



MTPI Proposed

Circuit #Gates #Pat. OP/CP Cov. Mem. Time OP/CP OP0 Cov. Mem. Time
(MB) (sec.) (%) (MB) (sec.)

A 31K 64K 16/15 96.09 6 46 16/15 50 96.23 16 56

B 203K 64K 200/78 98.64 73 1210 200/75 90 98.67 32 1400

C 550K 128K 400/37 93.92 196 42456 400/27 90 94.08 72 7488

D 893K 128K 750/174 94.50 203 7603 750/175 98 94.39 98 7328

E 2531K 512K 2500/702 87.32 1600 463885 2500/672 94 87.45 950 224321

Table 1. Test point insertion results, memory usages and run times

reduction compared to MTPI as the circuit sizes increase.
For small circuits A and B MTPI runs faster, where as for
large circuits C, D and E the proposed procedure is faster
than MTPI. This is because the total run times for larger
circuits are dominated by the control point selection step
and the proposed procedure selects control points much
faster than MTPI. For smaller circuits, the preprocessing
time required to extract stem regions becomes signi�cant.
Also, the observation point selection in the proposed pro-
cedure requires more time than MTPI since they both use
the same selection algorithm except that the new procedure
uses surrogate fault representation. The backward expan-
sion of surrogate fault lists is slower than directly using
them. Nevertheless, these steps are not the dominant steps
for large circuits and speed up ratios of 52% for circuit E
and 82% for circuit C are signi�cant considering the total
run times for these circuits.

Similarly, memory requirement of the proposed proce-
dure is signi�cantly less than MTPI for large circuits. How-
ever, for small circuit A, MTPI uses less memory than the
proposed procedure. This is because for small circuits, fault
list sizes are not so signi�cant, and total memory usage is
dominated by other data structures. Since our implemen-
tation is done on top of an existing MTPI implementation
and uses extra data structures, memory usage of the pro-
posed procedure is more than MTPI when the fault list sizes
are not large. For example, for circuit A, there are 2357
remaining faults after pre-phase fault simulation, whereas
this number is about 953K for circuit E. Hence the proposed
procedure provides a memory gain of 40%, when the fault
list size is very large and consumes a signi�cant portion of
the memory.

6 Conclusion

In this work, new test point selection algorithms for
MTPI [4] have been presented. The new algorithms were
able to improve test coverage, without degrading or even
improving the number of selected test points. The memory
usage showed signi�cant improvement for large test cases,
which was a primary target of the new algorithms. The run
times were also improved. Improvements were again signif-
icant for large test cases, that has very long run times. This
shows that, use of surrogate fault propagation was e�ective
in reducing the memory usage, without degrading the level
of accuracy and performance. The control point selection
algorithms were also e�ective, especially for reducing run
times, since MTPI spent most of its time in control point
selection step for the largest test cases.
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