
Improved Algorithms for the

K-Maximum Subarray Problem

Sung Eun Bae
�
and Tadao Takaoka

Department of Computer Science and Software Engineering, University of Canterbury,

Christchurch, New Zealand
�Corresponding author: seb43@student.canterbury.ac.nz

Themaximum subarray problem is to find the contiguous array elements having the largest possible

sum. We extend this problem to find K maximum subarrays. For general K maximum subarrays

where overlapping is allowed, Bengtsson and Chen presented OðminfK + n log2n‚ n
ffiffiffiffi

K
p
gÞ time

algorithm for one-dimensional case, which finds unsorted subarrays. Our algorithm finds K max-

imum subarrays in sorted order with improved complexity of O ((n + K) logK). For the two-

dimensional case, we introduce two techniques that establish O(n3) and subcubic time.

Keywords: Maximum subarray, persistent 2-3 tree, selection in matrices with sorted columns,

distance matrix multiplication

Received 12 August 2005; revised 22 December 2005

1. INTRODUCTION

The maximum subarray problem was first described by

Bentley in his literature Programming Pearls [1, 2] as an

example to discuss the efficiency of computer programs.

This problem determines an array portion that sums to the

maximum value with respect to all possible array portions

within the input array. When the input array is two-

dimensional, we find a rectangular subarray with the largest

possible sum. If all elements of an array are non-negative, this

problem is trivial, as the entire array represents the solution.

Similarly, if all elements are non-positive, the solution is

empty with value 0. So we consider a dataset containing

both positive and negative values.

In practice, a bitmap image has all non-negative pixel

values. When the average is subtracted from each pixel,

we can apply the maximum subarray algorithm to find the

brightest area within the image.

For the one-dimensional case, we have an optimal linear

time sequential solution. A simple extension of this solution

can solve the two-dimensional problem in O(m2n) time for

an m · n array (m � n), which is cubic when m ¼ n [1, 2].

In this paper, if only n appears in complexities for the two-

dimensional case, we assume m ¼ n.

The subcubic time solution based on Takaoka’s subcubic

distance matrix multiplication (DMM) algorithm [3] is given

by Tamaki and Tokuyama [4], which is further simplified by

Takaoka [5]. In the context of parallel computations, time and

cost optimal PRAMandmesh algorithms for the one-dimensional

case are described in [6]. For the two-dimensional case, EREW

PRAM solutions achieving O(log n) time with O(n3/logn)

processors are given in [7, 8] and comparable result on

interconnection networks is given in [9]. The EREW

PRAM version of the subcubic algorithm in [4, 5] is given

in [10], which also features a VLSI algorithm based on the

technique introduced in Bentley’s paper. This VLSI algorithm

for the maximum subarray problem achieves T ¼ m + n � 2

steps, which is O(n) time using O(n2) sized hardware circuit.

Finding Kmaximum sums is a natural extension. This prob-

lem is discussed in [11] and [12]. The former provides O(Kn)

andO(K m2n) time solutions for the one- and two-dimensional

cases in the course of the development of a systolic array

algorithm of O(Kn) time using O(n2) size hardware for the

two-dimensional case. The latter brings the worst case time

down to OðminfK + n log2 n‚ n
ffiffiffiffi

K
p
gÞ for a one-dimensional

array. There is, however, a subtle difference in the problem

definition. While K maximum sums produced by [11] are

sorted, sortedness is not considered in the complexity given

in [12]. We use the problem definition used in [11] in this

paper, such that the final solution will be in order.

An improvement achieving O(n logK + K
2) time for small

K is presented in the preliminary version of this paper [13].

This solution is better than the previous one when K �
ffiffiffi

n
p

log n and is O(n logK) time when K � ffiffiffiffiffiffiffiffiffiffiffiffiffi

n log n
p

.

This paper reviews the preliminary work [13] and first

presents O(n logK) time solution for K � n. The extra K2

term from O(n logK + K2) is removed using a partially

persistent data structure [14] and an efficient selection

The Computer Journal Vol. 49 No. 3, 2006

� The Author 2006. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oxfordjournals.org

doi:10.1093/comjnl/bxl007

algorithm in matrices with sorted columns [15]. Since K may

be theoretically as large as n(n + 1)/2, we extend this solution

to show that the same framework can be used for any K up to

K ¼ n(n + 1)/2 with a complexity of O ((n + K) logK).

If we use the above algorithm directly for the two-

dimensional (n, n)-array, we have O(n2(n + K) logK) time

complexity. We describe two techniques that improve this

time complexity to O(n3) for K � n1:5=
ffiffiffiffiffiffiffiffiffiffi

log n
p

and even sub-

cubic for smaller K. The first is based on the sampling tech-

nique and provides a subroutine to the second solution. With

advanced algorithms for DMM [3, 16, 17], the second reduces

the complexity to subcubic.

A related topic is a similar problem with K disjoint sub-

arrays, which may be more practical in some applications.

Within this category, we can define several problems, and

only the one-dimensional case received some attention, espe-

cially in bio-informatics. Further discussion on a possible

extension will be made in the section on concluding remarks.

2. REVIEW OF THE MAXIMUM

SUBARRAY PROBLEM

We give a two-dimensional array a[1..m, 1..n] as an input data

set. The maximum subarray problem is to find a rectangular

portion a[r1..r2, c1..c2] such that the sum of contained

elements should be greater than or equal to the sum of any

other rectangular portions of the dataset. We suppose the

upper-left corner has coordinates (1, 1).

EXAMPLE 1. Let a be given by

a ¼
�1 2 �3 5 �4 �8 3 �3
2 �4 �6 �8 2 �5 4 1

3 �2 9 �9 �1 10 �5 2

1 �3 5 �7 8 �2 2 �6

2

6

6

4

3

7

7

5

The maximum subarray is the array portion a[3..4, 5..6]

surrounded by inner brackets, whose sum is 15.

Bentley introduced Kadane’s algorithm that finds the

maximum sum within a one-dimensional array, whose time

is linear [1], and extended it to two-dimensions. In this section,

we review another O(n) algorithm that provides a framework

for K-maximum subarray problem. Its simple extended

version can find K maximum sums in O(Kn) time, which is

given in [11].

2.1. Finding the maximum sum in O(n) time

The following algorithm has its central algorithmic concept

in the prefix sum. The prefix sums sum[1..n] of a one-

dimensional array a[1..n] are computed by

sum[0] 0

for i ! 1 to n do

sum[i] sum[i � 1] + a[i]

end for

As sum½x� ¼ Px
i¼1 a½i�, the sum of a[x..y] is computed by

the subtraction of these prefix sums such as:

X

y

i¼x
a½i� ¼ sum½y� � sum½x� 1�

To yield the maximum sum from a one-dimensional array,

we have to find indices x, y that maximize
Py

i¼x a½i�.
The notations min and max in italic font are used for vari-

ables andMIN andMAX are used for minimum and maximum

operations. We will use, however, min for minimum operation

inside O-notation following the convention. Array variable

names are also used to express the set or list given by the

array elements.

Let mini be the minimum prefix sum for an array portion

a[1..i � 1]. Then the following is obvious.

LEMMA 1. For all x, y 2 [1..n] and x � y,

MAX
1�x�y�n

X

y

i¼x
a½i�

()

¼ MAX
1�x�y�n

fsum½y� � sum½x� 1�g

¼ MAX
1�y�n

sum½y� � MIN
1�x�y

fsum½x� 1�g
� �

¼ MAX
1�y�n

fsum½y� �minyg

Based on Lemma 1, we can design the linear time algorithm

that finds the maximum sum in a one-dimensional array (Algo-

rithm 1). Comments are given by //.

While we accumulate sum[i], the prefix sum, we also

maintain min, the minimum of the preceding prefix sums.

By subtracting min from sum[i], we produce a candidate for

the maximum sum. At the end, M is the maximum sum.

2.2. Selecting k largest elements

We discuss a simple technique to select k largest elements

from n elements, which will be used extensively throughout

this paper. Suppose the array L contains n elements and

kthMax is the k-th maximum. If k > n, there is no point pro-

cessing all elements. Such a selection is regarded invalid. We

return the whole array L as the solution and exit. Otherwise,

the selection is valid. We proceed to select kthMax by the

linear selection algorithm [18]. We compare each element of

h i

ALGORITHM 1. Maximum sum in a one-dimensional array.

1: min 0 //minimum prefix sum

2: M 0 //current solution. 0 for empty subarray

3: sum[0] 0

4: for i 1 to n do

5: sum[i] sum[i � 1] + a[i]

6: cand sum[i] � min //min ¼ mini
7: M MAX {M, cand}

8: min MIN {min, sum[i]} //min ¼ mini+1
9: end for

Improved Algorithms for the K-Maximum Subarray Problem 359

The Computer Journal Vol. 49 No. 3, 2006

L against kthMax and partition them into L1, L2, L3, where L1

contains elements greater than kthMax, L2 contains elements

equal to kthMax. All elements smaller than kthMax are kept

in L3. This is done in O(n) time. If jL1j ¼ k, we take L1 as

the solution. If there are multiple elements of the same value as

the k-th maximum, jL1j < k. We take first k � jL1j elements

from L2 and append them to L1. L1 now contains k largest

values as required. The total time is bounded by O(n).

LEMMA 2. Selection of k largest values from a set of n

elements takes O(n) time.

2.3. Finding K maximum sums in O(Kn) time

Based on Algorithm 1, let us proceed to discuss the K-

maximum subarray problem, again for the one-dimensional

case.Wemake itmandatory to have the solution in sorted order.

The simplest method may be producing all n(n + 1)/2

subarrays and performing Algorithm 2 to find all K maxima

of them. As the result needs to be sorted, we perform a

sorting on the final K maxima. The total time for this method

is O(n2 + K logK). Theoretically K may be as large as

n(n + 1)/2, but it is unlikely that any size greater than n is

needed in practice. We first introduce an algorithm for K � n

and modify it for the general case.

While we had a single variable that book-keeps the min-

imum prefix sum in Algorithm 1, we maintain a list of K

minimum prefix sums, sorted in non-decreasing order. Let

mini be the list of K minimum prefix sums for a[1..i � 1]

given by {mini[1] � � � , mini[K]}, sorted in non-decreasing

order. The initial value for mini, that is min1, is given by

min ¼ {0, 1 � � � , 1}.

We also maintain the list of candidates produced from

sum[i] by subtracting each element of mini. The resulting

list candi ¼ {sum[i] � mini[1], sum[i] � mini[2] � � � ,
sum[i] � mini[K]} is sorted in non-increasing order.

Let maxi be the list of K maximum sums for a[1..i]. This

list is maintained in M in Algorithm 3, sorted in non-

increasing order. When the algorithm ends, M contains the

final solution maxn. The merged list of two sorted sequences

L1 and L2 are denoted by merge(L1, L2). Note that result of

merge is a sorted list. We have the following lemma.

LEMMA 3. maxi+1 is the list of K maximum elements of

merge(maxi, candi+1).

In Algorithm 3, the list min at the beginning of the i-th

iteration stands for mini.

Each time a prefix sum is computed, we subtract these K

minima from this prefix sum, and prepare a list cand of

candidate K maximum values. These K values are merged

with the current maximum sums stored in M, from which

we choose the K largest values.

After this, we insert the prefix sum to the list of Kminimum

prefix sums for the next iteration. When a new entry is inser-

ted, the list of K minimum prefix sums has K + 1 items. By

discarding the largest one, we keep the size of this list to be

fixed at K. Of course, if this sum is found to be greater than all

current K minima, no insertion is made.

Note that we initialize the list of tentative solutions by

M ¼ {0, �1� � � , �1}.

The line 11 in the algorithm preserves the loop-invariant

from step i to step i + 1 as stated in Lemma 3. At the end,M is

the solution, given in the sorted order.

At each iteration, it takes O(K) time for generating the

candidate list, and O(K) time for merging this list and the

list of current maximum sums. Inserting a prefix sum into

the list of minimum prefix sums depends on what data

structure is used.

If it is a simple array or list, the insertion takes O(K) time,

which establishes O(K) overall time for each iteration. Using

an advanced data structure makes little significance at this

point due to lines 7–11 where we anyway need to spend

O(K) time generating the candidate list and updating the

solution at each iteration.

As we need to perform n iterations, the total time com-

plexity is O(Kn). When K ¼ 1, this result is comparable to

O(n) time of Kadane’s algorithm and Algorithm 1.

ALGORITHM 2. Select (k, L): Select k largest elements of L.

1: L1, L2, L3 ;
2: if k > n then

3: return L and exit

4: end if

5: kthMax kth Max of L[1..n]

6: Partition L into (L1, L2, L3), where

L1 ¼ {x j x 2 L, x > kthMax},

L2 ¼ {x j x 2 L, x ¼ kthMax},

L3 ¼ {x j x 2 L, x < kthMax}

7: if j L1 j < k then

8: append first k � jL1j elements of L2 to L1

9: end if

10: return L1

ALGORITHM 3. K maximum sums in a one-dimensional array for

1 � K � n.

1: for k 1 to K do

2: min[k] 1, M[k] �1
3: end for

4: sum[0] 0, min[1] 0, M[1] 0

5: for i 1 to n do

6: sum[i] sum [i � 1] + a[i]

7: for k 1 to K do

8: cand[k] sum[i] � min[k]

9: end for

10: //Select(K, L) by Algorithm 2

11: M Select(K, merge(M, cand))

12: insert sum[i] into min

13: end for

360 S. E. Bae and T. Takaoka

The Computer Journal Vol. 49 No. 3, 2006

Note that Algorithm 3 is specifically designed for K � n.

When K > n, this algorithm still works, but not efficiently.

Considering that there are only i prefix sums preceding to

sum[i] (if sum[0] ¼ 0 is counted), maintaining min of size

K > n is meaningless and introduces inefficiency. Note that

when K¼ n(n + 1)/2, Algorithm 3 runs inO(n3) time. Even the

simplest method described in the beginning of this section

does not exceed O(n2 log n) time.

We can slightly modify Algorithm 3 to handle the general

case better. Specifically, the following modification no more

relies on Lemma 3. In Algorithm 4, we declare an empty set C

and append each candidate to C. Finally, we select K largest

candidates from C by Algorithm 2 and sort them.

The total time is O � (n � min (K, n) + K logK), where the

second term is due to sorting. For K � n, this time is O(Kn)

as O(K logK) < O(Kn) and is absorbed. The complexity is

comparable to Algorithm 3. In an extreme case when K ¼
n(n + 1)/2, it is O(n2 log n) or O(K logK) time. The space

complexity of this algorithm is O � (n � min (K, n)) due

to the size of C. In terms of space, this algorithm is not as

efficient as the previous one when K � n, since Algorithm 3

only needs O(n) space due to a[1..n] and sum[0..n]. The space

consumed by cand, min and M are all bounded by O(K).

While further refinement to this algorithm is possible, we

focus on improving Algorithm 3 in this paper. When K� n, we

can apply a simple sampling technique to reduce the number

of candidates. In Sections 3 and 4, we assume K � n and give

improved algorithms based on the sampling technique.

In Section 5, we show how such a technique can be used

for n < K � n(n + 1)/2.

3. O(n logK + K
2) TIME ALGORITHM

Previously, we generated the list of candidates by subtracting

the K minimum prefix sums from each prefix sum, which

results in production of Kn candidates in total. K maximum

sums are basically selected from this pool of Kn candidates.

Let A be the name of the array keeping such Kn candidates.

In this section, we discuss possible improvements to

Algorithm 3. We show how to reduce the number of candid-

ates before selecting K final elements. This is achieved by

avoiding the actual computation of the entire array A. Thus

A is an imaginary array.

We describe a simple solution that decreases the number of

candidates from Kn to K
2. Note that K2 is considered to be

smaller than Kn due to the assumption K � n. This solution

is introduced in the preliminary paper [13] and provides a

starting point for the further improved algorithm in Section 4.

Intuitively we may consider the total of Kn candidates,

candi[1..K], (i ¼ 1 . . . , n) as elements of an imaginary

two-dimensional array A, such that the first column of A is

given as cand1[1..K], and the second column is given as

cand2[1..K] etc.

Since each array element is obtained by computation

candi[k] ¼ sum[i] � mini[k] for k ¼ 1..K and i ¼ 1..n,

we can formulate the following.

A½k�½i� ¼ candi½k� ¼ sum½i� � mini½k�
As mini is sorted in non-decreasing order, the produced

list of candidates candi, the i-th column of array A, is sorted

in non-increasing order. The first item candi[1](¼A[1][i]) is
the largest candidate produced from sum[i].

We first produce n samples of cand1[1]...candn[1] and let

them be elements of a list sample.

sample ¼ fA½1�½1�‚ A½1�½2� � � �A½1�½n�g
Wethenselect theK-th largestvalueKthSamplebya linear time

selection algorithm [18]. It is easily observed that if sample[i], the

largest element in the i-th column, is smaller thanKthSample, no

elements in the same column can become one of the final K

maximum sums as we already know there are at least

K elements not smaller than them. This is illustrated in Figure 1

which shows a case forK¼ 8. Elementswith (O) label are greater

thanor equal toKthSamplewhile light shaded elements in thefirst

row are those not included in the K largest samples.

Ateach iteration,wecheck ifsample[i], thefirstelement in the

i-th column, is not smaller thanKthSample. If so,wegenerate all

elements in the i-th column. Otherwise, this column need not

produceany element.WesaveO(K) timeby skipping candidate

generation in suchcolumns.ElementsunderKthSampleare also

discarded as they all are not greater than KthSample.
Such an idea is implemented as Algorithm 5. We describe

the details of this algorithm.

3.1. Pre-process: sampling

During the pre-process, we sequentially visit the input array

a[1..n] and compute the prefix sum sum[1..n] in O(n) time.

Within this time frame, we find the minimum prefix sum

(mini[1] only) for each sum[i], as mini[1] is the minimum

of sum[j] for 1 � j � i � 1. We note that we do not need

ALGORITHM 4. K maximum sums in a one-dimensional array for

1 � K � n(n + 1)/2.

1: C ;
2: for k 1 to MIN {K, n} do

3: min[k] 1
4: end for

5: sum[0] 0, min[1] 0, M[1] 0

6: for i 1 to n do

7: sum[i] sum[i � 1] + a[i]

8: for k 1 to MIN {K, i} do

9: append sum[i] � min[k] to C

10: end for

11: insert sum[i] into min

12: end for

13: M Select(K, C)

14: sort M

Improved Algorithms for the K-Maximum Subarray Problem 361

The Computer Journal Vol. 49 No. 3, 2006

mini[1..K] for all i 2 [1..n] before the sampling and selection

process. We only need mini[1] for i ¼ 1 . . . n. Full lists of K

minimum prefix sums for each sum[i] are not produced during

this pre-process.

The K-th maximum of this sample, KthSample, is selected

by a linear time selection algorithm. Then we filter out values

smaller than KthSample, being left with the K largest samples

shown as elements with (O) label in Figure 1. If there are

multiple samples of the same value as KthSample, we may

have more than K remaining samples after filtering. As no

more than K samples are necessary, we regard these extra

samples to be smaller than KthSample and discard them.

This is not explicitly given in the code.

3.2. Candidate generation and selection

Inside the outer ‘for’ loop, there are two parts, Part I and

Part II. We consider time for each part separately.

Part I is for the generation of candi and maintaining the

tentative solution setM. The generation of candi, the elements

in the i-th column of array A, is performed when the first

element in the i-th column, sample[i], is greater than Kth-

Sample. Thus Part I is performed K � 1 times. To be precise,

we can skip the generation of the elements in the column of

KthSample as shown in Figure 1, but this does not improve the

overall asymptotic complexity.

Now we analyse each part.

3.2.1. Part I

For Part I, generating a candidate list(¼a column of A),

involves access to min, the list of minimum prefix sums. If

a 2-3 tree is used, accessing each of min[1]..min[K] costs

O(logK) time. We need to access all min[1]..min[K] sequen-

tially to generate all elements in one column. The sequential

reading of all leaf nodes is done in O(K) time by depth-first

search. The latter part of this paper, Section 4.2.2, also

discusses this complexity.

The initial O(logK) search time is absorbed into O(K), the

time for actual generation of the K candidates. The total time

for Part I over K iterations is therefore O(K2).

3.2.2. Part II

For Part II, finding position for a new entry and actual insertion

is done in O(logK) time. When there are more than K items,

deletion of the largest item and update of the tree costs another

O(logK) time. For n iterations, the total time for Part II is

O(n logK).

3.3. Total time

Using the data structure for min described above, the overall

time including Part I and Part II is thus O(n logK + K2).

Let us consider the time for the initialization and the

pre-process.

During the initialization, the ‘for’ loop sequentially sets

min[1..K] and M[1..K] to 1 and �1 respectively.

Sequential access to the leaf nodes of a 2-3 tree is done in

linear worst case time as discussed in later part of this paper,

Section 4.2.2. Both min[1..K] and M[1..K] are set in O(K)

time.

1

2

n1

A

K=8

K

KthSample

O O O O O

Others marked (O) are greater than/equal to (X)

X O O

Elements discarded during sampling

sample

FIGURE 1. Selection of K samples.

ALGORITHM 5. Faster algorithm for K maximum sums in a one-

dimensional array.

1: //Initialization

2: for k 1 to K do

3: min[k] 1, M[k] �1
4: end for

5: sum[0] 0, min[1] 0, M[1] 0

6: //Pre-process: Sampling

7: for i 1 to n do

8: sum[i] sum[i � 1] + a[i]

9: //sample for initial K large values

10: sample[i] sum[i] � min[1]

11: if sum[i] < min[1] then

12: min[1] sum[i]

13: end if

14: end for

15: KthSample K-th max of sample[1..n]

16: //Candidate Generation

17: min[1] 0

18: for i 1 to n do

19: if sum[i] � min[1] � KthSample then

20: //Part I

21: for k 1 to K do

22: cand[k] sum[i] � min[k]

23: end for

24: M Select(K, merge(M, cand))

25: end if

26: //Part II

27: insert sum[i] into min

28: end for

362 S. E. Bae and T. Takaoka

The Computer Journal Vol. 49 No. 3, 2006

The pre-process (sampling, selection and screening) is O(n)

time, when KthSample is selected by a linear time selection

algorithm [18].

Times for the initialization and pre-process are absorbed

into the time for Part I and Part II, making the total time

O(n logK + K2). Compared with OðminfK + n log2n‚ n
ffiffiffiffi

K
p
gÞ

time by [12], this algorithm is faster when K� ffiffiffi

n
p

logn and

the complexity O(n logK + K2) is even reduced to O(n logK)

for smaller K (K� ffiffiffiffiffiffiffiffiffiffiffiffi

n logn
p

).

4. O(n logK) TIME ALGORITHM

The algorithm in Section 3 regards a list of candidates as a

column of an imaginary array A of size (K, n). This array has

columns sorted in non-increasing order, having the first

element in each column the largest.

This sortedness enabled the algorithm in Section 3 to dis-

card unnecessary elements after obtaining KthSample. In this

section, we try to extend the same idea for further improve-

ment. In the following, the process of sampling followed by

selection is simply referred to as sampling technique.

Frederickson and Johnson [15] present an efficient selec-

tion algorithm to find the k-th smallest element in an n · m

array with sorted columns in O(m + p log (k/p)) time for p ¼
min{k, m}. This algorithm rapidly discards unnecessary items

that are doomed to be larger than the final k-th smallest.

Certainly, the same idea may be configured to find the k-th

largest element. This algorithm is composed of two routines,

where the first routine eliminates unnecessary items until

O(k log k) items left, and the second routine further reduces this

to O(k) remaining items. Then the k-th smallest can be selected

directly by a linear time selection algorithm. The first routine of

this solution is basically a generalized notion of the sampling

technique. While the previous algorithm performs the sampling

technique in the first row only, we can extend the same idea to

multiple rows.

Namely, when the K-th largest element in the first row is

selected, we rearrange the columns such that those having

the first element greater than the selected value are located on

the left of the selected value. Since all columns that appear on

the right of the selected value have elements smaller than this

K-th largest value, we may safely discard these columns. The

area containing discarded elements is shown shaded in Figure 2

with ‘p ¼ 0’ label, meaning that this area is removed during the

first iteration.

We further this idea and select the K/2-th largest element

in the second row and rearrange the remaining K columns

such that columns whose second element is greater than

the selected value are located on the left of the selected

one. Then we discard half of the remaining K columns that

contain smaller elements. In Figure 2, all elements denoted by

(O) are greater than or equal to the element denoted by (�). The

number of these elements including (�) is K. No element in

the shaded area with ‘p ¼ 1’ label can be greater than these K

elements. Then none can be included in the final set of K

maximum sums. So this shaded area is safely discarded.

We continue this sampling process by doubling the row

number at each iteration. On the termination of this process,

the number of remaining elements is significantly smaller

than in the previous solution shown in Figure 1.

Before applying Frederickson and Johnson’s solution to

our problem, let us identify some difficulties.

First, their solution is applicable when such an array is

already available before selection. If we have to build the

array beforehand, the array construction alone already takes

O(Kn) time. Even a fast selection algorithm cannot help.

Alternatively, we may simultaneously construct the necessary

portion of the array and perform the selection algorithm.

When we wish to construct the array and process the selec-

tion algorithm at the same time, we encounter another prob-

lem, which is caused by the fact that min is ephemeral, in the

sense that making a change to it destroys the old version. To

clarify this situation, let us review the selection process of

the K/2-th largest element in the second row. In the first

iteration, we have sampled n elements and selected K largest

elements in the first row. Let the selected ones be

A[1][x1]. . .A[1][xK] where A[1][xK] is theK-th largest element.

We come to the second row for the second iteration. As the

array is not built, there are no elements available in the

second row. Before selecting the K/2-th largest element, we

need to sample K elements in this row. Each sample of

A[2][x1]. . .A[2][xK] is computed by coupling sum[xk] and

minxk [2]. For k ¼ 1..K,

A½2�½xk� ¼ candxk ½2� ¼ sum½xk� � minxk ½2�
InAlgorithm3(lines7–9)andAlgorithm5(lines21–23),candi

is produced frommini that is maintained in a single data structure

min.At the i-th iterationofbothalgorithms, after anewprefix sum

K=8

10 2 8 3 5 11 13 6 1 4 7 9 12idx

1

2

4

8

i 1 2 3 4 5 6 7 8 9 10 11 12 n

A

Elements discarded

during sampling

*

o o o o

ooo

Elements marked (O) are non–smaller than (*).

p=0p=1p=2p=3

during Candidate Generation

Elements generated

Elements generated

for sampling

FIGURE 2. Sampling in row 1,2,4,8. . . .

Improved Algorithms for the K-Maximum Subarray Problem 363

The Computer Journal Vol. 49 No. 3, 2006

sum[i] is inserted to the current mini, the next version mini+ 1 is

created. We lose access to all previous versions min1..mini.

When the previous versions of min are lost, it is impossible

to produce elements in the second row by computing

sum½xk� � minxk ½2� (k ¼ 1..K). We therefore need a persistent

data structure [14] to overcome this problem.

In the following, we describe Algorithm 6 that applies

Frederickson and Johnson’s selection algorithm to the K-

maximum subarray problem. Specifically, we show that the

array construction routine can be combined with the selection

algorithm. To overcome the deficiency caused by the ephem-

eral data structure for min, we use a partially persistent 2–3

tree for the maintenance of the n-versions of sorted set

mini[1..K], (i ¼ 1..n) without spending O(Kn) time and

space. The detail of this data structure is discussed in

Section 4.2. Note that we use control variables i and k for

row-wise and column-wise operations respectively in the

following algorithm and its description.

4.1. Algorithm description

Algorithm 6 is composed of five major routines, namely,

initialization, pre-process, sampling/reindexing, candidate

generation and final selection of K maximum sums. We

describe details of each routine.

4.1.1. Initialization

We create the initial version of the minimum prefix sum, min0,

maintained in a partially persistent 2-3 tree. The array u is

prepared to indicate the number of candidates to be produced

in each column, which will be used in the ‘candidate genera-

tion’ routine. Initially, each column is entitled to produce K

candidates.

4.1.2. Pre-process

Over n iterations, we compute the prefix sum and insert this

prefix sum into min. We have n-versions of sorted sets

min0[1..K] � � � , minn[1..K] maintained in a partially persistent

2-3 tree. We need to fix the number of leaf node to be K. Line 8

inserts a new prefix sum sum[i] to the (i� 1)-th version of min

kept in persistent 2-3 tree, which creates mini, the i-th version

ofmin. We have K + 1 leaf nodes in mini. A deletion of the last

leaf node frommini is thus needed as shown by line 10. Details

of update operations to the persistent 2-3 tree are discussed

in Section 4.2.

4.1.3. Sampling/reindexing

In our problem setting, we start with an empty array A whose

dimension is K · n. During the routine shown by lines 12–23,

we examine rows 1,2,4,8... only and generate a limited number

of array elements in each row for sampling. Otherwise it may

cost O(Kn) time to generate all array elements. We use an

auxiliary array idx[1..n] to ease the column reindexing. The

initial setting to idx is {1,2,. . .n}. Let us call the index i of

sum[i] a prefix sum index. The value of idx[i] indicates which

prefix sum sum[idx[i]] we use to produce the array elements

in column i.

With p being incremented by 1 at each iteration, we visit

row 1,2,4,8..(¼2p) sequentially where we generate only q¼ n,

K, K/2, K/4 samples respectively. Such samples are shown

by thick dotted lines in Figure 2. Lines 15–17 show that q sam-

ples, A[2p][1..q], are computed by sum[idx[i]] � minidx[i][1]

for i ¼ 1..q. This involves the access to different versions of

min. The persistent data structure for min enables this.

Due to the initial setting to idx[1..n], all sum[i]�mini[1] for

i¼ 1..n are computed in row 1. The following line 18 performs

a linear selection algorithm to find the q0(¼dK/2pe)-th largest

one. For example, in row 1,2,4.., it is the K, dK/2e, dK/4e-th
largest respectively. This item is marked l. We rearrange the

elements in this row and partition into (A1, A2, A3) in a similar

way to Algorithm 2 such that all items greater than l are moved

ALGORITHM 6. Algorithm for K maximum sums in a one-

dimensional array with generalized sampling technique.

1: //Initialization

2: for K 1 to K do min0[k] 1
3: for i 1 to n do u[i] K

4: sum[0] 0, min1[1] 0

5: //Pre-process

6: for i 1 to n do

7: sum[i] sum[i � 1] + a[i]

8: insert sum[i] into mini�1 // creates mini
9: delete mini[K + 1] // deletes from mini to keep size K

10: end for

11: //Sampling/Reindexing

12: q n, q0 K, p 0, idx [1, 2, . . .n]

13: while 2p � K do

14: //Compute A[2p][1..q], contained in A

15: for i 1 to q do

16: A[i] sum[idx[i]] � minidx[i][2
p]

17: end for

18: l q0-th max of A[2p][1..q]

19: Partition A into (A1, A2, A3), where

A1 ¼ {x|x 2 A, x > l}, A2 ¼ {x|x 2 A, x ¼ l},

A3 ¼ {x|x 2 A, x < l}

20: Copy prefix sum indices of elements in (A1, A2, A3) to idx[1..q]

21: for i q0 + 1 to q do u[i] 2p � 1

22: p p + 1, q q0, q0 dK/2pe
23: end while

24: //Candidate Generation

25: C ;
26: for i 1 to K do

27: //u[i]: number of generation in col. i

28: for k 1 to u[i] do

29: append sum[idx[i]] � minidx[i][k] to C

30: end for

31: end for

32: //Final Selection of K maxima

33: M Select(K, C)

34: sort M

364 S. E. Bae and T. Takaoka

The Computer Journal Vol. 49 No. 3, 2006

to the left partition A1, equal to l to A2 and smaller to A3.

Let (A1, A2, A3) ¼ {sum½x1� � minx1 ½1�‚ sum½x2� �
minx2 ½1� . . . sum½xq� � minxq ½1�}. We copy the prefix sum

indices {x1, x2..xq} to idx[1..q].

This rearrangement of idx[1..q] achieves the effect of

column reindexing such that the prefix sum indices that

produce array elements non-smaller than l are stored in

idx[1..q0] and rest indices are in idx[q0 + 1..q]. During the

‘candidate generation’ routine, we use the prefix sum indices

maintained in idx. The virtual array A may be illustrated as

Figure 2 having elements of large value concentrated around

the top-left corner.

A snapshot of the update to idx at each iteration is given in

Figure 3. Note that idx[1..K] at p¼ 1 correspond to the column

indices marked (O) and (X) in Figure 1.

The value l is the q0(¼dK/2pe)-th largest in this row. At the

same time, it is the 2p-th largest in its column since the column

is sorted in non-increasing order. Then we are assured that

there are at least K elements non-smaller than l. Apart from the

first q0 samples in A1 and A2, rest samples are now disquali-

fied. When they do not qualify the K largest at this stage, they

are never included in the final set of Kmaxima. The prefix sum

indices of such disqualified samples are kept in idx[q0 + 1..q]

after rearrangement of idx. In the ‘candidate generation’

routine, we will not generate candidates with the prefix

sum of such an index in the 2p-th row and below. This virtually

discards unnecessary elements from the array, or, to be

precise, aborts them from being produced.

The shaded areas labelled ‘p¼ 0,1,2,3’ in Figure 2 represent

such aborted portions. Note that the first iteration of the

‘while’ loop at lines 13–23 is essentially equivalent to the

sampling process used in Algorithm 5.

Even if the array A is not pre-built, this ‘abortion’ technique

effectively simulates elimination from the pre-built array, the

basic idea of the selection algorithm by Frederickson and

Johnson.

Actual generation of non-aborted candidates is done in the

next subroutine starting at line 25. We update the array u at

line 21 to indicate how many candidates can be produced in

each column of A. Due to the initialization, each column is

entitled to produce K candidates. At the 2p-th row, once the

q0-th largest element l is found and the column reindexing is

done, the columns of disqualified samples are not allowed to

produce more than (2p� 1) candidates. When the ‘while’ loop

at lines 13–23 terminates, we have u[1..K] ¼ {8, 7, 3, 3, 1,

1, 1, 1} for the example given in Figure 2. Further discussion

is given in the next section.

Note that the update to q at line 22 may be replaced with

q dK/2pe � 1 for further reducing the size of sample gen-

eration, which however makes no asymptotic improvement.

4.1.4. Candidate generation

We now produce all the elements that survived the sampling

process. The final version of idx as shown in Figure 3 indicates

the prefix sum index to be used for generation of elements.

Specifically, the first column of A is built with the prefix sum

index idx[1].

While the sampling process in Section 4.1.3 was performed

in a row-wise manner, we choose to generate candidates

column-wise. By column-wise computation, we visit one ver-

sion of 2-3 tree and access each leaf node sequentially. Later in

Section 4.2.2, it will be shown that each candidate computed in

such a manner costs O(1) amortized time. We can not afford

the complexity incurred by row-wise computation here, since

it involves an element retrieval with index from each version

FIGURE 3. Rearrangement of index array idx when n ¼ 13, K ¼ 8.

(a) Initialization. (b) p ¼ 0. (c) p ¼ 1. (d) p ¼ 2. (e) Final values

when p ¼ 3.

Improved Algorithms for the K-Maximum Subarray Problem 365

The Computer Journal Vol. 49 No. 3, 2006

of 2-3 tree. Section 4.2.3 will show that each candidate

computed this way needs O(logK) time.

With the array u that indicates the number of candidates

to produce in each column, column-wise computation is easily

done by sum[idx[i]] � minidx[i][1..u[i]] in column i. Those

generated are shown in white in Figure 2.

We start with an empty set C, and append each generated

element to a set C at lines 25–31. There is no specific order in

C at the stage.

Let us determine the total number of generated elements,

jCj. Counting them in row-wise manner is easier. We have

K elements in the first row, and dK/2e elements each in the

second and the third row. In general, there are q0(¼ dK/2pe)
candidates each in rows 2p..(2p + 1� 1). Note that (2p + 1� 2p) ·

q0 ¼ O(K). We can obtain jCj by K + 2(K/2) + 4(K/4) + � � � ¼
O(K logK).

While [15] introduces further reduction techniques to

reduce this number to O(K), having O(K logK) remaining

elements still suffices our needs. Further discussion is given

in Section 4.3.

4.1.5. Final selection of the K maximum sums

Finally, lines 33–34 describes the selection of K maximum

elements in C. We sort such final K elements and obtain the

sorted list of K maximum subarrays.

4.2. Persistent 2-3 tree

The choice of an appropriate data structure for the collection

of the minimum prefix sums mini is essential to the algorithm.

To maintain sorted set with efficient support for insert and

delete operations, a 2-3 tree provides optimal performance.

The 2-3 tree is a class of search trees invented by Hopcroft

[19], where every internal node has either two or three children

and all leaf nodes appear on the same level. This perfectly

balanced property means O(log n) time for search, insert and

delete operations, where n is the number of elements in the

tree. An internal node having two children is called a 2-node,

and one with three children is called a 3-node. Each 2-node

contains two keys and a 3-node has three keys, where each

key has the same value of the first key of a child node. Some

authors including [19, 20] prefer to have one key in a 2-node

and two keys in a 3-node, and such implementation can be

used instead with no significant difference1.

The data structure that loses its old version is called

ephemeral. If the data structure allows access to the old ver-

sions after subsequent update operations, it is called persistent.

Since the seminal paper of Driscoll et al. [14], there has

been considerable development of persistent data structures

[21, 22, 23, 24]. The partially persistent data structure allows

all versions to be accessed, but only the newest version can be

modified. The structure is fully persistent if every version can

be both accessed and modified [14]. As we only modify

the newest version, a partially persistent structure will be

sufficient.

Combining two requirements, a partially persistent 2-3 tree

is the structure of choice.

We adopt node copying method for making a 2-3 tree

persistent. Figure 4 shows the i-th version of the 2-3 tree

storing K ¼ 9 elements 1, 3, . . . , 17, in non-decreasing

order We have an array of size n, version, whose i-th item

points to the root of the i-th version. Each internal node of the

tree has an extra field storing the number of leaf nodes under

the node for efficient access with an index. The details are

given in Section 4.2.3.

4.2.1. Update operation

When a new element 6 is inserted, we first perform a search

on the i-th version for an appropriate position. We find that

node [7, 9(2)]will be the parent of this new entry, but this node

will need to change its shape. We thus copy this node and add

6 to it and change the cardinality of the copied node to 3.When

this node is copied, the pointers to node [7] and [9] are also

copied. Then a new copy has three children, [6], [7] and [9].

Wemust copy and update all the nodes in the path to the root in

the same manner. Newly created nodes are shaded in grey in

Figure 5. Finally the (i + 1)-th item of version is arranged to

point to the new copy of root node, the root of the (i + 1)-th

version.

After the insertion of 6, there are 10(¼K + 1) leaf nodes.

Since this structure is to be used for min which has fixed size

K, we have to delete the leaf node with the largest value, 17.

We intend to delete the node [17], but only from the (i + 1)-th

version. Previous versions should still have an access to the

node [17]. Thus we only remove the pointer link to the node

[17] from the (i + 1)-th version of the tree. We first traverse

from the root of the (i + 1)-th version to the rightmost leaf

node [17]. Since its parent [15, 17(2)] will have only one child

FIGURE 4. The i-th version of 2-3 tree. Leaf nodes represent sorted

set in non-decreasing order. The number inside () shows the number

of leaf nodes under this node. K ¼ 9.

1Having x keys in a x-node is intuitively more transparent.

366 S. E. Bae and T. Takaoka

The Computer Journal Vol. 49 No. 3, 2006

after losing 17, we will delete this node from the (i + 1)-th

version too. Then the sibling node [11, 13(2)] should adopt the

orphan leaf node [15] as its rightmost child, which updates

[11, 13(2)] to [11, 13, 15(3)]. A similar operation is carried out

for [11, 15(4)]. As node [1, 6(6)] has two children and is the

only child of the root [1, 11(10)], we choose [1, 6(5)] to

become the new root of the (i + 1)-th version of the tree.

The node [11, 13, 15(3)] is taken as the rightmost child of

[1, 6(5)] and the root is updated to [1, 6, 11(9)]. The final shape

of mini+1 should look like Figure 6.

Once one version mini has K elements, each insertion to

mini means the next version mini+1 has (K + 1) elements. Thus

each insertion should be followed by a deletion of the largest

element to keep the size of the next version mini+1. As we

described, each operation recursively copies nodes in the path

to the root and updates them. As the height of the tree is

bounded by O(logK) when we have the fixed number of

leaf nodes K, we spend O(logK) time and O(logK) space

for each insertion and deletion.

In the following, we examine the time complexity for

two types of leaf node access, sequential reading of leaf

nodes and random access to the k-th element.

4.2.2. Sequential access to leaf nodes

We first examine the time for the following routine.

for k 1 to K do

print mini[k]

end for

If mini is contained in an array, the time is O(K). Such time

for mini maintained in a 2-3 tree deserves discussion.

First of all, we access the array version to find the root of the

i-th version of the 2-3 tree that keepsmini. Sequential access to

all leaf node values can be done by simple depth-first search

traversal. If N is the number of internal nodes of a 2-3 tree that

has K leaf nodes, ðK � 1Þ/2 � N � K � 1. The number of

internal nodes is thus bounded by O(K). Then sequential

access to all K leaf nodes is done in O(K) time.

If a level-linked 2-3 tree [25] is used, it guarantees O(1)

worst case time for accessing the next item as well as O(K)

time for sequential reading of all items. The ordinary 2-3 tree

that we described here only provides O(1) amortized time for

the next item access while O(K) time for sequential reading is

still supported.

4.2.3. Element retrieval with index from a 2-3 tree

Each internal node in a 2-3 tree maintains an attribute of the

number of leaf nodes below this node. In the above, it was

shown that all nodes in the path to the root update their

cardinality on each insertion or deletion.

In the 2-3 tree described above, we assume the leftmost

leaf has an index 1, and the rightmost leaf has an index K

accordingly.

When the k-th item needs to be retrieved, the cardinality can

be utilized to find the location of this item. Suppose the root

node has cardinality cP and the left, centre and right child have

cL, cC and cR respectively such that cP ¼ cL + cC + cR. To

search for the k-th item, we first look at cP to make sure if

k� cP. If so, we try series of comparisons to find which subtree

this item belongs to. If cL � k, the k-th element is in the left

subtree. Otherwise, we examine cC to see if cC � k � cL. If

so, the k-th item is in the centre subtree. Otherwise, it is in the

right subtree. We perform at most three comparisons at

each node recursively until we arrive at a leaf node following

a path from the root. When there are K leaf nodes in the tree,

we spend O(logK) time to retrieve the k-th element.

4.3 Analysis

First we analyse the time for the initialization. Inside the loop,

K elements of min1 are set sequentially. Due to Section 4.2.2,

the time for initialization of min1[1..K] is O(K).

FIGURE 6. The largest item 17 is deleted from the (i+1)-th version

to keep the size K.

FIGURE 5. The (i+1)-th version is created when 6 is inserted.

Improved Algorithms for the K-Maximum Subarray Problem 367

The Computer Journal Vol. 49 No. 3, 2006

The pre-process includes preparations of the prefix sums

and the partially persistent 2-3 tree storing the minimum prefix

sums. Each update to mini is done in O(logK) time as

discussed in Section 4.2.1. The time for the pre-processing

is thus O(n logK).

Let us examine the time complexity within the ‘while’ loop

at lines 13–23. We separate the analysis when p¼ 0 and p� 1.

In the latter case, we always halve the size of sample, for

example, we eliminate K/2 samples from K at p ¼ 1. This

is not the case when p ¼ 0.

At the first iteration (p ¼ 0), we sample n elements

A[1][1]..A[1][n] at lines 15–17. The first element of each

n versions of min is retrieved spending O(logK) time each

due to Section 4.2.3. The time spent by this line is thus

O(n logK). Following routines (lines 18–20) are linear

time operations on n samples. These O(n) times are

absorbed. The time spent by line 21 is O(n � K), which is

absorbed too.

When p � 1, at the p-th iteration, lines 15–17 generate

A[2p][i] by sum[idx[i]] � minidx[i][2
p] for i ¼ 1 . . . q, which

are q ¼ dK/2p�1e elements. When the loop is exited, the total

number of samples generated is K + K/2 + K/4. . . ¼ O(K).

The generation of each sample involves access to a corres-

ponding version of minidx[1]..minidx[q], the persistent 2-3 tree.

We first refer to the idx[i]-th version of min and need to track

down from the root to locate minidx[i][2
p] taking O(logK)

time each. Each iteration of ‘while’ loop at lines 13–23, q

is K, dK/2e . . .etc. The time spent by lines 15–17 throughout

‘while’ loop (p � 1) is then O((K + K/2 + K/4. . .) logK) ¼
O (K logK)).

Lines 18–20 perform linear operations on K, dK/2e,
dK/4e. . . elements at each iteration. The total time is then

O(K + K/2 + K/4 +. . .) ¼ O(K). Similarly, the time by line

21 is O(K).

The combined time of two cases, p ¼ 0 and p � 1 inside

the ‘while’ loop gives the total time spent by the loop. It is

O(n logK) + O(n) + O(K logK) + O(K), which is summarized

to O(n logK) for K � n. The operation by lines 15–17 is the

dominant one inside the ‘while’ loop.

The ‘for’ loop starting at line 26 involves the generation of

non-discarded elements in the array A. There are O(K logK)

elements remaining as discussed in Section 4.1.4. Note that

lines 28–30 involve sequential reading from the sorted set

maintained by 2-3 tree. It is done in linear time as discussed

in Section 4.2.2. Then the total time for generating O(K logK)

elements is bounded by O(K logK).

All the generated items are collected in C in no specific

order. We proceed to line 33 where the K largest items are

selected. As there are O(K logK) elements in C, linear time

selection algorithm spends O(K logK) time for this. The final

K maximum values are sorted in another O(K logK) time by

line 34.

As it is assumed that K � n, the total time of this algorithm

is therefore bounded by O(n logK).

THEOREM 4.1. 8K 2 [1..n], the sorted list of K maximum

subarrays is computed in O (n logK) time.

We discuss the complexity for large K in the next section,

Section 5.

Note that Frederickson and Johnson’s algorithm [15] offers

a subsequent reduction technique that further discards

elements leaving only O(K) elements. We only applied

their first technique which leaves O(K logK) elements.

Even if their subsequent technique is applied, we will still

hit O(n logK) time complexity.

As we copy paths of O(logK) length to create each version

of 2-3 tree, the extra space occupied by n versions of min is

O(n logK). It may also be noted that the 2-3 tree we described

is not strictly partially persistent, as any version can be

accessed for update. Since the partial persistence is adequate

for the requirement, it remains to be seen whether a strictly

partially persistent 2-3 tree can provide better efficiency in

terms of time and space.

During the pre-process at lines 6–10, the prefix sum sum[i]

is inserted to mini regardless of its value. If it becomes the

largest after insertion, this new entry is immediately deleted by

the next line. By doing so, we waste O(logK) time to get the

identical tree. To avoid this, we can prepare a last attribute at

each version of the 2-3 tree to keep the value of the rightmost

leaf, the maximum item, in the tree. Before each insertion, we

examine whether the value of new entry is greater than last. If

so, we simply set a pointer to the root of the current version of

2-3 tree instead of performing insertion and deletion of the

same item. Otherwise, this entry is successfully inserted and

the rightmost leaf which is different from the inserted item will

be deleted. Meanwhile, last is also updated. This gives average

time improvement, but the worst-case behaviour is not clear at

present.

Likewise, we can prepare a first attribute at each version

of the 2-3 tree to maintain the value of the leftmost leaf, the

minimum item. This may reduce the O(n logK) time for sam-

pling to O(n + K logK). While this does not improve the total

complexity, it leaves the pre-process being the onlyO(n logK)

time operation. Any future improvement to the pre-process

will therefore reduce the total complexity.

5. WHEN n < K � n(n + 1)/2

So far the description and analysis of algorithms were given

with an assumption that K � n. In fact, neither Algorithm 5

nor Algorithm 6 will work for K > n if no modification is

made. We discuss how we can handle large K in this section.

In the following, we mean n < K� n(n + 1)/2 by large K and

K � n by small K. All K is then 1 � K � n(n + 1)/2.

For large K, we encounter a case where the sampling tech-

nique no more improves the complexity. For example, selec-

tion of the K-th largest among n samples in Algorithm 5 is

invalid as there are only n (n < K) elements. As previously

368 S. E. Bae and T. Takaoka

The Computer Journal Vol. 49 No. 3, 2006

defined in Section 2.2, we use a term ‘valid’ to describe

the opposite case, a meaningful application of the sampling

technique.

For Algorithm 5 to support large K, we make a simple

modification by combining it with Algorithm 4.

Since the sampling technique in Algorithm 5 is invalid

for K > n, we skip the pre-process and perform lines

6–14 of Algorithm 4. Such a change gives O((K +

n) logmin(K, n) + min(K, n)2) time for all K. Note that O(log -

min (K, n)) ¼ O(logK) and the complexity may be simplified

accordingly. Naturally, this modified version of Algorithm 5

does not improve Algorithm 4 for large K.

Now we consider Algorithm 6. It is obvious that the

sampling in the first row is invalid as it was in Algorithm

5. The sampling in the second row may, however, be valid

depending on the value of K. Considering that we attempt to

find the dK/2e largest samples in the second row, the sampling

becomes valid if K < 2n. When a valid sampling is done in

the second row, it is also valid in the 4-th and 8-th rows etc.

With a small modification to the original framework, the algo-

rithm can support large K with asymptotic improvement to

Algorithm 4.

For large K, notice that the size of each version of min will

be at most n, for the same reason explained in Section 2.3. The

size of the imaginary array A in Figure 2 is then (n, n). So we

first let K0 ¼ MIN{K, n} in the beginning of Algorithm 6 and

replace each appearance of K at line 2,3,9,13 and 26 with K0.
As briefly mentioned, the sampling may be invalid for

some rows near the top. We first determine 2p0 , the first

row where a valid sampling can be performed. Intuitively,

2p0 is the smallest power of 2 such that K/2p0 � n. Certainly,

we have p0 ¼ 0 for small K, which justifies the first valid

sampling performed in the first row (¼20). In general, we

can determine the value of p0 for both small and large K

by p0 ¼ dlog K
K0 e. We modify the algorithm such that the

initialization of p and q0 at line 12 is done by p p0 and

q0 dK=2p0e. In the rows above the 2p0-th one, we skip

sampling. The ‘while’ loop starting at line 13 runs at most

O(logK0) iterations. The time for sampling/re-indexing after

modification is still O(n logK0). The analysis can be done in

a similar way described in Section 4.3.

We now discuss the subroutine for candidate generation. As

is in the original algorithm, we produce u[i] candidates in

column i. Initially, u[i] ¼ K0 due to the modification to

line 3. Let us determine the total number of candidates, jCj.
While candidates are produced column-wise, it is easier to

count jCj row-wise. It is the row 2p0 where we start to have

less than n candidates. In the row 1::ð2p0 � 1Þ, we have n

candidates each, which are ð2p0 � 1Þ · n ¼ OðKÞ in total.

In the row 2p0 and below, jCj is counted in a similar way

described in Section 4.1.4. As the logarithmic distance

between row 2p0 and K0 is O(logK0 � p0) ¼ O(logK02/K),

we have jCj ¼ O(K logK02/K) where the O(K) candidates

above 2p0-th row are absorbed. It is O(K log n2/K) for large

K and O(K logK) for small K. Note that jCj for small K

is consistent with the earlier analysis. This also implies that

if K ¼ O(n2), jCj ¼ O(K).

Each candidate needs O(1) time for generation, making

this subroutine O(K log n2/K) time for large K. Including

final selection and sorting, the total time we spend for large

K is then summarized to O(K logK).

While we analysed the modified algorithm mostly for large

K, this version also supports small K without affecting the

complexity given in Theorem 4.1. We end this section with

the following conclusion.

THEOREM 5.1. 8K 2 [1..n(n + 1)/2], the sorted list of K

maximum subarrays is computed in O((n + K)logK) time.

6. SPEED-UP FOR TWO DIMENSIONS

If we use the algorithm in the previous section directly for an

(n, n) array, we have an O(n2(n + K) logK) time algorithm for

K � n(n + 1)/2. This is already more efficient than the O(min

{n2C, n4}) by Bengtsson and Chen [12], where

C ¼ minfK + n log 2n‚ n
ffiffiffiffi

K
p
g.

We further speed up the algorithm for the two-dimensional

case. We introduce two different approaches based on the

sampling technique and the divide-and-conquer method.

The former achieves O(n3) time for K � n1:5=
ffiffiffiffiffiffiffiffiffiffi

log n
p

. This

solution is simpler and provides a subroutine to the latter,

which achieves subcubic complexity.

6.1. Sampling in two dimensions

For an (n, n) array, a[1..n, 1..n], we first build the row-wise

prefix sum r[1..n, 1..n] such that r[i, j]¼ a[i, 1] + a[i, 2] + � � � +
a[i, j] for each row i ¼ 1..n as shown in Figure 7. This is done

in O(n2) time. Let the portion Pk[i, j] be the rectangular region

of a[k, 1] at the top-left corner and a[i, j] at the bottom-right

corner. We use a notation sk[i, j] to represent the sum of

elements inside Pk[i, j]. The sum sk[i, j] is computed by

r[k, j] +··+ r[i, j]. There are n(n + 1)/2 combinations of k

and i for 1 � k � i � n. Computing sk[i, 1.. n] for all these

combinations spends O(n3) time.

Each portion Pk[i, n] can be regarded as a one-dimensional

array where we perform the O((n + K) logK) solution

FIGURE 7. Perfix sum computation in two dimensions.

Improved Algorithms for the K-Maximum Subarray Problem 369

The Computer Journal Vol. 49 No. 3, 2006

(Algorithm 6) using sk[i, 1..n] as its prefix sum. We get K

maximum sums from each portion and regard them as

candidates. We have total of O(Kn2) candidates. From this

set of candidates, we can select the finalKmaximum subarrays

using Algorithm 2. The total time for two-dimensional array

is then O(n2(n + K)logK).

Using the sampling technique described in Section 3,

we can reduce this complexity.

If K � n(n + 1)/2, among n(n + 1)/2 such portions, there

are at least n(n + 1)/2 � K portions whose own K maximum

subarrays are totally excluded from the final solution set.

We identify such portions and prevent them from producing

useless candidates.

For each portion Pk[i, n], we compute the maximum sum by

Algorithm 1. We get O(n2) ‘samples’, where each sample is

computed in O(n) time. We spend O(n3) time for this.

Among these O(n2) samples, we choose the K-th maximum

by the linear time selection algorithm. By doing so, we filter

out ‘unnecessary’ portions and leave only K portions that

may produce meaningful candidates for the final solution.

We apply the algorithm for the one-dimensional case on

these selected portions only. Performing O((n + K) logK)

time solution K times, O(K(n + K) logK) time is spent.

As each portion produces K candidates, there are total

of K2 candidates produced by K portions. Again, by applying

Algorithm 2, we select the K largest values. The time for

this is O(K2). Finally sorting on the K final values takes

O(K logK) time. The total time for two dimensions is there-

fore O(n3 + K(n + K) logK + K2
+ K logK). When K is small,

this complexity is simply O(n3). For rest K, such that n < K �
n(n + 1)/2, it is O(n3 + K2 logK) time. This is also cubic time

if K � n1:5=
ffiffiffiffiffiffiffiffiffiffi

log n
p

.

6.2. Divide-and-conquer

We examine the problem in divide-and-conquer methodology,

which differs from the iterative approach that is adopted by the

solutions previsouly discussed. Tamaki and Tokuyama present

an Oðn3
ffi

log log n=log n
p

Þ time, which is subcubic, for the two

dimensional maximum subarray problem based on divide-

and-conquer approach [4] utilizing Takaoka’s DMM

algorithm [3]. The simplified solution with the

same complexity is given in [5]. We modify this algorithm

to compute the K-maximum subarray problem for two

dimensions. The technique here is best illustrated by an

analogy of extending a single-track railway into a double-

track one when K ¼ 2.

6.2.1. Distance matrix multiplication

The DMM is to compute the following distance product

C ¼ AB for two (n, n)-matrices A ¼ [aij] and B ¼ [bij]

whose elements are real numbers.

cij ¼ MIN
1�k�n

faik + bkjg‚ ði‚ j ¼ 1::nÞ ð1Þ

The operation in the right-hand side of Equation (1) is called

DMM, of MIN-version, and A and B are called distance

matrices in this context. If we use MAX instead, we call it

the MAX-version.

Suppose we have an acyclic graph composed of three layers

such that each layer has vertices 1 . . . , n, and the distances

from the vertices in the first layer to those in the second are

given by A and those from the second to the third are given by

B. The intuitive meaning of DMM of MIN-version is that cij
is the shortest path distance from vertex i in the first layer

to vertex j in the third layer. Now we divide A, B, and C into

(m, m)-submatrices for N ¼ n/m as follows:

A11 � � � A1N

� � �
AN1 � � � ANN

0

@

1

A

B11 � � � B1N

� � �
BN1 � � � BNN

0

@

1

A ¼
C11 � � � C1N

� � �
CN1 � � � CNN

0

@

1

A

Matrix C can be computed by

Cij ¼ MIN
1�k�N

fAikBkjgði‚ j ¼ 1::NÞ ð2Þ

where the product of submatrices is defined similarly to

Equation (1) and the MIN operation is defined on submatrices

by taking the MIN operation component-wise. Since com-

parisons and additions of distances are performed in a pair,

we omit counting the number of additions for measurement

of the complexity. We have N3 multiplications of distance

matrices in Equation (2).

Let us assume that each multiplication of (m, m)-

submatrices can be done in T(m) time, assuming precomputed

tables are available. The time for constructing the tables is

reasonable when m is small. The time for MIN operations in

Equation (2) is O(n3/m) in total. Thus the total time excluding

table construction is given by O(n3/m + (n/m)3T(m)).

In the following, we show that T(m) ¼ O(m5/2). Thus the

time becomes O(n3/m1/2).

Now we further divide the small (m, m)-submatrices into

rectangular matrices in the following way. We rename the

matrices Aik and Bkj in (2) by A and B. Let M ¼ m/l, where

1 � l � m. Matrix A is divided into M (m, l)-submatrices

A1, . . . ,AM from left to right, and B is divided into M(l, m)-

submatrices B1, . . . ,BM from top to bottom. Note that Ak are

vertically rectangular and Bk are horizontally rectangular.

Then the product C ¼ AB can be given by

C ¼ MIN
1�k�M

fAkBkg ð3Þ

We show later that AkBk can be computed in O(l2m) time,

assuming a precomputed table is available. Then the right-

hand side of Equation (3) can be computed in

OðMm2 þMl2mÞ ¼ Oðm3=lþ lm2Þ ð4Þ
time, where the first term is for MIN operations component-

wise and the second term is for computing the M distance

products. Setting l to m
1/2, this time becomes O(m5/2).

370 S. E. Bae and T. Takaoka

The Computer Journal Vol. 49 No. 3, 2006

Rename again the matrices Ak and Bk in Equation (3) by

A and B, and show how to compute AB, that is,

MIN
1�r�l
fair + brjg‚ ði‚ j ¼ 1::mÞ: ð5Þ

Assume that the lists of length m, (a1r � a1s, . . . , amr � ams),

(1 � r < s � l), and (bs1 � br1, . . . , bsm � brm), (1 � r < s � l)

are already sorted for all r and s such that 1 � r < s � l.

The time for sorting for all the lists is absorbed in the main

complexity. Let Ers and Frs be the corresponding sorted lists.

For each r and s, we merge lists Ers and Frs to form list Grs.

This takes O(l2m) time. Let Hrs be the list of ranks of air � ais
(i ¼ 1..m) in Grs and Lrs be the list of ranks of bsj � brj(j ¼
1..m) in Grs. Let Hrs[i] and Lrs[j] be the i-th and j-th compon-

ents of Hrs and Lrs respectively. Then we have

Grs½Hrs½i�� ¼ air � ais‚Grs½Lrs½ j�� ¼ bsj � brj

The lists Hrs and Lrs for all r and s can be made in O(l2m)

time, when the sorted lists are available.

We have the following obvious equivalence.

air + brj � ais + bsj , air � ais � bsj � brj , Hrs½i� � Lrs½ j�

Fredman [26] observed that the information of ordering for

all i, j, r, and s in the rightmost side of the above formula

is sufficient to determine the product AB by a precomputed

table. This information is essentially packed in the three

dimensional space of Hrs[i](i ¼ 1..m; r ¼ 1..l; s ¼ r + 1..l),

and Lrs[j](j ¼ 1..m; r ¼ 1..l; s ¼ r + 1..l). We call this the

three-dimensional packing.

Takaoka [3] proposed that to compute each (i, j) element

of AB, it is enough to know the above ordering for all r and

s. We call this the two-dimensional packing. Note that the

precomputed table must be obtained within the total time

requirement. The two-dimensional packing will therefore

allow a larger size of m, leading to a speed-up.

For simplicity, we omit i from Hrs[i] and Lrs[i] and define

concatenated sequences H and L of length l(l � 1)/2 by

H¼H1,2 . . .H1,lH2,3 . . .H2,l . . .Hl,l�1
L¼L1,2 . . .L1,lL2,3 . . . L2,l‚ . . . Ll,l�1

For integer sequence (x1, . . . , xp), let h(x1, . . . , xp) ¼
x1m

p�1
+� � � + xp�1m + xp. Let h(H) and h(L) be encoded

integer values for H and L, where p ¼ l(l � 1)/2 and

m ¼ 2m. The computation of h for H and L for all i takes

O(l2m) time. By consulting a precomputed table table with the

values of h(H) and h(L), we can determine the value of r that

gives the minimum for Equation (5) in O(1) time. For all i and

j, it takes O(m2) time. Thus the time for one AkBk in Equation

(3) is O(l2m), since l2 ¼ m.

To compute table[x][y], x and y are decoded into H and L.

If Hs,r > Ls,r for s < r or Hr,s < Lr,s for r < s, we can say r

beats s in the sense that air + brj � ais + bsj. We first fix r and

check this condition for all such s. We repeat this for all r.

If r is not beaten by any s, it becomes the table entry, that is,

table[x][y] ¼ r. Thus the table can be constructed in

O((l(l � 1)/2)(2m)2l(l�1)/2) ¼ O(cm logm) time for some

constant c. Let us set m ¼ log n/(log c log log n). Then we

can compute the table in O(n) time.

EXAMPLE 2. m ¼ 5, 2m ¼ 10, h(H) ¼ 456, and h(L) ¼ 329.

Since H1,2 > L1,2 and H2,3 < L2,3, the winner is 2, that is,

table[456, 329] ¼ 2.

H ¼
� 4 5

� � 6

� � �

2

4

3

5‚ L ¼
� 3 2

� � 9

� � �

2

4

3

5

6.2.2. Generalization of DMM

To prepare for the K-maximum subarray problem, we extend

Equation (1) in such a way that cij is the K-tuple of K minima

of {aik + bkj j k ¼ 1..n}. We call this definition K-distance

matrix multiplication, or simply K-DMM. The intuitive

meaning of K-DMM of MIN-version is that cij is the K shortest

path distances from i to j in the same graph as described

before.

Now we generalize the MIN and MAX operations on

distance matrices. Let each element of a distance matrix

be a K-tuple of real numbers such as a ¼ (a1 . . . , aK). The

MIN operation on the two K-tuples a and b is defined by

MIN {a, b} ¼ (c1 . . . , cK), where (c1 . . . , cK) is the list of

the K smallest elements of a [b. If there are equal values

in a and/or b, the union operation here is for multisets.

Similarly we can define MAX {a, b} ¼ a [b � (c1 . . . , cK).

The extended MIN and MAX operations can be performed

by taking the smaller half and larger half from a [b, which

can be done in O(K) time by Algorithm 2. In the following we

mainly describe the MIN-version. The MAX-version can be

defined symmetrically.

If each element of distance matrices A1 and A2 is a K-tuple,

the MIN operation on A1 and A2 is defined component-wise

over corresponding K-tuples. To compute K-DMM, we use the

extended MIN operation in Equation (2), where the elements

of matrix AikBkj are K-tuples. The extended MIN operation is

also done in Equation (3).

Let K � Oð
ffi

log n= log log n
p

Þ. We consider the problem of

finding the minimum, second minimum, . . . ,K-th minimum in

Equation (5) for K� l. We note that for this range of K, we can

find the K minima in O(K) time using an extended table. That

is, the table entry for h(H) and h(L) gives the indices that give

the values {air + brjjr ¼ 1, . . . , l} in non-decreasing order,

from which we can take the first K elements in O(K) time.

EXAMPLE 3. Since H1,2 > L1,2, H2,3 < L2,3, and H1,3 > L1,3,

we have table[456, 329] ¼ 231.

We see the first term in the right-hand side of Equation (4) is

multiplied by K by the extended MIN operation and so is the

second term by the above approach, i.e. O(Km3/l + Klm
2).

Improved Algorithms for the K-Maximum Subarray Problem 371

The Computer Journal Vol. 49 No. 3, 2006

The total time is O(Kn3/m + (n/m)3T(m)), where T(m) ¼
O(Km2.5). We conclude that K minima in Equation (1)

can be computed in OðKn3
ffi

log log n= log n
p

Þ time, if

K � l ¼
ffi

log n=ð log c log log nÞ
p

.

To construct the table, we follow the method described

in the last section. If we check the number of s’s that r can

beat for each r, we can determine the rank of r in the sorted list.

Thus the time for table construction is still O(n).

REMARK 1. In the above description, we can return K-tuples

in sorted order. Thus we could have defined MIN{a, b} by

merging, rather than selecting and filtering. We took the latter

option as there might be a better algorithm to select the K

smallest values from {air + brjjr ¼ 1..l} in unsorted order.

6.2.3. Subcubic time algorithm for the maximum

subarray problem

We review the divide-and-conquer approach given in [5]. Let

a two-dimensional array a[1..m, 1..n] of real numbers be given

as input data. The maximum subarray problem here is to

maximize the sum of the array portion a[k..i, l..j], that is, to

obtain such indices (k, l) and (i, j). We assume that m � n

without loss of generality. We also assume that m and n are

powers of 2. We will mention the general case ofm and n later.

Bentley’s algorithm finds the maximum subarray in O(m2n)

time, which is cubic when m ¼ n. The central algorithmic

concept in this section is again that of prefix sum. We use

DMMs of both MIN and MAX versions in this section.

We compute the prefix sums s[i, j] for array portions

of a[1..i, 1..j] for all i and j with the boundary condition

s[i, 0] ¼ s[0, j] ¼ 0. Note that s[i, j] is a simplified form of

the notation s1[i, j] given in Section 6.1. Obviously this can be

done in O(mn) time. The outer framework of the algorithm is

given in Algorithm 7. Note that the prefix sums once computed

are used throughout recursion.

In this algorithm, the column-centred problem is to obtain

an array portion that crosses over the central vertical line with

maximum sum, and can be solved in the following way

Acentre ¼ MAX
0�k�i�1

0�l�n=2�1
1�i�m

n=2 + 1�j�n

fs½i‚ j� � s½i‚ l� � s½k‚ j� + s½k‚ l�g

In the above we first fix i and k, and maximize the above by

changing l and j. Then the above problem is equivalent to

maximizing the following.

For i ¼ 1..m and k ¼ 0..i � 1,

Acentre½i‚ k� ¼ MAX
0�l�n=2�1
n=2 + 1�j�n

f�s½i‚ l� + s½k‚ l� + s½i‚ j� � s½k‚ j�g

Let s�½i‚ j� ¼�s½ j‚ i�. Then the above problem can be

further converted into

Acentre½i‚ k� ¼� MIN
0�l�n=2�1

fs½i‚ l� + s�½l‚ k�g

+ MAX
n=2+1�j�n

fs½i‚ j� + s�½ j‚ k�g ð6Þ

The first part in the above is DMM of the MIN-version

and the second part is of the MAX-version.

Let S1 and S2 be matrices whose (i, j) elements are s[i, j� 1]

and s[i, j + n/2] for i ¼ 1..m; j ¼ 1..n/2. For an arbitrary matrix

T, let T� be that obtained by negating and transposing T. As

the range of k is [0 .. m � 1] in S�1 and S�2, we shift it to [1..m].

Then the above can be computed by

S2S
�

2 � S1S
�

1 ð7Þ

where multiplication of S1 and S�1 is computed by the MIN-

version, and that of S2 and S�2 is done by the MAX-version.

Then subtraction of the distance products is done component-

wise. Finally Acentre is computed by taking the maximum from

the lower triangle of the resulting matrix.

For simplicity, we apply the algorithm on a square array of

size (n, n), where n is a power of 2. Then all parameters m and

n appearing through recursion in Algorithm 7 are power of 2,

where m ¼ n or m ¼ n/2. We observe the algorithm splits the

array vertically and then horizontally. We define the work of

computing the three Acentre’s through this recursion of depth 2

to be the work at level 0. The algorithm will split the array

horizontally and then vertically through the next recursion of

depth 2. We call this level 1 etc.

Now let us analyse the time for the work at level 0. We can

multiply (n,n/2)and(n/2,n)matricesby4multiplicationsofsize

(n/2,n/2), and thereare twosuchmultiplications inEquation (6).

LetM(n) be the time for multiplying two (n/2, n/2) matrices. At

level 0, we obtain an Acentre and two smaller Acentre’s, spending

12M(n)comparisons.Thuswehave the followingrecurrence for

the total time T(n). The following lemma is obvious

Tð1Þ ¼ 0‚ TðnÞ ¼ 4Tðn=2Þ + 12MðnÞ

LEMMA 4. Let c be an arbitrary constant such that c > 0.

Suppose M(n) satisfies the condition M(n) � (4 + c) M(n/2).

Then the above T(n) satisfies T(n) � 12(1 + 4/c)M(n).

Clearly the complexity of Oðn3
ffi

log log n= log n
p

Þ for M(n)

satisfies the condition of the lemma with some constant c > 0.

Thus the maximum subarray problem can be solved in

Oðn3
ffi

log log n= log n
p

Þ time. Since we take the maximum

of several matrices component-wise in our algorithm, we

need an extra term of O(n2) in the recurrence to count the

number of operations. This term can be absorbed by slightly

increasing 12, the coefficient of M(n).

ALGORITHM 7. Maximum subarray for two-dimensional array.

1: If the array becomes one element, return its value.

2: Otherwise, if m > n, rotate the array 90 degrees.

//Thus we assume m � n

3: Let Aleft be the solution for the left half.

4: Let Aright be the solution for the right half.

5: Let Acentre be the solution for the column-centred problem.

6: Let the solution be the maximum of those three.

372 S. E. Bae and T. Takaoka

The Computer Journal Vol. 49 No. 3, 2006

Suppose n is not given by a power of 2. By embedding the

array a in an array of size (n0, n0) such that n0 is the next power
of 2 and the gap is filled with 0, we can solve the original

problem in the complexity of the same order.

6.2.4. The K-maximum subarray problem

Now we describe the K-maximum subarray problem. When

the recursion hits a (na, na) array for 0 � a � 1, we select K

largest sums within this (na, na) array. The algorithm for the

two-dimensional case in Section 6.1 solves this inO(n3a) time.

Let us call this algorithm Algorithm A.

Suppose K is a power of 2. If not, we can choose the next

power of 2 for K. Let K � na. First we design Algorithm 8 by

changing line 1 and line 6 in Algorithm 7.

Nextwe describe how to computeAcentre at each recursion.We

first define the subtraction of two K-tuples, where K MAX {a}

selects K largest elements in a set a.

a� b ¼ KMAXfai � bj j ai 2 a‚ bj 2 b‚ 1 � i‚ j � Kg
According to Frederickson and Johnson [15], selection

of the K largest elements in Cartesian sum X + Y is solved

in O(K) time, where jXj ¼ jYj ¼K. We can use this method for

a � b with O(K) time. If we use O(K2) time algorithm by the

exhaustive method, we can still achieve the final complexity as

shown below.

The DMM of the MIN and MAX version in Equation (6) is

replaced with the K-DMM of the MIN andMAX version. Note

that each component of S2S
�

2 and S1S
�

1 in Equation (7) is now a

K-tuple. The matrix subtraction is computed by a � b opera-

tion component-wise.

Let us assume K � Oð
ffi

log na= log log na
p

Þ. Then we

can use the K-DMM to compute the centre solution before

hitting the bottom of recursion, and establish a recurrence

equation similar to the one in Lemma 3, where the second

term of 12M(n) is replaced by 12KM(n). As the complex-

ity for Equation (7) in the recurrence is bounded

by O(n2K2) ¼ O(n2 log na/log log na) if we use the naive

method, the complexity of this part is absorbed in the

main complexity by increasing 12 slightly. The initial

condition for T becomes T(na) ¼ O(n3a). As there are

n/na · n/na subarrays at the bottom of recursion, the

total time spent by Algorithm A is O((n/na)2n3a) ¼
O(n2+a). If we use the OðKn3

ffi

log log n= log n
p

Þ time algo-

rithm for K-DMM in Algorithm 8, the total time before

hitting the bottom of recursion is OðKn3
ffi

log log n= log n
p

Þ.
Thus the total time is OðKn3

ffi

log log n= log n
p

+ n2 +aÞ for
K � Oð

ffi

a log n= log log n
p

Þ.

7. CONCLUDING REMARKS

In this paper, we studiedK-maximum subarray problem for the

one- and two-dimensional cases and presented improved

algorithms.

For the one-dimensional case, we established O((n +

K) logK) time algorithm. This solution produces Kmaximum

subarrays in sorted order, while sortedness is not assumed in

OðminfK + n log 2n‚ n
ffiffiffiffi

K
p
gÞ time solution by Bengtsson and

Chen [12]. Hence it requires extra O(K logK) time for sorting

if necessary. Taking this account, our solution is more efficient

than [12] for any K, 1 � K � n(n + 1)/2.

For the two-dimensional case, we showed that the worst-

case time is cubic or subcubic if the value of K is relatively

small. Specifically, K � n1:5=
ffiffiffiffiffiffiffiffiffiffi

log n
p

for cubic time, and

K � Oð
ffi

a log n=log log n
p

Þ, (0 � a � 1) for subcubic time.

If we find K maximum subarrays in a graphic image,

those will heavily overlap. That is, we will find many array

portions that only slightly differ in co-ordinates. If we are only

interested in strictly disjoint portions, one way to solve this

problem is the following greedy method. When we find

the maximum sum using the two-dimensional version of

Algorithm 1, we replace the value of each cell comprising the

maximum sum with�1, and repeat this algorithm. By repeat-

ing this process, we can find the second maximum sum, the

third etc. For a one-dimensional array, as each run takes O(n)

time, we can find the K-maximum subarray in O(Kn) time.

This is however solved in O(n) time [27]. It remains to be seen

if we can extend the O(n) time algorithm to two dimensions

with O(n3) time.

The sum of those maximum subarrays by this greedy

method may not be the maximum of the total sum of K disjoint

subarrays. This problem of minimizing the total sum of K

disjoint subarrays has been solved in linear time for the

one-dimensional case in [28]. To the authors’ knowledge,

the two-dimensional case has not been solved.

ACKNOWLEDGEMENTS

The authors express thanks to the referees whose constructive

comments improved the technical quality of the paper to a

great extent.

REFERENCES

[1] Bentley, J. (1984) Programming pearls: algorithm design

techniques. Commun. ACM, 27(9), 865–873.

[2] Bentley, J. (1984) Programming pearls: perspective on

performance. Commun. ACM, 27(11), 1087–1092.

[3] Takaoka, T. (1992) A new upper bound on the complexity

of the all pairs shortest paths problem. Inform Process. Lett.,

43(4), 195–199.

[4] Tamaki, H. and Tokuyama, T. (1998) Algorithms for the

maximum subarray problem based on matrix multiplication.

ALGORITHM 8. K-Maximum subarray for two-dimensional array.

1: If the array becomes na · n
a, return the solution by Algorithm A.

2..5: Same as Algorithm 7

6: Let the solution be the K-tuple of K maxima selected

from {Aleft [Aright [Acentre}

Improved Algorithms for the K-Maximum Subarray Problem 373

The Computer Journal Vol. 49 No. 3, 2006

In Proc. SODA 1998, San Francisco, CA, January 25–27,

pp. 446–452. SIAM, Philadelphia, PA.

[5] Takaoka, T. (2002) Efficient algorithms for the maximum subar-

ray problem by distance matrix multiplication. In Proc. CATS

2002, Melbourne, Australia, January 28–February 1, ENTCS,

61, pp. 191–200. Elsevier, Amsterdam, The Netherlands.

[6] Miller, R. and Boxer, L. (2000) Algorithms Sequential &

Parallel—A Unified Approach. Prentice Hall, Upper Saddle

River, NJ.

[7] Perumalla, K. and Deo, N. (1995) Parallel algorithms for

maximum subsequence and maximum subarray. Parallel

Process. Lett., 5(3), 367–373.

[8] Wen, Z. (1995) Fast parallel algorithms for the maximum sum

problem. Parallel Comput., 21(3), 461–466.

[9] Qui, K. and Akl, S. G. (1999) Parallel maximum sum algorithms

on interconnection networks. Department Computing and

Information Science, Queen’s University, Kingston, Ontario,

Canada.

[10] Bae, S. E. and Takaoka, T. (2003) Parallel approaches to the

maximum subarray problem. In Proc. Japan–Korea Workshop

on Algorithms and Computation 2003, Sendai, Japan, July 3–4,

pp. 94–104. Tohoku University, Sendai, Japan.

[11] Bae, S. E. and Takaoka, T. (2004) Algorithms for the problem

of K maximum sums and a VLSI algorithm for the K

maximum subarrays problem. In Proc. ISPAN 2004, Hong

Kong, May 10–12, pp. 247–253. IEEE Computer Soceity

Press, Los Alamitos, CA.

[12] Bengtsson, F. and Chen, J. (2004) Efficient algorithms for the k

maximum sums. In Proc. ISAAC 2004, Hong Kong, December

20–22, LNCS, 3341, pp. 137–148. Springer-Verlag, Berlin.

[13] Bae, S. E. and Takaoka, T. (2005) Improved algorithms for the

K-maximum subarray problem for small K. In Proc. COCOON

2005, Kunming, Yunnan, China, August 16–19, pp. 621–631.

Springer-Verlag, Berlin.

[14] Driscoll, J. R., Sarnak, N., Sleator, D. D. and Tarjan, R. E.

(1986) Making data structures persistent. In Proc. ACM

STOC’86, May 28–30, Berkeley, CA, pp. 109–121. ACM

Press, New York, NY.

[15] Frederickson, G. N. and Johnson, D. B. (1982) The complexity

of selection and ranking in X+Y and matrices with sorted col-

umns. J. Comput. Syst. Sci., 24, 197–208.

[16] Takaoka, T. (2004) A faster algorithm for the all-pairs shortest

path problem and its application. In Proc. COCOON 2004, Jeju

Island, Korea, August 17–20, LNCS, 4106, pp. 278–289.

Springer-Verlag, Berlin.

[17] Zwick, U. (2004) A slightly improved sub-cubic algorithm

for the all pairs shortest paths problem with real edge lengths.

In Proc. ISAAC 2004, Hong Kong, December 20–22, LNCS,

3341, pp. 921–932. Springer-Verlag, Berlin.

[18] Blum, M., Floyd, R. W., Pratt, V. R., Rivest, R. L. and

Tarjan, R. E. (1973) Time bounds for selection. J. Comput.

Syst. Sci., 7(4), 448–461.

[19] Aho, A. V., Hopcroft, J. E. and Ullman, J. D. (1974) The

Design and Analysis of Computer Algorithms.Addison-Wesley,

Reading, MA.

[20] Knuth, D. E. (1998) The Art of Computer Programming.

Addison-Wesley, Reading, MA.

[21] Brodal, G. S. (1996) Partially persistent data structures of

bounded degree with constant update time. Nordic J. Comput.,

3(3), 238–255.

[22] Becker, B., Gschwind, S., Ohler, T., Seeger, B. and

Widmayer, P. (1996) An asymptotically optimal multiversion

B-tree. VLDB J., 5, 264–275.

[23] Sarnak, N. and Tarjan, R. E. (1986) Planar point location using

persistent search trees. Commun. ACM, 29(7), 669–679.

[24] Kaplan, H. and Tarjan, R. E. (1996) Purely functional repres-

entations of catenable sorted lists. In Proc. ACM STOC’96,

Philadelphia, PA, May 22–24, pp. 202–211. ACM Press,

New York, NY.

[25] Brown, M. R. and Tarjan, R. E. (1980) The design and analysis

of a data structure for representing sorted lists. SIAM J. Comput.,

9(3), 594–614.

[26] Fredman, M. (1976) New bounds on the complexity of the

shortest path problem. SIAM J. Comput., 5, 83–89.

[27] Ruzzo, W. L. and Tompa, M. (1999) A linear time algorithm for

finding all maximal scoring subsequences. In Proc. ISMB’99,

Heidelberg, Germany, August 6–10, pp. 234–241. AAAI Press,

Menlo Park, CA.

[28] Csürös, M. (2004) Algorithms for finding maxima-scoring

segment sets. In Proc. WABI 2004, Bergen, Norway,

September 14–17, LNCS, 3240, pp. 62–73. Springer-Verlag,

Berlin.

374 S. E. Bae and T. Takaoka

The Computer Journal Vol. 49 No. 3, 2006

