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ABSTRACT

We present a new algorithm based on open ear decomposition for testing
vertex four-connectivity and for finding all separating triplets in a triconnected
graph. A sequential implementation of our algorithm run®n?) time and a
parallel implementation runs i®(log? n) time usingO(n?) processors on an
ARBITRARY CRCW PRAM, wheren is the number of vertices in the graph.
This improves previous bounds for the problem for both the sequential and paral-
lel cases. The sequential time bound is the best possible, to within a constant fac-
tor, if the input is specified in adjacency matrix form, or if the input graph is
dense.

1. Introduction

This paper deals with the problem of determining four connectivity in an undirected graph.
Connectivity is an important graph property and there has been a considerable amount of work on
algorithms for determining-connectivity in graphs. An important application of this property is
that ak-connected network can operate in a reliable manner in the presence df npde or
link failures.
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There are well-known sequential linear-time algorithms for determining vertex connectivity
and biconnectivity (see e.g., [EV]), as well as triconnectivity [HoTa,MiRa2]. The best previously-
published deterministic sequential algorithms for testing graph 4-connectivity have time complex-
ity O(nm), wheren is the number of vertices in the input graph amis the number of edges.
There are two such algorithms. One is based on a reduction to network flow [EvTa, Ev2, Ga,
GiSo]. The other uses th&(m) algorithm for testing triconnectivity [HoTa, MiRa2] to test four-
connectivity in a triconnected graph @(mn) time by deleting each vertex of the graph in turn,
and testing triconnectivity in the resulting graph; this algorithm also finds all separating triplets in
the graph, if the graph is not triconnected. For the problem of finding all sepdcegetg, it is
known that the number of separatikgets in &-connected graph ®(n?) for any fixedk [Ka].

We also note that there are some randomized algorithms for téstognectivity fork > 3
[BeX,LiLoWi]; the running time of these algorithms@n®?).

In this paper we present a new sequential algorithm, based on open ear decomposition [Lo,
MaScVi, MiRa, Wh], that tests vertex four-connectivity and finds all separating triplets in a tri-
connected graph i®(n?) time. This represents an improvement in the running time over all pre-
vious algorithms for the problem, both deterministic and probabilistic. We also present a parallel
implementation of the algorithm, which runs @(log? n) time usingO(n?) processors on an
ARBITRARY CRCW PRAM. For comparison the best previous processor count for an NC algo-
rithm for this problem i©(nm), which is obtained by runningparallel applications of the paral-
lel triconnectivity algorithms in [MiRa2,RaVi] on the input graph with a vertex deleted.

Our algorithm thus gives improved performance bounds for both the sequential and parallel
case. It also gives a completely new method for the four-connectivity problem, which is of inter-
est in itself. We also note that the algorithm is easily modified to work for edge four-connectivity
as well with the same time and processor bounds: we use an ear decomposition instead of an open
ear decomposition. While a sequen@4h?) time algorithm is already known for edge four-con-
nectivity [Ma], our algorithm gives the best processor count for an NC algorithm for edge four-
connectivity. We do not elaborate further on this.

The rest of this paper is organized as follows. In section 2 we describe the model of parallel
computation we use. Section 3 gives graph-theoretic definitions. Section 4 relates open ear
decomposition to vertex four-connectivity, and gives a high-level description of the four-connec-
tivity algorithm. Finally, in section 5, we show how to implement this algorith@(in?) sequen-
tial time, and inD(log? n) parallel time withn? processors on an ARBITRARY CRCW PRAM.

2. Model of Parallel Computation

The model of parallel computation that we will be using is Ramllel Random Access
Machine or PRAM [KarRa], which consists of several independent sequential processors, each
with its own private memory, communicating with one another through a global memory. In one
step, each processor can read one global or local memory, execute a single RAM operation, and
write into one global or local memory location.
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PRAMs are classified according to restrictions on global memory access. An EREW PRAM
is a PRAM for which simultaneous access to any memory location by different processors is for-
bidden for both reading and writing. In a CREW PRAM simultaneous reads are allowed but no
simultaneous writes. A CRCW PRAM allows simultaneous reads and writes. In this case we have
to specify how to resolve write conflicts. We will use the ARBITRARY model in which any one
processor participating in a concurrent write may succeed, and the algorithm should work cor-
rectly regardless of which one succeeds. Of the three PRAM models we have listed, the EREW
model is the most restrictive, and the ARBITRARY CRCW model is the most powerful. Any
algorithm for the ARBITRARY CRCW PRAM that runs in parallel tiieusing P processors
can be simulated by an EREW PRAM (and hence by a CREW PRAM) in paralleT tigd®
using the same number of processerésee, e.g., [KarRa]).

Let Sbe a problem that, on an input of sizecan be solved on a PRAM by a parallel algo-
rithm in parallel timet(n) with p(n) processors. The quantity(n) = t(n) Cp(n) represents the
work done by the parallel algorithm. Any PRAM algorithm that performs wek) can be con-
verted into a sequential algorithm running in timén) by having a single processor simulate
each parallel step of the PRAM p{n) time units. More generally, a PRAM algorithm that runs
in parallel timet(n) with p(n) processors also represents a PRAM algorithm perfor@{mgn))
work for any processor couRt < p(n).

Define polylog(n) = [] O(logk n). Let S be a problem for which currently the best sequen-
k>0

tial algorithm runs in timd (n). A PRAM algorithmA for S, running in parallel time(n) with
p(n) processors isfficientif

a)t(n) = polylog(n); and
b) the workw(n) = p(n) [&(n) is T(n) Cpolylog(n).

An efficient parallel algorithm is one that achieves a high degree of parallelism and comes
to within a polylog factor of optimal speed-up. A major goal in the design of parallel algorithms
is to find efficient algorithms with(n) as small as possible. The simulations between the various
PRAM models make the notion of an efficient algorithm invariant with respect to the particular
PRAM model used. For more on the PRAM model and PRAM algorithms, see [KarRa].

Our efficient parallel algorithm for four-connectivity works on an ARBITRARY CRCW
PRAM. Some of the subroutines also work on the more restrictive EREW PRAM model within
the same processor and time bounds.

3. Graph-theoretic Definitions

An undirected graph G= (V, E) consists of avertex set Vand anedge set Econtaining
unordered pairs of distinct elements froh A path P in G is a sequence of vertices
<V, -,V >such thaty_4,v;)0E,i =1,---,k. The pathP containsthe verticessg, - - -, v, and
the edges\vp, V1), - -+, (Vk-1, Vk) and hasendpoints ¥, v, andinternal vertices v, - - -, Vi-1.



-4 -

Given a path vy, - - -, Vi >, V; is to theleft of v; andv; is to theright of v; if i < j. The pathP is
asimple pathf vg,- - -, v,—1 are distinct andrq, - - -, v are distinct.P is asimple cycldf it is a
simple path andy = vi. A single vertex is a trivial path with no edges.

Let P =<vp, -, V-1 > be a simple path. The pa(v;,v;),0<i, j < k-1 is the simple
path connectingv; and v; in P, i.e., the path @, Vj,---,v; >, if i<] or the path
<Vj, V1,V >, if j <i. Analogously,P[v;, vj] consists of the path segments obtained when
the edges and internal verticesR{f;, v;) are deleted fron®.

Let G = (V, E) be an undirected graph and \¢t1V. A graphG' = (V', E') is asubgraph
of G if E'UEN{(vi,Vvj)vi,v;IV'}. The subgraph of G induced by 'Vis the graph
G" =(V',E")whereE" = E N {(Vv;,Vj)lvi,v;V'}.

An undirected grapl = (V, E) is connected if there exists a path between every pair of
vertices inV. For a graphG that is not connected, @nnected componenf G is a maximal
induced subgraph @ which is connected.

A vertex vV is anarticulation point (a.p.)or cutpointof a connected undirected graph
G = (V, E) if the subgraph induced By —{v} is not connected.G is biconnectedf it contains
no articulation point.

Let G = (V, E) be a biconnected undirected graghis triconnected if for all pairs of ver-
ticesvy, Vo[V the induced subgraph &h—{v,, v5} is connected.

Let G = (V, E) be a biconnected graph which is not triconnecte@nantrivial) separating
pair in G is a pair of vertices, v in V whose removal decompos@sinto two or more connected
components. Arivial separating pairis a pair of vertices, v with (u, v) an edge (note that a pair
of vertices can be both a trivial and a nontrivial separating paicandlidate pairs a trivial or
nontrivial separating pair; @andidate seis a set of vertices such that each pair in the set is a can-
didate pair.

A triplet (vq, v, v3) of unordered distinct vertices M is a separating triplet of a tricon-
nected graph if the subgraph inducedvby{ vy, v», v3} is not connectedG is four-connectedf it
contains no separating triplet.

An ear decompositiofiL,o,Wh] D =[Py, - -, P,—1] of an undirected grapts =(V,E) is a
partition of E into an ordered collection of edge disjoint simple p&§s - -, P,_; such thatP, is
a simple cycle and each endpointRyfi = 1,---,r — 1 is contained in some;, j <i, while none
of its internal vertices are contained in @y j <i. The paths irD are called thears. Dis an
open ear decompositiaghnone of theP;,i =1,---,r —1is a simple cycle. Arivial earis an ear
consisting of a single edge. A graph has an open ear decomposition if and only if it is bicon-
nected [Wh].

Let G =(V,E) be a biconnected graph, and @tbe a subgraph o6. We define the
bridges of Q in G as followésee, e.g., [EV]): LeY' be the vertices s — Q, and consider the
partition ofV' into classes such that two vertices are in the same class if and only if there is a path
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connecting them which does not use any verteQoEach such clask defines anontrivial)
bridge B= (Vg, Eg) of Q, whereB is the subgraph o with Vg = K [] {vertices ofQ that are
connected by an edge to a verteXih and Eg containing the edges & incident on a vertex in
K. The vertices of) which are connected by an edge to a vertak @re called thattachments
of B. An edge ¢, V) in G —Q, with bothu andv in Q, is atrivial bridge of Q, with attachments
andv. The nontrivial and trivial bridges together form the bridge® of G.

Let G = (V, E) be a biconnected graph, and @be a subgraph db. We define thdoridge
graph of Q, S=(Vs, Eg) as follows: Let the bridges of) in G be B;,i=1,---,k. Then
Vs =V(Q) LI{By,---, B} and Es = E(Q) L1{(v, B)| vOV(Q), 1<i < k, andv is an attachment
of B,}

LetG = (V, E) be a graph and I be a simple path i6. If each bridge oP in G contains
exactly one vertex not oR, and there is a bridgs of P with the endpoints oP as attachments,
then we callG thestar graph of Pand denote it ba(P). We denote the bridges Bfin G(P) by
stars. The unique vertex of a star that is not containe® iis called itscenter. Note that, in a
connected grap®, the bridge graph of any simple pathGris a star graph.

Let G(P) be a star graph, and I&, - - -, S, be some of the stars &(P). The operation of
coalescingthe starsS,i = 1,- - -, k removes these stars and replaces them by a neW sthose
attachments are the union of the attachmen$; of -, S;.

Let G be a biconnected graph with an open ear decompositiofiPg, - - -, P,_1]. Let the
bridges of P; in G that contain non-attachment vertices on ears numbered loweri than
Bq,--+,B;. We shall call these thanchor bridges of P The ear graph of R, denoted by
G;(P;), is the graph obtained from the bridge graplP,0by coalescing all stars corresponding to
anchor bridges, and by deleting multiple two-attachment bridges. We will call this coalesced star,
theanchoring starof G;(P;). For any two verticeg, y on P;, we denote by, (X, y), the internal
vertices ofP;(x, y); we denote by,[x, y], the vertices inR;[x, y] -{x,y}) L] {vertices in the
anchor bridges oP;}. For a star grapl@(P) with no anchoring star, the s€(X, y) represents
the vertices irP(x, y) — { X, y}, and the seV[x, y] represents the vertices Ri X, y] — { X, y}.

Figure 1 illustrates some of our definitions relating to bridges.

Two starsS; andS, in a star grapli(P), whereP is a simple pathinterlace(see, e.g., [Ev,
p. 149]) if one of the following two hold:

1) there exist four distinct verticesb, c, d in increasing order if? such thata andc belong to
S; (S) andb andd belong toS; (S;); or

2) there are three distinct vertices@hat belong to bot$; andS.

Given a star graptB(P), thecoalesced graph &f G is the graph obtained fro@ by coa-
lescing all pairs of stars that interlace.



a) G with open ear decompositidh = [Py P1 Py, P3, Py];
Pp=<1,2,3,4,51>P,=<3,7,6,5>P,=<6,4>P;=<7,8,6>P,=<3,5>.

b) Bridges ofP;.

c) Bridge grapiG; of P;.

d) Ear Graph oP;

figure 1
lllustrating the definitions
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4. Open Ear Decomposition and Four-connectivity

Lemma 1Let G = (V, E) be a triconnected undirected graph for which(x, y, z) forms a sepa-
rating triplet. LetD =[Pg, - - -, P,_1] be an open ear decomposition ®mand letG;(P;) be the ear
graph of ealP;. Then there exists an €@y in D that contains two of the three verticed jsay x
andy, such that bottv;(x, y) andV;[X, y] contain a vertex other thany and every path from a
vertex inV;(x, y) to a vertex inV;[x, y] in G; passes througR, y or z. Further eaP; uniquely
determines a connected compon@nih the subgraph induced By— { X, y, z}, in the sense that
no other eaP; in G that contains, y and a vertex in C, has the property thafx, y) - {x,y, z}

is nonempty, and every path between a vertex;{ix, y) and a vertex ivj[x, y] in G; contains
X, Y, Or Z.

Proof Sincet = (x,y, 2) forms a separating triplet, the subgraphGifnduced byV —{x,y, z}
contains at least two connected componentsCl.e&ndC, be two such connected components.

Case 1The first ealPy contains no vertex i€, (see figure 2):

figure 2
Case 1 in the proof of Lemma 1

Consider the lowest-numbered Ry, that contains a vertexin C,. Since its endpoints are
distinct and must be contained in lower-numbered &amsust enteC, through one of the three
vertices int, sayx, and must leav€, through one of the remaining two verticeg isayy. Thus
P; must contain two of the three verticestjrandV;(X, y) contains at least one vertex other than
z. Further, all vertices iN;(x, y) lie in C,, and none of the verticesYR[x, y] lie in C,. Thus the
vertices inV;(x, y) are separated from the verticed/jifix, y] by t.

To provethe second claim of the lemma for this caseClet C, and suppos®; is an ear
that containsx andy and also a vertex, say in C. Thenj > i, sinceP; is the lowest-numbered
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ear to contain a vertex i@. SinceP; containsx andy, x andy must be the endpoints &, and
all other vertices on it lie i€ [] {Z}. Further, since < j and vertex is contained irP;, the ver-
tices in the bridge of; containingv (call it B') are inV;[x, y], and sinceC is a connected com-
ponent in the subgraph induced\y-{ x, y, z}, there is a path fronB' to the vertexu in V;(x, y)
that avoidsx, y, andz. This establishes the second claim of the lemma for this case.

Case 2 B contains a vertex i€,:

If Py contains no vertex i€, then case 1 applies @ . OtherwiseP, contains at least one
vertex inC, and one vertex i€,. But then, sincd®g is a simple cycle, it must contain two of the
three vertices in, sayx andy, such that (by the argument of case 1), every path from a vertex in
Vo(X,y) to a vertex inVg[x, y] containsx, y or z, and Py is the unique ear with this property,
which has a vertex i€,. Thus, by takingC, to beC, the lemma is established.[]

We will say that a separating triplet (X, y, z) separatesar P; if P; contains two of the
vertices int, sayx andy, with V;(x, y) not a subset of#}, and the vertices iW;(x, y) are discon-
nected from the vertices M;[x, y] in the subgraph ofs induced byV - {x,y,z}. We will
denote this by writing asi([X, y], 2) to indicate thatP; containsx andy, andV;(x,y), which
contains a vertex other thanis separated fro;[x, y] by { X, y, z}. By Lemma 1, every separat-
ing triplet in G separates some ear, and hence can be written in ¢he falbm. We will write
i([x, Y], 2) as simply (k, y], 2), if the ear number is obvious from the context.

Analogously, for a star grapB(P), a triplet of vertices = ([x, Y], 2) in G separates Rf P
containsx andy, V(x,y) —{z} and V[x,y] —{z} are non-empty, and the vertices ¥{(x, y) are
separated from the vertices\ifix, y] whenx, y andz are deleted frons(P).

Lemma 2 Let G=(V,E) be a triconnected graph with an open ear decomposition
D =[Pg,- -+, Py-1]. Leti([x,Y], z) separatd®;. If P; does not contaim then

i) zis an articulation point in one of the bridged?fand

ii) if P; is the largest-numbered ear that contaijrteenj > i.

Proof Let B be the bridge oP; containingz. Then B has an attachment in both(x, y) and
Pi[x, y] ={ X, y}, since otherwisex, y would be a separating pair. Letbe an attachment @& in
Vi(x,y) and letb be an attachment & in P;[X, y] ={X, y}. Suppose there is a pafhbetweena
andb in B that avoidsz. Then, ifx,y, andz are removed fronG, the vertices o¥;(x, y) will
remain connected to the verticeswfx, y] by the pathp. But this is not possible sincex([y], 2)
separate®;. Hence, every path betwearandb in B must pass through i.e., z is a cutpoint of
B.

Let C be the connected component containiig, y) in G —{x, y, z}. To provethe second
claim of the lemma, we note that, by Lemmailis the lowest numbered ear containing a vertex
in C. Hence every edgev( z) with w in C must belong to an ear numbered greater thBy the
first part of this proof, we know that there is at least one such g&dgg (This proves the second
part of the lemma.[]
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Using Lemma 2, we can classify triplets separatingPeamto two types: Type 1 separating
triplets are those for whicR; contains all three vertices; type 2 separating triplets are those for
which P; contains two vertices, and the third is an articulation point in one of the briddgs of
Type 1 separating triplets can be further classified into three types (see figure 3): Type 1la, in
which z is to the left ofx andy on P;, type 1b, in whictez is to the right ofx andy, and type 1c,
in which zis betweerx andy on P;.

a) Type la triplet

b) Type 1b triplet

c) Type 1c triplet

figure 3
Classification of type 1 separating triplets
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Let ([x, Y], 2) be a type 2 triplet separatirig). By Lemma 2,z is a cutpoint in a bridgeB,
of P;, andz lies on an ealPj, j >i. We shall refer to such cutpoints hgh cutpoints. Let
B4, - -, B be the connected componentsBof { z}, and letC be the set of remaining bridges of

P;. ThenC ﬁ{ B;} are the bridges oP; in G - { z}. Let J;(2) be the ear graph ¢, in G - { Z}.
i=1

Lemma 3Let G be a triconnected graph, and®&{(P;) be the ear graph &;. Then,

a) ([x,V], 2) is atype 1 triplet separatirfg in G if and only if it is a type 1 triplet separatify in
Gi.

b) ([x, V], 2) is a type 2 triplet separating; in G if and only if (x, y) is a pair separatin®; in
Ji(Z).

Proof We note that, sinc@ is triconnected, every anchor bridgeRyfin G has attachments to the
two endpoints oP;, and to at least one internal vertexRf we shall call thigsact 1. We prove
parts a) and b) of the lemma separately.

a) First we note that if ¥, y], 2) is a type 1 triplet separating; in the ear grapl®; then it cer-
tainly separateP; in G.

For the reverse, two cases arise:

i) If x andy are the endpoints d¥;, then by Fact 1, {, Y], 2) is a type 1 triplet separatirg; if
and only if every anchor bridge & has exactly one internal attachmentRnand that attach-
ment is atz. If this holds inG then it continues to hold in the ear graph since by coalescing
such anchor bridges, we do not create any new attachments.

ii) If either x or y is not an endpoint d?;, then no anchor bridge & can have an attachment in
Vi(x,y) —{z}. Once again, this condition will continue to hold if all anchor bridges are coalesced,
and hence will be true iG; if it was true inG.

b) As in case a), ifX,y) is a pair separatin®; in J;(2) then clearly (k, y], 2) is a type 2 triplet
separatind?; in G. For the reverse, once again, two cases arise.

i) z is a high cutpoint in an anchor bridg8. Let B decompose into bridges
B, , By, Cq,--+,Cs Wwhenzis removed, where thB; are the anchor bridges & in G —{z}
and theCy are nonanchor bridges. By Lemma 1, eBglhas all of its attachments B[X, y] and
eachCy has all of its attachments iR;(x, y) or all of its attachments i®;[X, y]. Also, since
([x,¥l], 2) is a triplet separating; in G, any bridge ofP; other thanB will have either all of its
attachments ifP;(x, y) or all of its attachments iR;[x, y]. Hencex, y will separateP; in J;(2).

If one of x or y is not an endpoint oP;, then every anchor bridg® other thanB has no
attachment itv;(x, y). This continues to hold i@; as well.

i) zis a cutpoint in a non-anchor bridge: In this case no anchor brid@ecah have an attach-
ment inV; (X, y), and the result follows by an argument as in case i.[]
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Finally, we make the following observation on the size of all of the ear graghs in

Observation Let G be ann-node,m-edge triconnected graph with an open ear decompogition
Let H;{(Q;),i =1,---, s be the bridge graphs of the nontrivial ear®inand for each, let earQ;
haven; nodes, and let the bridges@fin H; havem, edges. Then

) 3 n=0m);
i=1

ii) fmzqﬁ.
i=1
Proof

i) The number of nontrivial ears (B, excludingPg, is no more tham - 3, and each node @ is
an internal node of exactly one nontrivial ear. Hence, charging the end vertices of each nontrivial

S
earQ; to its indexi, we obtainy_ n; < n+2(n - 3), which isO(n).
i=1

i) Each edge irc appears at most once as an internal attachment @, tied at mosh times as

S
an end attachment in tig, i = 1,- - -,s. Hence,> m; < m+ 2(n - 3)n, which isO(n?).]
i=1

Based on the characterization in Lemmas 1, 2 and 3, we obtain the following high-level
algorithm to find all separating triplets in a triconnected graph.

Four Connectivity Algorithm: Finding All Separating Triplets in a Triconnected Graph
G =(V, E)
1) Find an open ear decomposition= [Py, - - -, P,_¢] for G.
2)Fori=r-1,r-2,---,0do
if P; is a nontrivial eathen
A) Construct the ear gragh; (P;).
B) UseG;(P;) to find all type 1 triplets separatiriy.

C) In the bridges oP;, find the cutpoints that lie on ears numbered higher ithand use
them to find all type 2 triplets separatiRg

Let M|=nand E| = m. Step 1 has a linear-time sequential algorithm an@ (&g n) time
parallel algorithm withO(m) processors on a CRCW PRAM [MaScVi, MiRa]. Step 2A has a
linear-time sequential algorithm and @log n)-time parallel algorithm wittO(mlog n) proces-
sors on an ARBITRARY CRCW PRAM [MiRa2, RaVi].
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Let n; be the number of vertices contained?in andm; be the number of edges incident on
vertices contained iR;. In section 5.1, we present algorithms to find type 1 triplets separating a
nontrivial earP; in O(ni2 +m;) sequential time, and i@(log n;) parallel time withni2 processors
on an EREW PRAM. In section 5.2, we show how to find all high cutpoints in the bridges of
each ear, organized in a forest of block-treei'@(n + my;) time plus some additional time for

|

processing trivial ears, which @(m) over the execution of the entire algorithm. This parallelizes
into anO(log? n) time algorithm to find cutpoints in bridges of all nontrivial ears on an ARBI-
TRARY CRCW PRAM withn? processors. We use this to develop an algorithm to find all type 2
triplets in_ZO(n [h; + m))) sequential time, and i@(log? n) parallel time usin@_ O(nh; +m,)

| |

processors on an ARBITRARY CRCW PRAM. Thus by the Observation we obta®(r&i
time sequential implementation of Algorithm 1, as well a®éng? n) time parallel implementa-
tion on an ARBITRARY CRCW PRAM witm? processors.

5. Finding All Triplets that Separate an Ear

5.1. Finding Type 1 Separating Triplets

In this section we give algorithms to find type 1a, 1b and 1c separating triplets onPan ear
Recall that (k, y], 2) is a type 1 triplet separating;, if x,y andz lie on P;, and the vertices in
Vi(x, y) are separated from the verticed/jifix, y] whenx, y andz are removed fron®;.

As shown in Lemma 3, ik andy are the endpoints of e&; then ([x, y], z) form a type 1
triplet separatindg®; if and only if the anchoring star {®;(P;) has exactly one internal attachment
on P;, and that attachment s This is a simple condition that can be checked in constant time
with m; processors. For finding any other type 1 triplet separ&jng suffices to view the ear
graphG;(P;) as the pathP; together with a collection of stars, and to identify all type 1 triplets
separatingP; in G;. For this we can work with a star gra@fP) without any reference to the
fact that it is the ear graph of an ear.

Let G(P) be a star graph witk vertices orP, | stars, and a total gf edges on the stars. We
present arO(k? + p) time sequential algorithm and @logk) time parallel algorithm with
k? + p processors on an EREW PRAM to find all type 1 triplets separ®timgG(P). Assume
that the vertices oR are numbered in order as 1;, k from left to right.

For a closed intervabq, y] on P, let
L[x, y] be the leftmost attachment among all stars that have an attachmeng]in [
[, y] be the second leftmost attachment among all stars that have an attachment in [x,y], and
R[x, y] and M[x, y] be the rightmost and second rightmost attachments, respectively, of stars that
have an attachment ix,[y].

The following lemma is straightforward.
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Lemma 4Let X, y, z be three vertices oR. Then

a) ([x,y], 2) is a type 1a triplet separatirigyif and only if L[x+1,y—-1] =z §[x+1,y—-1] =X
andR[x+1,y—-1]<vy; and

b) ([X, y], 2) is a type 1b triplet separatifgif and only if Rix +1,y-1] =z, M[x+1,y-1]<y
andL[x+1,y-1]= x.

We computel[X, y], §x, y], R[X, y] and M[X, y] for every interval k, y] with x <y by a
doubling technique that first computes these values incrementally for intervals whose size is a
power of 2, and then computes the values for all remaining intervals. This algorithm runs in
O(k? + p) time sequentially, and i®(log k) time on an EREW PRAM witk?® + p processors.

Algorithm 1: Finding Type 1A Triplets

1.1) Initialize: Fori =1,---, k computeL[i,i], §i,i], R[i,i], and M[i,i]. These values can be
computed inO(k + p) sequential time an@(log k) parallel time on an EREW PRAM with
k + p processors by using bucket sort to order the star edges in increasing order of attach-
ment, with ties broken in decreasing order of the leftmost (rightmost) attachment of the star
the edge belongs to fa&fi,i] and §[i, i] (for R[i,i] and M[i, i]).

1.2) For j=1,---,dogkr compute, for eachi, L[i,i+2/ -1] from L[i,i+2/™*-1] and
L[i +217%i +2) —1]. Similarly computeS[i,i +2!], R[i,i +2/] and M[i,i +2/]. Each of
these values can be computed in constant time in parallel, and hence sequentially as well.
Thus, this total step takeé3(klogk) time sequentially anéd(logk) parallel time on an
EREW PRAM withk processors.

1.3) For each pain{ y], x <y, leti,, be the integer satisfying+2'» < y < x + 2*1, Compute
L[x,y] from the pre-computed valuds{x, x + 2% — 1] and L[y - 2> +1,y] in constant
time. Similarly computey[x, y], R[x, y] and M[x, y]. As in step 2, each of these values can
be computed in constant time, and hence this step reqD{i€3 sequential time; it is
straightforward to implement this i®(logk) parallel time on an EREW PRAM witk?
processors.

An analogous procedure identifies type 1b separating triplets.

For type 1c separating triplets, lefx, y] and R[x, y] be as before. Leg be a vertex in
[x, y] which is an attachment of a star with an attachmehf{aty]; analogously letz, be a ver-
tex in [X, y] which is an attachment of a star with an attachmerR[aty]. Let S[x, y] be the
leftmost attachment of stars with an attachmenkijiy][- { z} and let M'[ X, y] be the rightmost
attachment among stars with an attachmenkjiy][- { z }. Then the following lemma is again
straightforward.

Lemma 5 The triplet (,y],2) is a type 1c triplet separatind® if and only if
S[x+1,y-1]2x,M'[x+1,y—1] <yand one of the following three conditions hold:
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a)z =z =zor
b)L[x+1,y—-1]= xandz=z;or
C)R[x+1,y—-1]<yandz=z.

Using Lemma 5 we can compute the type 1c triplets sepafting manner analogous to
the method used for finding type 1a and 1b triplets separating

5.2. Finding Type 2 Triplets Separating an Ear

There are many implementation details in this algorithm. We give a high-level description
first, and then elaborate on each of the steps. We use the result in Lemma 2 xthgl, if)([s a
type 2 triplet separating;, thenzis a high cutpoint, i.ez is a cutpoint in one of the bridges of
P;, andz belongs to a higher-numbered ear tiianObserve that the number of blocks (bicon-
nected components) and the number of articulation points in the bridges of Rnian more
thann. As a matter of notation, we will denote the star(s) in the ear dgaf#h) corresponding
to a bridge or a collection of bridg&of P; by s(B), and similarly, the bridge(s) d®?; corre-
sponding to a star or a collection of st&sf G; by b(S). We now present the high-level algo-
rithm for finding type 2 triplets separatify. For convenience we assume that the vertic&s of
are numbered so that any vertex containeB;ihas a smaller number than a vertex in the interior
of anyP;j, j >i.

Algorithm 2: Finding Type 2 Triplets

2.1) For each stagof G;, we construct a lisk(s) of those pairs of vertices, y on P; for which
s is the only star that has an attachmenViifx, y) andV;[x, y]. Note that there can be no
more thann;? entries in the lists for all of the stars ®f, since each pair can appear on at
most one list. The list for each star is in lexicographically increasing ordes; pn (

2.2) For each ed?;, we determine the high cutpoints in each of its bridges.

2.3) For each bridgB of P;, for each high cutpoirg in B, we find all pairs of vertices separat-
ing P; in P; [](B - {a}) (note that we daotinclude the remaining bridges & in this
graph), using the triconnectivity algorithm in [MiRa2,RaVi]. These separating pairs can be
specified as candidate sets (see section 3). We maintain these candidate sets for all cut-
points for a given bridg® in a properly sorted manner; we call this tamdidate represen-
tation for B.

2.4) We compare the entrieslifs) for eachs with pairs of vertices in a candidate set in the can-
didate representation fo(s), and each match gives a type 2 separating triple®;for

We need the following observation.
Observation Let z be a high cutpoint of a briddgg of P;, andx, y, a pair of vertices of;. Then
([x,V], 2) is atype 2 triplet separatirtg if and only if
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a) (X, y) is a pair separating; in the graphp; ] (B—{z}), and
b) s(B) is the only star 0o6; that has an attachment in baff{x, y) and inV;[x, y].

ProofIf ([ %, Y], 2) is a type 2 triplet separatirfg, then by part b of Lemma 3 we know that y)
separate®; in J;j(z). Hence &, y) is certainly a pair separatirg in P; [1(B —{Z}). Further if
any other bridgd’ of P; has an attachment in bo#h(x, y) andV;[x, y], then removal ok, y and
z leavesV;(x, y) connected withV;[X, y], which is not possible sincex(]y], z) separate®; by
assumption. Hence part b) of the observation must hold as well.

For the reverse, assume that parts a) and b) hold. Then it follows, thist a pair separat-
ing P; in G - {Zz}, since by b), no bridge other th&acan connecV;(x, y) with V;[x,y] in G -
{x,y, z}. Hence ([, y], z2) must be a type 2 triplet separatiRg[]

All pairs of vertices orP; satisfying property b) appear on the ligs(B)), which we con-
struct in step 1. The pairs satisfying property a) are those that lie in a common candidate set in the
candidate representation fBy which we construct in step 2. In step 3 we scan these two sets of
pairs of vertices, and identify matches between the two sets; each such match gives a type 2 triplet
separatind?;, and every type 2 triplet separatiRgappears as such a match. This establishes the
correctness of the alealgorithm.

We now explain how to implement steps 2.1 through 2.4 to obtain the stated time and pro-
cessor bounds.

STEP 2.1

The algorithm for step 2.1 is similar to the algorithms for finding type 1 separating triplets.
By Lemma 3, ifx andy are the endpoints of e&, then the anchoring star &; is the unique
star containing vertices in both(x, y) andV;[x, y]. For any other paik, y we can work with a
star graphG(P) without any reference to the fact that it is the ear graph of an ear.

As in section 5.1, given a star gra@{P) we compute certain values for each interval of

vertices onP. The values computed atdx, y], S'[X, Y], R[X, y] and M"[X, y], whereL[X, Y]

and R[x, y] are, as before, the leftmost and rightmost attachments, respectively, among all stars
that have an attachment in the closed interxal]. Let s, be a star with attachments lgtx, y]

and in [k, y], and similarly, lets, be a star with attachmentsRfx, y] and in [x,y]. S'[x,V] is

the leftmost attachment among all stars with an attachment, yj gxcept stars;; similarly,
M"[x,y] is the rightmost attachment among all stars with an attachmer, i} gxcepts;.

From these definitions, the following lemma is straightforward.

Lemma 6 Starsis the only star that has an attachment {r, y) andV[x, y] if and only if one of
the following three hold:

a) S'[x+1,y-1]zx,R[x+1,y-1]<yands=s;or

b) L[x+1,y-1]=2x,M"[x+1l,y-1]<yands=s;or
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c) S'[x+1l,y-1]=zx,M"[x+1,y-1]<yands=g =s5.

Using Lemma 6 and the method of section 5.1, we can form thé (stfor all stars of all
nontrivial ears ir0(n?) sequential time and i@(log n) parallel time on an EREW PRAM with?
processors.

STEP 2.2

Sequential Algorithm

Let H; = Ij P;. Let Aq,---, Ac be the bridges of;. Let B; be A; with its attachment
j=0

edges and vertices deletedsplit of P; is an articulation point in one of i . An ex-nodeof P;

is a vertex in one of th&; adjacent to an attachment éh. An adj-nodeof P; is an ex-node,
which is adjacent to an vertex &). For example, in figure 41, has four nontrivial bridges and
one trivial bridge; vertices, b andc are some of the split nodes Bf; verticesa, d ande are
some of the ex-nodes &f; of which a andd are adj-nodes as well. We observe that by Lemma
2,if ([x,V], 2) is a type 2 triplet separating; thenz is a split or ex-node dP; or z must be an
attachment of one of th&; on H;_;.

We organize the splits and ex-nodesPpfn a forest ofsplit-treesanalogous to the tree of
biconnected components. There is one split-tree for 8aclvhose vertices are the splits, ex-
nodes and blocks d8;. There is an edge between a split and each block it lies in, as well as an
edge between each ex-node (that is not also a split) and the unique block in which it liges. For
an ex-node, leA(u, j) be thejth smallest vertex adjacent tcand belonging tdd;_q, if it exists,
null otherwise, forj=1,2,3,4. By our nhumbering scheme for vertic&§, j),j=1,---,4
(when defined) represent four distinct vertices on lowest numbered ears adjaceRbtexam-
ple, in figure 4 verteXk has A(k,1) =1, Ak, 2)=5, A(k,3) =@, A(k,4) = ¢. The number of
entries inA(u, j), over all ex-nodes, is O(n).

Let F;_; be H;_; with the two endpoints dP; deleted. (In figure 4 is the single vertex
0) Let A(uy be the set of two smallest non-null vertices if_1 N
{A(u, 1), A(u, 2), A(u, 3), A(u, 4)}. By construction,A(u) contains the two smallest numbered
vertices inF;_; adjacent tas (when they exist), and can be obtained in constant time per ex-node,
since we have thé(u, j). Note that if we dichot have theA(u, j), finding theA(u) would take
time proportional to the number of edges incident on the ex-nodes and that could be as large as
é(m).

From the forest of split-trees we derive the forest of trees of biconnected components (or
block-trees) of the bridges oP; by first constructing thaugmented graphs follows: We aug-
ment the vertex set of the forest of split-trees by adding in vertexepresent;_;, -- a poten-
tial ‘high-block’ (i.e., a connected component that contains no high cutpoints), and we add in the

set of verticed) = [] A(u), -- potential high cutpoints. We put in an edge betweend
ex-nodesu

each vertex itJ as well as edges betweeiand vertices irA(u), for each ex-node.
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a) GraphG with open ear decomposition indicated by ear number along edges.

b) Some splits, ex-nodes and adj-node$¥pin G.

figure 4
lllustrating step 2.2 for finding type 2 separating triplets

Observe that a vertex in H;_; is a high cutpoint in a bridge &; if and only if, for some
split-treeT of P;, wis the only vertex ir;_; that is adjacent to a vertexTh Since by construc-
tion A(u) includes the two smallest vertices adjacent,tid they lie in F;_4, it follows thatw is a
high cutpoint in a bridge d®; if and only if it is a cutpoint in the augmented graph. Similarly, an
ex-nodeu in a split-tre€T is a cutpoint separating verticesTirfrom the rest of the bridge &f; if
and only ifu has an attachment F_; and no other ex-node ihhas an attachment F_;. This
again holds if and only ifi is a cutpoint in the augmented graph. Hence the blocks and articula-
tion points in this augmented graph are precisely the blocks and articulation points in the bridges
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of P;. We find these i©(n) sequential time, using a linear-time algorithm for biconnectivity [Tal].
At this point we have the forest of block-trees for the bridgd% .oln additionalO(m;) time, we
can obtain all of the adj-nodes by scanning all edges incident on the internal verfices of

All that remains is to obtain incrementally the split-treesHpand theA(u, j) for the new
ex-nodes oP, in an efficient way, wher@, is the next nontrivial ear. To update information for
P, we first process the forest of split-trees Ryrto eliminate those splits and blocks that disap-
pear and the new ones that appear wignP,_q,---,P+; are added. This is done in
O(n+m; +1 —i) time by finding blocks, cutpoints and ex-nodes in the gd%ij kgl P L1
{attachment edges of ea®) in the interior ofP;}. This gives us the split-trees fét. The new
exnodes forP, are the nodes in the interior 8 adjacent to a vertex ihl;; in particular, this
includes the nodes in the interior Bf adjacent to its endpoints. We compute #&{e, j) values
for these new exnodes. This computation taRés) time over the entire execution of the algo-
rithm. Now we are ready to find type 2 triplets separafing

Parallel Implementation of Step 2.2:

This step is similar to the algorithms in [MiRa2, RaVi] that find the ear graphs of all non-
trivial ears. The only difference is that we now find the forest of block-trees instead of connected
components. For this we can use any efficient parallel block finding algorithm [MaScVi, MiRa,
TaVi]. By noting that the total size of the graphs present at each stage of the algo@tnf),s
we obtain arO(log? n) time parallel algorithm on an ARBITRARY CRCW PRAM witif pro-
Cessors.

STEP 2.3
Sequential Algorithm

We number the vertices in the forest of block-trees in post-order with respect to a depth first
search. We label each attachment edgB;tm the bridges oP; by the number of the block it
belongs to (since each such edge is incident on an adj-node, this is done in constant time per
edge). We remmve anymultiple occurrences of edges with the same block number and attach-
ment. Since the number of blocks and the number of articulation poi@{s)igover all bridges
of P,) this step can be done ®(n + m;) time for all of the bridges.

We now sort (using bucket sort) the labeled attachment edges in increasing order of the
attachments, with edges having the same attachment sorted in increasing order of their label, and
we leave the sorted edges in stacks corresponding to their attachment number. Now, with another
post-order traversal of the block-trees, we can determine, for each ctpdi@ach bridgeB of
earP;, the stars formed frorB whens s deleted fronB, in O(n + my) time.

At this point, for each high cutpoint of bridge B, we haves(B —{ x}), the collection of
stars formed fronB whenx is removed fromB. Each of these stars has no more thaattach-
ments. Using the algorithm in [MiRa2] we can find the separating paiPs oarresponding to
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these stars i©(k [h;) time, wherek is the number of stars. These are organized as the vertices
on the faces of the planar embedding of the coalesced grahi o8(B —{ x}) [MiRa2]; we call

this thecandidate collectiorfor s(B —{x}). This has anO(k [h;) size representation. We find
such a collection for each cutpoint. This procedure t&Kesh;) time over all cutpoints of all
bridges ofP;, since the number of stars formed in all of these graphs is no morenthan 2

In order to execute step 2.4 efficiently, we store the candidate collections in a special way.
Let us confine our attention to a specific bri@y@ote that the candidate collections are obtained
bridge by bridge). LeX andY be a pair of candidate sets in the set of candidate collections for
B. Then we note that the spans>fandY are either disjoint or one contains the other gban
of a candidate set is the interval b], wherea is the lowest numbered afds the highest num-
bered vertex in the candidate set). We represent these candidate sets in a special form called the
candidate representation of & follows: We maintain each candidate set as a lisandidate
list, with vertices ordered in increasing order of their number. We hageéacks, one for each
vertex onP;, and in the stack for vertex we place pointers to all candidate lists that contain
These pointers are arranged in increasing order of the lowest-numbered vertex in the candidate
list, with ties broken in decreasing order of the highest-numbered vertex in the candidate list (the
topmost pointer points to the candidate list with the lowest numbered vertex). For each candidate
list we maintain a pointer to the current lowest-numbered vertex in the candidate list; initially the
pointer for each candidate list points to its lowest-numbered vertex.

Parallel Implementation of Step 2.3:

This step can be implemented on ®aiin O(log? n) time with O(n [h;) processors using
efficient parallel algorithms for computing post-order numbering on trees [TaVi], for sorting [CO]
and for finding separating pairs in a star graph [MiRaZ2].

STEP 2.4
Sequential Algorithm:

We scan the entries in(s(B)) in order. If the current entry ix(y), we look at the topmost
candidate lisR in the stack for vertey in the candidate representation for bridgyand check its
current lowest-numbered vertex If z> x then we proceed to the next entryLi(s(B)). If z = x
then we have found a match, and hence a type 2 triplet sepaPatirify z < x, we move the
pointer forR along the list until it points to a vertex= x. If u = x, then we have located a type 2
triplet and we leave the pointeratlf u = y then we pop the pointer t off the stack and pro-
ceed to check the next candidate list in the stacly;fdry > u > x we leave the pointer atand
proceed to the next entry in(s(B)). It is easy to see that this scan locates all type 2 triplets
([x, Y], 2 with zin B, and the time it takes is proportional to the sizek(s{B)) and the candi-
date lists forB. Hence, over all bridges & this procedure takes tin@(n? + n [h;) = O(n [h;).

Parallel Implementation of Step 2.4:
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To implement step 2.4 in parallel we allow oursel@$ogn) time per entry X,y) on
L(s(B)) to determine ifx lies in the same candidate list y$or some entry in stacl; this is
accomplished by binary search on the entries in sgdokowed by a binary search on the ver-
tices in the relevant candidate IRt
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