
 Open access  Journal Article  DOI:10.1080/10407799108944957

Improved Alternating-Direction Implicit Method for Solving Transient Three-
Dimensional Heat Diffusion Problems — Source link 

Ming-Jr Chang, Louis C. Chow, Won Soon Chang

Institutions: University of Kentucky, Wright-Patterson Air Force Base

Published on: 01 Jan 1991 - Numerical Heat Transfer Part B-fundamentals (Taylor & Francis Group)

Topics: Alternating direction implicit method, Heat flux and Constant (mathematics)

Related papers:

 The Numerical Solution of Parabolic and Elliptic Differential Equations

 Two-equation eddy-viscosity turbulence models for engineering applications

 A Third-Order Semidiscrete Central Scheme for Conservation Laws and Convection-Diffusion Equations

 Alternating direction methods for three space variables

 Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes

Share this paper:    

View more about this paper here: https://typeset.io/papers/improved-alternating-direction-implicit-method-for-solving-
3txuqjgz27

https://typeset.io/
https://www.doi.org/10.1080/10407799108944957
https://typeset.io/papers/improved-alternating-direction-implicit-method-for-solving-3txuqjgz27
https://typeset.io/authors/ming-jr-chang-2krfalwrf0
https://typeset.io/authors/louis-c-chow-3ewzn5ixfk
https://typeset.io/authors/won-soon-chang-4bi1afqujv
https://typeset.io/institutions/university-of-kentucky-2aen3wlv
https://typeset.io/institutions/wright-patterson-air-force-base-34qrffmu
https://typeset.io/journals/numerical-heat-transfer-part-b-fundamentals-1ucspveu
https://typeset.io/topics/alternating-direction-implicit-method-2javff4a
https://typeset.io/topics/heat-flux-7llhcxzc
https://typeset.io/topics/constant-mathematics-3pwic615
https://typeset.io/papers/the-numerical-solution-of-parabolic-and-elliptic-4brtjt9xd4
https://typeset.io/papers/two-equation-eddy-viscosity-turbulence-models-for-54j7shl2v6
https://typeset.io/papers/a-third-order-semidiscrete-central-scheme-for-conservation-cdmds9b03q
https://typeset.io/papers/alternating-direction-methods-for-three-space-variables-181rczabnm
https://typeset.io/papers/approximate-riemann-solvers-parameter-vectors-and-difference-505kl765u9
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/improved-alternating-direction-implicit-method-for-solving-3txuqjgz27
https://twitter.com/intent/tweet?text=Improved%20Alternating-Direction%20Implicit%20Method%20for%20Solving%20Transient%20Three-Dimensional%20Heat%20Diffusion%20Problems&url=https://typeset.io/papers/improved-alternating-direction-implicit-method-for-solving-3txuqjgz27
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/improved-alternating-direction-implicit-method-for-solving-3txuqjgz27
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/improved-alternating-direction-implicit-method-for-solving-3txuqjgz27
https://typeset.io/papers/improved-alternating-direction-implicit-method-for-solving-3txuqjgz27


This art icle was downloaded by:  [ Laurent ian University]
On:  27 March 2013, At :  06: 23
Publisher:  Taylor & Francis
I nforma Ltd Registered in England and Wales Registered Number:  1072954 Registered office:  Mort imer House,
37-41 Mort imer St reet , London W1T 3JH, UK

Numerical Heat Transfer,  Part B: Fundamentals: An

International Journal of Computation and Methodology
Publicat ion det ails,  including inst ruct ions for aut hors and subscript ion informat ion:

ht t p: / / www. t andfonl ine.com/ loi/ unhb20

IMPROVED ALTERNATING-DIRECTION IMPLICIT METHOD

FOR SOLVING TRANSIENT THREE-DIMENSIONAL HEAT

DIFFUSION PROBLEMS
M. J.  Chang 

a
 ,  L.  C.  Chow 

a
 & W.  S.  Chang 

b

a
 Mechanical Engineering Depart ment ,  Universit y of  Kent ucky,  Lexingt on,  Kent ucky,  40506

b
 Aero Propulsion and Power Laborat ory,  Wright  Research and Development  Cent er,  Wright -

Pat t erson Air Force Base,  Ohio,  45433

Version of  record f irst  publ ished:  30 Mar 2007.

To cite this article: M.  J.  Chang ,  L.  C.  Chow & W.  S.  Chang (1991):  IMPROVED ALTERNATING-DIRECTION IMPLICIT METHOD

FOR SOLVING TRANSIENT THREE-DIMENSIONAL HEAT DIFFUSION PROBLEMS,  Numerical Heat  Transfer,  Part  B:  Fundament als:  An

Int ernat ional Journal of  Comput at ion and Met hodology,  19:1,  69-84

To link to this article:  ht t p: / / dx.doi.org/ 10.1080/ 10407799108944957

PLEASE SCROLL DOWN FOR ARTI CLE

Full terms and condit ions of use:  ht tp: / / www.tandfonline.com/ page/ terms-and-condit ions

This art icle may be used for research, teaching, and private study purposes. Any substant ial or systemat ic
reproduct ion, redist r ibut ion, reselling, loan, sub- licensing, systemat ic supply, or dist r ibut ion in any form  to
anyone is expressly forbidden.

The publisher does not  give any warranty express or implied or make any representat ion that  the contents
will be complete or accurate or up to date. The accuracy of any inst ruct ions, form ulae, and drug doses should
be independent ly verified with pr imary sources. The publisher shall not  be liable for any loss, act ions, claims,
proceedings, demand, or costs or damages whatsoever or howsoever caused arising direct ly or indirect ly in
connect ion with or ar ising out  of the use of this m aterial.

http://www.tandfonline.com/loi/unhb20
http://dx.doi.org/10.1080/10407799108944957
http://www.tandfonline.com/page/terms-and-conditions


Numerical Heat Transfer, Part B, vol. 19, pp. 69-84, 1991 

IMPROVED ALTERNATING-DIRECTION IMPLICIT 
METHOD FOR SOLVING TRANSIENT THREE- 
DIMENSIONAL HEAT DIFFUSION PROBLEMS 

M. J .  Chang and L. C. Chow 
Mechanical Engineering Department. Universify of Kentucky, 

Lexington. Kentucky 40506 

W. S. Chang 
Aero Propulsion and Power Laboratory, Wright Research and Development 

Center, Wright-Pa~erson A i r  Force Base. Ohio 45433 

The conventionrrl three-dimensional alterm'ng-direcrian implicit (AIM) method is m o w e d  

by introducing an f factor (0 < f < I ) .  This rnodifieation allows the lime step limit to be 

increased by a factor of Ilf with the solutions remaining srablc and high accuracy being 

retained. This new method is tested for two different boundary condirians: a constnnt heat 

flur and a sudden healing of the su#face to a constant temperature. I n  addifion, il is 

compared with the popular B M ~  and D o u g h  methods, the resub showing that the new 

AD1 method has higher accumcy and requires less computer storage than those methods. 

INTRODUCTION 

The diffusion of heat in solids has numerous applications in various branches of 

science and engineering. Generally, there are two different approaches to deal with this 

type of problem: analytical and numerical. The analytical methods are usually only 

applicable to linear problems with simple geometries. On the contraly, the numerical 

methods are useful for handling practical problems involving nonlin~:arities, complex 

geometries, andlor complicated boundary conditions. 
Thibault [I] compared nine numerical schemes for the solution of the three-di- 

mensional heat diffusion equation. Considering the relative accuracy, the computation 

time, and the computer core storage requirement, he recommended alternating-direction 

implicit (ADI) finite difference methods as being among the most preferred methods. 

The conventional two-dimensional AD1 method was introduced by Peaceman and Rach- 

ford [2] in 1955. The advantage of the AD1 method is that only tridiagonal matrices need 

to be solved. However, when extended to three dimensions, the conventional AD1 method 

is conditionally stable, and very small time steps are required to ensure convergence and 

stability. Other forms of the AD1 method include the Douglas method 131 and the Brian 

method [4]. These two AD1 methods are unconditionally stable and possess the advantages 

of the implicit scheme with no limitation on size of the time step. However, Thibault [ l ]  

pointed out that these two unconditionally stable AD1 methods cannot retain accuracy if 

the time step is more than 2 times larger than the time step limit required for the 

conventional AD1 method. 

This work is supported by Wright Research and Development Center, contract F33615-87-C-2777, 
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70 M. J. CHANG ET AL. 

NOMENCLATURE 

truncation error function, defined in Eq, 

(27) 
number of nodal points in x ,  y, and r 

directions 

thermal conductivity 

half length of parallelepiped 

dimensionless half length of 

parallelepiped 

characteristic length 

surface heat flux 

dimensionless surface heat flux 

time 

temperature 

temperature at intermediate time steps 

space coordinates 

dimensionless space coordinates 

thermal diffusivity 

central difference operator 

averaee temoerature error 

e dimensionless temperature 

A stability parameter, defined in Eq. ( 8 )  

5 amplification factor of truncation error 

function 

T dimensionless time. or Fourier number 

Subscripts 

a analytical solution 

i, j, k mesh point indices in x, y, and z 

directions 

w wall surface of parallelepiped 

x, y. z indicate x ,  y, and z directions 

0 initial 

I ,  2, 3 indicate x ,  y, and r directions 

Superscript 

n time index 

In this paper, the conventional three-dimensional AD1 method is modified by an f 

factor (0 < f < I). A very important characteristic of this modification is that it is 

consistent with physical considerations and is not just based on mathematical manipu- 

lations. This modification allows the time step limit to be increased by approximately a . .. 

factor of Ilf without compromising significantly on the accuracy of the numerical solution. 

This new AD1 method is presented and compared with the Brian and Douglas AD1 methods - 

for two cases where analytical solutions are available. Compared with the Brian and 

Douglas methods, this new AD1 method has higher accuracy when large time steps are 

used. Also, the present method requires less computer storage. 

MATHEMATICAL FORMULATION 

First, we will look at the formulations of existing three-dimensional AD1 methods: 

the conventional, the Brian, and the Douglas methods. Then the proposed AD1 method 

designed to overcome the shortcomings of these existing AD1 methods will be introduced. 

The differential equations for the three-dimensional heat diffusion equation can be 

written as 

Introducing dimensionless parameters, 
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AD1 METHOD FOR 3-D DIFFUSION PROBLEMS 

Eq. ( I )  becomes 

Conventional AD1 Method  

In the conventional AD1 method, the heat diffusion equation is solved implicitly 

in turn in the three coordinate directions for 113 of the time increment each 151. The basic 

finite difference equations for each of the three 113 time steps can be expressed as 

For convenience of analysis, we let AX = AY = AZ. After rearranging, Eq. (3) 

becomes 

Similar equations can be easily derived from Eqs. (4) and (5:) for the y and z 

directions. Physically, an increase in the central nodal temperature or an increase in any 

one of the neighboring nodal temperatures at the old time step should, with other conditions 

remaining unchanged, lead to an increase in the central nodal temperature at the next - - 
113 time step. This implies that all the coefficients on the righthand side of Eq. (6) must 

have the same sign (positive) as the coefficient of U,,,,,. In other words, negative coef- 

ficients on the righthand side of Eq. (6) make the equations physically unrealistic and 

may lead to low accuracy [6]. Similar statements can be made regarding the equations 

for the y and z directions. 

On the righthand side of Eq. (6), only the coefficient for 02j,k could be negative if 

the time step AT is large. In order to have a positive coefficient for O;j,k, it is required 

that 

Since A X  = AY = AZ, the equations for the y and z directions require the same 

condition as in Eq. (7) to hold. The other important problem to consider is stability. We 

define the stability parameter A as 
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M. J. CHANG ET AL. 

The stability criterion for the conventional three-dimensional AD1 method is [5] 

A 5 1.5 (9) 

Equation (7) is the condition for the solution of the conventional three-dimensional 

AD1 method to be physically realistic and have good accuracy. Equation (9) is the criterion 

for the solution to be stable. The main disadvantage of the conventional AD1 method is 

that it is conditionally stable and a very small time step is required. 

Brian's AD1 Method 

The method proposed by Brian [4] is similar to the conventional AD1 method. 

However, the successive approximations of temperature are calculated at the half time 

step. The basic equations of Brian's AD1 method are given as 

Subtracting Eq. (LO) from Eq. (I I), we have 

Subtracting Eq. (I I) from Eq. (12), we have 

Equations (10). ( 1  l ' ) ,  and (12') are the simplified equations suggested by Brian. 

After rearranging, the following equations can be obtained: 
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AD1 METHOD FOR 3-D DIFFUSION PROBLEMS 

Brian showed that his scheme is unconditionally stable. However, there also exist 

negative coefficients on the righthand sides of the discretization equations, Eqs. (13)- 

(15). As we mentioned earlier, these negative coefficients are physically unrealistic. 

Douglas's AD1 Method 

Another unconditionally stable three-dimensional AD1 method was presented by 

Douglas (31. The algorithm is given by the following three equations: 

i , ,  - j I 

AT 
= 56!(ui.jr + 0;j.t) + 6:o;j.n + 6 X j . k  (16) 

Subtracting Eq. (16) from Eq. (17), we have 

Subtracting Eq. (17) from Eq. ( la) ,  we have 

Equations (16). (17') and (18') are the simplified equations and can be rearranged 

as 

D
o
w

n
lo

ad
ed

 b
y
 [

L
au

re
n
ti

an
 U

n
iv

er
si

ty
] 

at
 0

6
:2

3
 2

7
 M

ar
ch

 2
0

1
3
 



M. J. CHANG ET AL. 

The unconditional stability of this algorithm was proven by Douglas 131. However, 

as in Brian's AD1 method, Douglas's AD1 method has negative coefficients on the 

righthand sides of the discretization equations, Eqs. (19)-(21). 

New AD1 Method 

As we have seen above, the three existing AD1 methods all have shortcomings. 

The conventional AD1 method is conditionally stable, and very small time steps are 

required to satisfy the stability criterion. All three AD1 methods have a common problem: 

negative coefficients in their discretization equations that are physically unrealistic. 

In light of the above observation, an improved AD1 method is proposed. The 

conventional three-dimensional AD1 method is modified by introducing an f factor (0  < 
f < I). Consider a control volume as shown in Fig. 1 : the heat fluxes from the directions 

in which the equation is implicit are multiplied by a factor (3 - 2f) and the heat fluxes 

from the remaining four directions are multiplied by a factor f. As we can see, the total 

heat flux counted in each direction through a full time step remains unchanged. The finite 

difference equations, Eqs. (3)-(5). of the conventional AD1 method are modified by an 

f factor and become 
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AD1 METHOD FOR 3-D DIFFUSION PROBLEMS 

First  S t e ~  

n+1/3 
(3-2f) Q i - , , j , k  

Second Step 

n+ 1 / 3  
(f) Qi-l,j,k --b 

Third SteD 

Fig. I The f factor modified AD1 method 
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M. J. CHANG ET AL. 

After rearranging Eq. (22), the following discretization equation can be obtained: 

Similar equations can be easily derived from Eqs. (23) and (24) for the y and z 
directions. On the righthand side of Eq. (25), only the coefficient for central nodal 

temperatures at a previous time step could be negative. To avoid a negative coefficient, 

we require 

The stability criterion can be determined by von Neumann's method. Assuming 

that there exists an error function E,,,,,,, at each nodal point in the following form [7], 

where the parameter 5 is the amplification factor and n = 7/87,  the error will be bounded, 

provided that 

This is the condition for the solution to be stable. It can be shown for these linear 

problems with constant coefficients that the error function E,,,.,, also satisfies the finite 

difference equation, Eq. (25), and two similar equations for they and z directions. With 

AX = AY = AZ, substitution of E,,,,,,, from Eq. (27) into these equations gives 

where g = 3 - 2f. 
Here, t,, C2, and 5, are the amplification factors for the finite difference equations 

for the x, y ,  and z directions, respectively. Since these equations are used alternately, 

the stability condition should be 
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AD1 METHOD FOR 3-D DIFFUSION PROBLEMS 

Rearranging [1[2[3 as follows, 

the stability condition can be written as 

The stability criterion can be obtained from either one of the following three con- 

ditions: 

For the condition la( 5 1, since the value of a is always less than unity, we need 

only consider the condition a 2 - 1. This leads to 

1.5 
A 5 

( f )  sin2 (P3AX12) - (g - f )  sin2 (P2AX/2) 

It should be mentioned here that the parameter A defined in Eq. (8) is always 

positive. The righthand side of the above equation has a minimum value when sin2 @,AX/ 

2) = I and sin2 (P2AX/2) = 0. So the stability criterion becomes 

Comparing Eqs. (26) and (31) with Eqs. (7) and (9), the time step limit for the 

conventional AD1 method can now be increased by a factor of Ilf by using this new AD1 

method. The computational results, which will be discussed later, show that this modi- 

fication allows the time step limit to be increased by 2 orders of magnitude with f = 

0.01, and the solutions still remain stable with high accuracy. 

Also, it should be mentioned, this new AD1 method only requires two-thirds of the 

computer storage compared with the Brian or Douglas methods. This is because only the 

temperatures at one intermediate time step need to be stored. 

RESULTS AND DISCUSSION 

To validate the new AD1 method, the finite difference solutions obtained are tested 

for a simple geometry with two different boundary conditions: a constant surface heat 
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78 M. 3. CHANG ET AL. 

flux and a sudden heating of the surface to a constant temperature. In addition, it is 

compared -- with the Brian and Douglas - methods. 

Consider a parallelepiped ( -  L, 5 x 5 L , ,  -L2 5 y 5 L,, -L, 5 z 5 L,), shown 

in Fig. 2, having constant thermophysical properties and initially at a uniform temperature 

0, = 1 .O.  At time T > 0, the parallelepiped is allowed to have heat flow through its 
boundaries. To obtain the temperature distribution within the parallelepiped, Eq. (2) must 

be solved with the following initial conditions: 

where L,  is chosen as the characteristic length LC, L; = L2/L,, and L; = L,/L,. 

Because of symmetry, only the regions 0 5 X 5 I, 0 5 Y 5 L;, and 0 5 Z 5 

L; need to be solved. The boundary conditions are 

J 
Fig. 2 Coordinate system: parallelpiped 
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AD1 METHOD FOR 3-D DIFFUSION PROBLEMS 79 

where y, = q,,,LllkTo is dimensionless surface heat flux. 

In this paper, each numerical method will be used to solve the three-dimensional 

heat diffusion equation for the two different boundary conditions. To evaluate the accuracy 

of the various methods, an average temperature error is used. Lt is defined as the square 

root of the average of the squares of the error between the predicted temperature and the 

analytical temperature. It is given by 

I J K  

C C C [Oij.t - O,l2/IJK 
i = l  j = l  "' 

where 0, is the analytical dimensionless temperature. 

Case 1: Constant Surface Heat Flux 

Consider a parallelepiped initially at a uniform temperature Oo = 1 .O.  At time T = 

0, all faces of the parallelepiped are exposed to a constant surface heat flux q,, = 0.5. 

For a parallelepiped exposed to a constant surface heat flux, the temperature distribution 

as a function of time can be represented by the summation of three one-dimensional 

solutions [I]: 

+ i erfc ( a m  :$ - x)] 

+ i erfc ( (2m +2Ei - Y 

+ i erfc ( (2m + 1 ) ~ ;  - z ) ] ]  
2 \ / i  
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80 M. J. CHANG ET AL. 

Presented in Fig. 3 are the results obtained for a cube exposed to a constant surface 

heat flux ij,. = 0.5 at time T = 2.0. Twenty nodal points are used in each direction for 

this calculation. According to Eq. (7). the time step limit required for the conventional 

AD1 method (f = l .O) is 0.001875. In Fig. 3 the solutions from the conventional AD1 

method show good accuracy with time step 0.002 but become unstable as the time step 

is increased. The Brian and Douglas methods are unconditionally stable, but the negative 

coefficients in the discretization equations cause their solutions to be physically unrealistic. 

The results show that their solutions have good accuracy if the time step is smaller than 

0.2 but become more and more inaccurate if the time step is increased. On the contrary, 

the proposed ADI method with f = 0.1 and f = 0.01 is accurate even when a time step 

of 2.0 is used. The average temperature error is less than 0.007. It can be seen from 

Eqs.. (26) and (3 I) that this f factor AD1 method has a much higher time step limit than 

the conventional AD1 method. 

Shown in Fig. 4 are the results at time T = 10.0 for a cube with the same boundary 

condition as a constant surface heat flux i j ,  = 0.5. For very small time steps, every 

method yields poor accuracy. This is due to the amount of calculating involved and the 

accumulation of round-off errors. For time steps greater than 0.01, the Brian and Douglas 

methods are always stable but yield poor accuracy with average temperature errors up to 

about 0.15. The new AD1 method with f = 0.01 predicts the results exceptionally well; 

the average temperature errors are always less than 0.02 for time steps larger than 0.01. 

However, the new AD[ method with f = 0. I only predicts well up to a time step of 0.5 

because of the lower time step limit compared with that using f = 0.01. 

0.6 

CONSTANT HEAT FLUX 

0.5 ., 0 1 - 0 . 0 1  

i A 1.0.1 

2 C o n v e n t i o n a l  AD1 Method 
0.4 

n B r l s n  Melhod 

e 
S * D o u g l a s  ~ s l h o d  

-4 
m 
k 0.3 r. 2 . 0  

I -J-K-  20 

C 
& 0.2 
e 
P) 

4 
0.1 

0.0 

0.001 0.010 0.100 1.000 10.000 

Time Step. AT 

Fig. 3 Average temperature error for a cube with constant wall heat flux. T = 2. 

D
o
w

n
lo

ad
ed

 b
y
 [

L
au

re
n
ti

an
 U

n
iv

er
si

ty
] 

at
 0

6
:2

3
 2

7
 M

ar
ch

 2
0
1
3
 



AD1 METHOD FOR 3-D DIFFUSION PROBLEMS 81 

CONSTANT HEAT FLUX 

0 I = O . O l  

A 1 - 0 . 1  

C o n v e n t i o n a l  AD1 M e t h o d  

B r i a n  Method 

# Douglas  Method 

7. 1 0 . 0  

1.J.K- 2 0  

0.00 1 0.010 0.100 1.000 10.000 

Time Step. AT 

Fig. 4 Average temperature error for a cube with constant wall heat flux, s = 10. 

Figure 5 shows the variation of the average temperature error with the f factor at 

T = 10.0 for a cube with the same boundary condition as a constant surface heat flux 

?jw = 0.5. It can be seen, as long as the solutions do not diverge, that temperature errors 

remain almost the same with different values of the f factor. In other words, the value 

off we chose does not influence the numerical results as long as the solutions remain 

stable. The results for a very small time step, AT = 0.001, always have larger errors 

due to the accumulation of round-off errors mentioned earlier. Also, we can see that the 

solutions are more stable with smaller values of the f factor in the sense that much larger 

AT can be used. 

C a s e  2: Cons tan t  Wall Tempera ture  

In this case, the parallelepiped, initially at a uniform temperature 0, = 1.0, has 

its surface temperatures suddenly increased and maintained at a constant temperature 

0, = 2.0. The analytical temperature can be easily obtained by using the method of 

separation of variables [S]: 
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M. J. CHANG ET AL. 

CONSTANT HEAT FLUX 

0.5 - . 
u 0 AT- 0.001 

i 
A AT- 0.01 0 

L. 
t AT' 0.1 0.4 - 

P) t 67' 1.0 

2 
d 7. 10 .0  m 
& 0.3- I.J.K. 20  
P 

L;.L;. 1 . o  !2 
B 

& 0.2 - - 
e V 

k' 
4 

0.1 - 

l-factor 

Fig. 5 Variation of average temperature error with f factor for a cube with constant wall heat flux, T = 

10. 

where 

6 ~ ,  - e,.) (2m - I)T . (2n - I)T . (21 - I )T 
am"/ = sin 

2 
sln 

2 
sln 

TJ (2m - 1)(2n - 1)(21 - 1) 2 

Presented in Fig. 6 are the results obtained for a cube at time T = 0.2. At this 

time, the temperature field is still undergoing transient development. Similar to case I 

with constant surface heat flux, the conventional AD1 method becomes unstable if the 

time step is greater than 0.002. The Brian and Douglas methods predict the temperature 

field accurately only with a time step less than 0.02 and become inaccurate if the time 

step is increased beyond 0.02. The new AD1 method with both f = 0.1 and f = 0.01 

always yields better accuracy than the other methods; the average temperature error 

increases only slightly with the time step and is about 0.03 with a time step of 0.1. 

Shown in Fig. 7 are the results for a cube at time T = 1.0. At this time, the 

temperature field has already reached steady state. The Brian and Douglas methods predict 

the steady state temperature field rather poorly if the time step is greater than 0.1. The 

average temperature error is about 0.5 with a time step of 1 .O. On the contrary, the new 
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Time Step. A r  

Fig. 6 Average temperature error for a cube with constant wall temperature, T = 0.2, 

0.00 1 0.010 0.100 1.000 

Time Step. AT 

Fig. 7 Average lemperature error for a cube with constant wall temperature, 7 = 1 .  
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AD1 method predicts the steady state results very well. With a time step of 1.0, the new 

AD1 method yields solutions with an average temperature error about 0.024 for f = 0.1 

and about 0.016 for f = 0.01. 

CONCLUSIONS 

In this paper, an f factor AD1 method for solving transient three-dimensional heat 

diffusion problems is introduced. An important characteristic of this new AD1 method is 

that the resulting finite difference equations are consistent with physical considerations. 

Compared with the conventional AD1 method, this modification allows the time step to 

be increased by about a factor of Ilf without compromising the accuracy of the numerical 

solution. Compared with the conventional AD1 method and the Brian and Douglas AD1 

methods, this new ADI method yields higher accuracy and requires less computer storage. 
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