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The discovery of magnetism in carbon structures containing zigzag edges has stimulated new directions in
the development and design of spintronic devices. However, many of the proposed structures are designed
without incorporating a key phenomenon known as topological frustration, which leads to localized
non-bonding states (free radicals), increasing chemical reactivity and instability. By applying graph theory,
we demonstrate that topological frustrations can be avoided while simultaneously preserving spin ordering,
thus providing alternative spintronic designs. Using tight-binding calculations, we show that all original
functionality is not only maintained but also enhanced, resulting in the theoretically highest performing
devices in the literature today. Furthermore, it is shown that eliminating armchair regions between zigzag
edges significantly improves spintronic properties such as magnetic coupling.

C
arbon-based spintronics is an exciting topic with vast potential, most notably in fast memory devices, logic
gates, transistors, and capacitors for computers, tablets, and hand-held devices1–3. This is a very attractive
alternative to existing technologies because the synthesis and processing of carbon-based nanostructures

can be relatively inexpensive and easy. Furthermore, all-hydrocarbon products can significantly reduce the need
for critical materials used by the semi-conductor industry (e.g., indium and gallium). Realizing this potential
requires an understanding of the origins ofmagnetic coupling and improvement of this key property, enabling the
design of new and significantly enhanced spintronic devices. In this paper we focus on magnetic coupling, and
uncover simple structural rules derived from graph theory that lead to enriched structure/property relationships.

Zigzag edges in sp2 carbon have demonstrated spin ordered properties in such structures as graphene nanor-
ibbons (with bases of graphene4,5 and coronene6), open nanotubes7, nanowiggles8, nanorings9–11, nanomeshes12,
nanodots13, and many more14,15. While each of these individual structures have interesting properties, spin
alignment between graphene layers can become coupled, allowing for more complicated device designs16.
Simulations have demonstrated that external magnetic fields can change the spin ordering on zigzag edges17,
and even static electric field might have the potential to influence the spin properties of nanostructured car-
bon18,19. Carbon chain links have been proposed as another method of transferring spin information between
flakes20, and theoretical studies using metal contacts and side groups have been published21,22.

However, the current literature on structural design often fails to recognize the existence of topological
frustration, a frequent property of such devices that greatly decreases the likelihood of their experimental
realization. Topological frustration occurs when all pz orbitals cannot form p bonds in sp2 hybridized carbon
due to topological reasons, leading to open electronic shells23. In classical chemistry, these structures cannot
possess a complete Kekulé structure, as every sp2 carbon is not double bonded exactly once, leading to free radical
formation. These are considered non-Kekuléan (or ‘‘concealed’’) structures24.

Attempts at synthesis of non-Kekuléan hydrocarbon structures have resulted in unstable structures that decay
at ambient conditions, destroying the desired properties at room temperature25 or that oxidize in a few days when
exposed to ambient atmosphere26. Stable non-Kekulé structures exist but generally require the introduction of
non-carbon atoms27,28. While new methods for producing carbon nanostructures with spintronic properties and
exacting edge designs are still being proposed29 or experimentally realized30, much of the current literature is
generally unaware of the adverse effects of topological frustration in the final structures.

To the best of our knowledge, Wang et al. were the first to use the specific term ‘‘topological frustration’’ in
reference to graphene nanoflakes (GNFs) with spintronic properties14. Our definition is slightly different from
that of Wang et al., as they considered particular classes of structures frustrated if there existed a topologically
frustrated substructure31. This definition is not easily quantifiable because it requires arbitrarily defined sub-
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structures that cannot always be easily identified. Our definition
considers the entire structure allowing it to be mathematically quan-
tifiable via graph theory.
Until very recently, topological frustration was thought of as a

binary operator: either a molecule is frustrated or it isn’t. It has been
demonstrated that this phenomenon can be quantified in units of
‘‘topological frustrations,’’ and each frustration yields a free radical,
making the system progressivelymore energetically unfavorable32. In
terms of graph theory, the number of topological frustrations is the
number of uncovered nodes in the maximal graph G of a structure,
provided G is constructed from V nodes correlated to sp2 carbon
atoms, and E edges being the covalent bonds between said atoms.
Additionally, by enumerating over all possible maximal matchings,

all possible locations of the free radicals can be discovered, thus
revealing critical information on delocalization of the system.

Existing carbon-based designs
One popular, yet topologically frustrated, family of structures in the
field of carbon spintronics is that of the triangular zigzag graphene
nanoflake (TZGNF, sometimes referred to as triangulene, see
Figure 1 (a)). TZGNFs are all-hydrocarbon ferromagnets, a con-
sequence of having sublattices with unequal spins that produces a
net spin, in agreement with Lieb’s theorem33. TZGNFs have been
investigated for potential use as optoelectronic34 and logic devices31,
or as spin filters whose properties scale with increasing flake size35.
However, TZGNFs possess the mathematical property of having a
number of topological frustrations equal to the number of benzene
rings on one side of the triangle minus one, which explains the
scaling of the spin filter properties with increasing flake size.
Bow-tie graphene nanoflakes, also known as Clar’s goblet

(Figure 1 (b)), constitute another class of popular structures17.
Bow-ties have been predicted to show potential application as spin
filters or as switches36,37. Interestingly, most possess topological frus-
trations, with the quantity depending on geometrical properties such
as the length of the sides and width of the neck region.
The destabilizing effects of topological frustrations and the pres-

ence of free radicals on the proposed TZGNF and bow-tie based
devices are rarely, if ever, mentioned, despite the well-documented
experimental difficulties of isolating such structures25,38. However,
topological frustration is not a prerequisite for spin ordering, and
by careful device design their detrimental effects can be avoided. One
method is to connect structures together in such a way that topo-
logical frustrations can become neighbors and annihilate each other.
This process is synonymous with free radicals combining into p
bonds. An example of this can be seen in Figure 1 (c). While this
seems like a simplemethod to avoid the presence of free radicals, care
must be taken that the connected atoms can be the sites of a topo-
logical frustration in at least some maximal resonance structure, and
that the total number of such connections is sufficient to annihilate
all the frustrations. A graph theoretical based discussion of the rules
of frustration annihilation can be found in the recent literature32.

Magnetic coupling
For the spintronic systems presented in this paper the most import-
ant functional property is magnetic coupling. Generally, magnetic

Figure 1 | (a) Kekulé structure of a triangular zigzag graphene nanoflake
(TZGNF). No matter how the double bonds are arranged, at least two

atoms will always be lacking a double bond, leading to the creation of free

radicals (or topological frustrations, in this case two). This phenomenon

can be quantified with a concept borrowed from graph theory known as

maximal matching. (b) Bow-tie graphene nanoflake, or Clar’s goblet. Note

that the topological frustrations can exist on the interior or the edge atoms

(as long as they belong to the given sublattice, for the structures presented

here), and there are many more arrangements of the Kekulé structure

possible. (c) If we connect the TZGNF from (a) with its mirror image, we

arrive at structure (c) which has no topological frustration. The free

radicals were able to recombine and form stable double bonds.

Table 1 | Example calculations for finding themagnetic coupling of two different carbon-based devices, (a) and (b) as presented in Figure 2.
Wedefine a spin of 1 as a Boolean true and0 false. By settingC to either 1 or 0, we can create aNORorNAND logic gate, respectively. A, B,
and C are fixed, and presented in white. In other words, we enforce their spin nature in the simulation, which could be thought of
experimentally as exposure to an external field. D is the only field given variable freedom, thus it can only be 1 or 0. The smallest difference
in energy between all possible functionally important states is themagnetic coupling. The left side of the logic table enumerates over all logical
combinations of all the inputs and possible outputs. Columns (a) and (b) correlate to their respective structures as found in Figure 2, and
report the energy of formation in meV as determined by tight-binding for the spin configurations of that row, zero-adjusted to the lowest
energy (most stable) state. The outputs that are most energetically favorable are colored in green underDwith an energy Etot, while the only
other possible alternative (and unfavorable) state energies are in the red D9 column with an energy E’tot. The magnetic couplings can be
deduced from the data presented, for structure (a) it is 93 meV and for (b) it is 113 meV. Also note the redundancy in the energies listed
due to the rotational symmetry of the structures

Gate A B C D D9

Device (a) Device (b)

Etot(meV) E’tot meVð Þ Etot(meV) E’tot meVð Þ

NOR 1 1

1

0 1 0 279 0 339
1 0 0 1 93 186 113 226
0 1 0 1 93 186 113 226
0 0 1 0 93 186 113 226

NAND 1 1

0

0 1 93 118 113 226
1 0 1 0 93 118 113 226
0 1 1 0 93 118 113 226
0 0 1 0 0 279 0 339
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coupling is the smallest difference in energy between spin ordered
states used in the logical execution of the device. For the two-terminal
NOT gates studied here, magnetic coupling is the difference in
energy between the ferromagnetic (FM) and antiferromagnetic
(AFM) spin states. The total energy of the non-polarized state should
be found as well, but it is not presented here as it is usually so
energetically unfavorable as to have no bearing on the determination
of the properties of the system. Note that for four-terminal NOT OR
(NOR) gates or NOT AND (NAND) gates, other possible stable
ordered states besides the FM and AFM spin configurations are
possible.
Table 1 shows example calculations for determining the magnetic

coupling of four-terminal NOR and NAND gates, using the demon-
stration structures in Figure 2. For a symmetric gate, the energies of
five distinct spin orderings must be found (including the non-mag-
netic state). While only symmetric gates are presented here, asym-
metric gates would require finding the energies of up to eight spin
ordered states, which can be obtained by simple combinatorics and
consideration of up-down spin symmetry.
Thermal fluctuations can randomly flip spin orientation, which

interferes with the operation of spin-logic devices. However, as long
as the device is accurate at least 50% of the time it is possible to
deduce the correct state using schemes such as time averaging, or
averaging the values of several devices. An estimate of the minimum
spin-flip energy necessary for device operation can be obtained from
Néel relaxation theory in the absence of amagnetic field via the Néel-
Arrhenius equation39,

tN

t0
~e{DE=kBT ð1Þ

where tN is the average amount of time for a nanoparticle’s magnet-
ization to randomly flip due to thermal fluctuations and t0 is the
switching time. DE is the kinetic energy barrier for flipping the spin,
kB is the Boltzmann constant and T is the temperature. At room
temperature (T 5 300 K), the magnetic coupling energy is equal
to40, DE 5 2kBTln(0.5) 5 18 meV.
In this paper, we propose several design variants of popular

devices that have magnetic couplings on-par with or better than
those reported in the literature today, and yet are more stable and
less reactive due to having a Kekuléan type structure. In addition, we
demonstrate the strengthening of spintronic properties by the elim-
ination of armchair regions between zigzag edges.

Kekuléan logic gate structures
The first family of carbon logic structures we will improve upon is
that of NOT gates, most commonly implemented from bow-tie
GNFs. Using the previously mentioned rules of frustration annihila-

tion, we choose TZGNFs as building blocks: by knowing that topo-
logical frustrations for TZGNFs can reside on the edge atoms,
frustrations can be eliminated by connecting such edge atoms across
flakes. This construction leads to a structure like that in Figure 1 (c)
or Figure 3 (a). The TZGNFs on each side must be of the same size to
prevent frustration. Thus structural index n is the number of benzene
rings on one side of one of the TZGNFs.
Additionally, we test a variant of this NOT gate that lacks the

connecting armchair regions (Figure 3 (b)). This rhombus GNF
(RGNF) is still Kekuléan, and the reading and writing of spin
information to such RGNFs has been theoretically demonstrated41,
including an analysis of the structural properties42. By comparing
these two structure families, we will see that not only are non-fru-
strated NOT gates viable, but we can also improve the magnetic
coupling by keeping the connecting edges as zigzaged as possible.
The second family of carbon logic structures to be addressed are

four-terminal gates, which can be programmed to function as NOR/
NAND gates. We again use the method of TZGNF subunits to con-
struct structures like that found in Figure 3 (c). If we consider a
rotationally symmetric gate with side TZGNF terminals that have
a length of n benzene rings, using the rules of frustration annihilation
we can derive that the central TZGNFmust be of a lengthm5 3(n2
1)1 1 to avoid topological frustration. Thus n is the only independ-
ent variable. It should be noted that the total structure does not
necessarily need to be rotationally symmetric to function as a logic
gate, however, for simplicity we restrict ourselves to this situation.
Once again we test a variant of this proposed logic structure by

eliminating the armchair regions, as seen in Figure 3 (d). In this
instance, the rules of frustration annihilation dictate that for n ben-
zene rings on the side terminals, the central TZGNF must have a
length m 5 33 n 1 1.
Themagnetic coupling energy as a function of the structural index

n for these four different families are presented in Figure 3. Many
trends are apparent, but the most important one is that every struc-
ture with a non-zero magnetic coupling features a coupling strength
above the critical threshold of 18 meV. This confirms that structures
without topological frustration can still maintain spintronic prop-
erties appropriate for device functionality, while still preserving all
the benefits of a stable Kekulé structure. Thus there is no drawback to
these alternative designs. In fact, our highest performingNOT logical
gates have magnetic couplings similar to, or greater than, that of the
current literature, and our NOR/NAND gates outperform those in
the literature by a factor of two to three31.
A second trend worth noting is the effect of eliminating armchair

edges. It is difficult to directly compare any two structures from
different families; a fair comparison to judge which design is better
for magnetic coupling would require each structure to have the same

Figure 2 | Example spintronic logic gate devices constructed from carbon. A demonstration calculation for finding the magnetic coupling of each is

presented in Table 1. The regions labeled A and B are the inputs, while D is the output, and C is a programmable bit. Devices (a) and (b) each can

function as NOR or NAND gates, depending on the value of the programmable bit. Both devices also have valid Kekulé structures (no topological

frustrations or free radicals), and both have the highest magnetic coupling values of their respective families (demonstrated in Figure 3).
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Figure 3 | Structure and magnetic couplings vs. structure index for (a) TZGNF-based NOT gate (b) RGNF-based NOT gate (c) TZGNF-based NOR/
NAND gate and (d) armchair-less TZGNF-based NOR/NAND gate. In the example structure images the structure index n is three. Up spin

on-site occupation is in blue, down spin occupation in red, and half/half up/down occupation in white. It is apparent that the majority of the spin

polarization occurs on the zigzag edges. Note that the axis scaling is different between the NOT and NOR/NAND gates. The best performing device for

each structure family have magnetic couplings of: (a) 135 meV (b) 179 meV (c) 93 meV and (d) 113 meV, well above the 18 meV bare minimum

threshold imposed by thermal fluctuations at room temperature (denoted as an orange horizontal line).
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number of edge and interior atoms. Another consideration is that
there are structures in each family with magnetic couplings that lie
between the highest and the lowest values of the other families.
As the structure index approaches large values, themagnetic coup-

ling oscillates with decreasing amplitude about a baseline value. This
can be seen as a consequence of approaching the limit of coupling
between two spin ordered edges as theymove further away from each
other. Thus the largest magnetic coupling values are found in the
relatively small flakes, and by comparing the best values between like
families with and without connecting armchair regions, it is readily
apparent that keeping the functional areas connected by zigzag edges
increases performance by at least 20%. An additional method to
show that junctions of pure zigzag edges are superior is to compare
the apparent large-scale GNF baseline values: the armchair-less fam-
ilies trend higher in the large-scale limit than the armchair ones.

Discussion
We identified that several carbon nanostructures with exciting spin-
tronic properties are unstable due to the presence of topological
frustrations. Using the rules of frustration annihilation, we dem-
onstrate alternative designs with no topological frustrations for a
number of NOT, NOR, and NAND logic gates with spintronic prop-
erties that are not only maintained, but also strengthened. This is a
significant improvement, since removing the topological frustrations
also eliminates the presence of free radicals. This leads to easier
fabrication and less reactivity in ambient conditions.
In addition to improving stability, we also augmented the func-

tional property of magnetic coupling by structural design choices
alone. This was achieved by minimizing or eliminating the use of
armchair corners connecting zigzag edges, which produced a signifi-
cant increase inmagnetic coupling.Wewere also able to identify new
structures whosemagnetic and spintronic properties exceeds the best
published in the literature today.
Finally, as shown in the Method Section, the use of tight-binding

as a method for characterizing the spintronic properties of carbon
has been verified by comparing results from density functional the-
ory. Tight-binding enables rapid simulations in a fraction of the
computational time associated with density functional theory, thus
providing a fast and accurate technique for the guided design of new
carbon based spintronic nanostructures for potential use in the
digital industry.

Methods
Density functional theory (DFT) calculations have been used successfully to assess the
electronic and magnetic properties of carbon-based nanomaterials. However, in
order to allow for the fast prototyping of materials for spintronic logical gate systems,
a high throughput methodology is needed. Here, we show that a model Hamiltonian
approach based on a tight-binding (TB) description of the electronic properties
(when augmented with an on-site Hubbard-like repulsion term, U) leads to quant-
itative results that are orders of magnitude faster than DFT type approaches. This
provides a fast and accurate approach for rapid prototyping of carbon based spin-
tronic nanostructures and its associated data for other materials genome type
activities.

To demonstrate the reliability of the TB 1 U model, we systematically compared
the magnetic coupling constants (i.e., for carbon NOT gates, the difference between
the energy of the AFM and FM spin states) obtained from TB 1 U against those
obtained with the DFT based methods. These simulations were performed on a
variety of graphene nanoflakes that are selected from a set of 32 systems, studied
originally by Wang et al.31 (Figure 4).

The DFT calculations presented here were performed with the Vienna Ab-Initio
Simulation Package (VASP), which employs a plane-wave basis set43,44, while Wang
et al. studied the same structures by using a numerical atomic basis set within the
SIESTA code45. The coordinates of all structures were relaxed via conjugate gradient
minimization until the maximum force on each atom was less than 0.01 eV Å21 and
the total energy convergence was determined when the difference in energy between
consecutive self-consistent iterations was DE , 1028 eV. The Perdew-Burke-
Ernzerhof generalized gradient approximation DFT functional and the projected
augmented wave (PAW) pseudopotentials46–49were used. A plane-wave cutoff energy
of 450 eV was determined to yield converged energies. As these nanoflakes are non-
periodic, only C-point sampling of the Brillouin zone was necessary. Standard FM
and AFM spin configurations were considered. In the VASP calculations, as well as in
Wang’s work31, the edges of the nanoflakes were passivated with hydrogen atoms to
increase thermodynamic stability50.

The TB 1 U calculations are based on the following Hamiltonian, expressed in
second quantization as,

H~H0zHU , ð2Þ

with

H0~{

X

s

X

i,jh i

tijc
{
iscjszt�jic

{
jscis

� �

, ð3Þ

HU~U
X

i

ni:ni;: ð4Þ

H0 is the usual TB Hamiltonian and cis c
{
is

� �

the annihilation (creation) operator

for an electron on site iwith spin s. The sum is performed over pairs of first-, second-
and third-neighbor sites. Here, tij~t�ji is the hopping integral between sites i and j and

we consider hopping interactions up to third-neighbor sites. The hopping integrals
for the first-, second-, and third-neighbors are given by tij 5 3.2, tij 5 0, and tij 5

Figure 4 | Left: the two classes of graphene nanoflakes considered for benchmarking purposes. The indices n andm correspond to the shape of the points

on each line in the energy plots. Right: magnetic couplings computed using TB 1 U and VASP as a function of index n. In these plots, the different

symbols correspond tom5 1 (&),m5 2 (X),m5 3 (.),m5 4 (m). Colors used for data on the right correspond to the colored structures on the left.
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0.3 eV, respectively51. In addition, we use a Dtij 5 0.2 eV correction on the first-
neighbor hopping for the frontier atoms to account for the different chemical
environments at the edges51. Electron-electron interactions include an approximate
treatment based on the Hubbard term HU. Its mean field expression is

HU<U
X

i

ni:
� �

ni;z ni;
� �

ni:
� �

, ð5Þ

where nis~c
{
iscis is the number operator andU is the on-site repulsion, given byU5

2.944 eV8. Here, the occupations are determined self-consistently. Once convergence
is achieved, the TBU band structure energy is calculated using

E~

ðEF

{?

En Eð ÞdE{U
X

i

n
:
i

D E

n
;
i

D E

ð6Þ

where n(E)5 n"(E)1 n#(E) is the total density of states and EF is the Fermi energy.
The second term on the right in Eq. (6) is introduced to correct double-counting of
the electron-electron repulsion in the TB 1 U band-structure energy calculation.

Figure 4 (left) shows the structure of the graphene nanoflakes considered in our
benchmark calculations. The parameter m represents the width of the joint of the
intersection of two flakes; n is the width of the flakes. The red and blue structures
differ by an offset of the joint.

The results of the magnetic coupling calculations using the two different methods
are also shown in Figure 4. Inspection of the plots clearly shows an excellent quant-
itative agreement between TB1U and DFT. We note some discrepancy between the
SIESTA results from reference 31 and our VASP results, due to basis set incomple-
teness from the former. SIESTA uses a pseudo-atomic orbital basis set45, whereas
VASP uses a plane-wave basis set which has spectral convergence properties meaning
that the result systematically converges by increasing the plane-wave basis set. This is
not true when using numerical pseudo-atomic orbital basis set as employed in
SIESTA. We observe that the TB 1 U scheme produces accurate predictions of the
magnetic coupling of well-established benchmark systems when compared to first-
principles, plane-wave DFT and thus, is capable of making reliable quantitative
predictions on the magnetic coupling of carbon nanostructures considered in this
paper.
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