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Abstract

Background: Identifying essential genes in genome-wide loss-of-function screens is a critical step in functional

genomics and cancer target finding. We previously described the Bayesian Analysis of Gene Essentiality (BAGEL)

algorithm for accurate classification of gene essentiality from short hairpin RNA and CRISPR/Cas9 genome-wide

genetic screens.

Results: We introduce an updated version, BAGEL2, which employs an improved model that offers a greater

dynamic range of Bayes Factors, enabling detection of tumor suppressor genes; a multi-target correction that

reduces false positives from off-target CRISPR guide RNA; and the implementation of a cross-validation strategy that

improves performance ~ 10× over the prior bootstrap resampling approach. We also describe a metric for screen

quality at the replicate level and demonstrate how different algorithms handle lower quality data in substantially

different ways.

Conclusions: BAGEL2 substantially improves the sensitivity, specificity, and performance over BAGEL and establishes

the new state of the art in the analysis of CRISPR knockout fitness screens. BAGEL2 is written in Python 3 and

source code, along with all supporting files, are available on github (https://github.com/hart-lab/bagel).

Background
The landscape of preclinical studies to identify novel

cancer targets has been fundamentally altered by the de-

velopment of high-throughput genome-wide CRISPR

knockout screens [1–3]. The CRISPR-Cas9 system offers

significant advantages in specificity and effectiveness of

gene knockout [3, 4] over the shRNA knock-down tech-

nology that preceded it. Genome-scale knockout screens

enable the unbiased identification of genes whose dis-

ruption impedes proliferation compared to wildtype cells

(“essential genes”), and curation of pan- and context-

dependent essential genes is being exploited to identify

potential drug targets for specific tumor genotypes [3,

5–10]. Precise analysis of genetic screen data is particu-

larly important given recent evidence that off-target ef-

fects can mislead targeted drug development efforts [11].

Previously, we developed an effective algorithm, the

Bayesian Analysis of Gene Essentiality (BAGEL), for

classifying essential and non-essential genes in pooled li-

brary gene perturbation screens using either CRISPR or

shRNA [12, 13]. BAGEL calculates the log likelihood

that a gene belongs to either the “essential” or the “non-

essential” class, and returns a log Bayes Factor (BF) that,

in the context of a typical genome-scale knockout screen

in a cell line, represents a blend of statistical confidence

and biological effect size. The classifier is trained using

gold-standard reference sets of likely core-essential and

non-essential genes, themselves derived from genetic

screens and gene expression studies [12, 14]. Provided
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appropriate care is taken to prevent circularity, these

gold standards also offer an unbiased yardstick against

which to compare the performance of other algorithms,

screening technologies, and experimental designs.

Despite its utility, the previous version of BAGEL

has some notable limitations. Firstly, it used a trun-

cated fold change model to calculate Bayes Factor,

which capped the dynamic range of Bayes Factors.

Secondly, though the bootstrapping approach it uses

to train models is robust, it is computationally expen-

sive, resulting in long run times under normal condi-

tions. Lastly, there is no provision for correcting copy

number amplification effects [5, 9, 15] or multi-

targeting gRNA effects. To address these limitations,

we have developed a new version of the software,

BAGEL2 [16, 17], which we present here. While the

core algorithm remains intact, we present several

changes that improve the run time and accuracy of

BAGEL, including a correction for gRNA off-target

effects and an increased dynamic range of BFs that

enables the detection of tumor suppressor genes

whose knockout gives rise to increased cellular fitness.

While BAGEL2 does not contain a method to address

copy number artifacts, we describe a pipeline using

CRISPRcleanR [18] for correcting these effects.

Implementation
BAGEL pipeline summary

BAGEL takes a tab-separated plain text file of gRNA

read counts as input. We employed a third-party appli-

cation, CRISPRcleanR [18], to calculate fold change with

copy number effect correction. Alternatively, there is a

built-in “fc” function in BAGEL application to calculate

fold change if copy number correction is not desired.

After that, essentiality was calculated using the BAGEL

“bf” function from the fold change file. Finally, bench-

marking by precision and recall of reference genes was

conducted using the BAGEL “pr” function.

Preparing a read count file

If a screen analysis starts from a fastq file of reads, align-

ment into reference sgRNA library can be conducted

using Bowtie version 1.1.2. Since we expect no duplicate

sgRNAs in the library, parameters -v 0 -m 1 to search

reads with no mismatches (-v 0), and discarding reads

which map to multiple index sequences (-m 1) was used

for best accuracy. Then, read counts can be generated by

parsing the resulting SAM file. An alternative pipeline is

to use MAGeCK [19] to tabulate sgRNA reads.

Calculate fold change from read count file and correct

copy number effect using CRISPRcleanR

CRISPRcleanR was downloaded from github (https://

github.com/francescojm/CRISPRcleanR). To run CRIS

PRcleanR, we built alignment information of a CRISPR

library. We mapped positions and targeted exons of

gRNAs using gencode annotation v28 for genome build

GRCh37. Since CRISPRcleanR generates one summa-

rized fold change for all input replicates, we ran CRIS

PRcleanR for each replicate separately. Then, we pasted

them into one file as separate columns. Otherwise this,

we ran CRISPRcleanR by the default practice provided

by the author.

Bayes Factor (BF) calculation—BAGEL2 “bf” function

The BAGEL2 “bf” function is a tool for calculating the

log Bayes Factor (BF), which quantifies the degree of

support for selecting one model over another (i.e., essen-

tial nor non-essential). The BF can be thought of as a

combined metric of statistical significance and effect size

[12]. The formula of Bayes Factor defined previously is

as below:

BF ¼
PrðDjessentialÞ

PrðDjnon-essentialÞ

¼

R
PrðDjk; essentialÞ PrðkjessentialÞdk

R
PrðDjk; non-essentialÞ Prðkjnon-essentialÞdk

To implement this, BAGEL2 resamples all genes in

the dataset into training set and test set by either

10-fold cross-validation or bootstrapping, a user-

selectable option. In each iteration of sampling,

BAGEL2 uses kernel density estimation to generate

fold change distributions for essential and non-

essential models, using all guides targeting control

essential or non-essential genes in the resample. A

guide-level log BF is then estimated as the log-ratio

of these two distributions, Pr(Ess)/Pr(Non) (Fig. 1b,

gray curve). However, as described in Hart and Mof-

fat [13], this log ratio is unstable outside the region

of dense data for both distributions (Fig. 1b, red

dashed lines). Where BAGEL truncates data to the

stable region, BAGEL2 builds a linear regression

model of log likelihood ratio within this region to

extrapolate log ratios outside it (Fig. 1b). Moreover,

whereas BAGEL used a hardcoded limit to set the

truncation region, BAGEL2 employs a log decay

function to calculate the thresholds, making BAGEL2

more useful for small CRISPR library screens (Add-

itional file 1: Fig. S1). Core-essential (CEGv2) and

non-essential (NEG) gene sets are defined in our

previous studies [12, 13]. An sgRNA-level log Bayes

Factor (hereafter, all BF are log BF) is calculated

using this regression model, and replicate-level

sgRNA BF is summed to a screen-level sgRNA BF.

The gene-level Bayes Factor is calculated as the sum

of sgRNA-level BF.
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Correcting multi-targeting effects

The dropout phenotype of a guide RNA is the sum

of the effects from target gene knockout, locus-

independent DNA cleavage, and off-target effects

from other loci, possibly including non-additive gen-

etic interactions. In an effort to remove guide-level

effects that are independent of the targeted gene, we

developed a multi-targeting correction algorithm. The

algorithm estimates and removes the “incremental BF”

induced by off-target DNA cleavage sites within one

mismatch, while excluding the confounding effects of

off-target gene knockout. For example, consider the

case of a target gene A with four sgRNAs. Of these,

gRNA1 targets multiple other protein-coding genes,

gRNA2 targets gene A and off-target non-coding re-

gions, and gRNA3-4 target only gene A (Add-

itional file 1: Fig. S2). Then, the Bayes Factor of

gRNA1 can be described as the sum of the BF from

the loci it targets, plus potential interaction terms:

BFðgRNA1Þ ¼ ðgA þ tÞpper fect

þðgB � wB þ tÞpper fect þ ðgC � wC þ tÞpper fect

þðgD � wD þ tÞp1bp − mismatch þ ðgD � wD þ tÞp1bp − mismatch…

where g ¼ ef fect of target gene knockout;

gA ¼ On target gene;

gB; gC ¼ Of f target protein coding genes ðperfect matchÞ

gD; gE ¼ Of f targets protein coding genes ð1bp mismatchÞ:

t ¼ DNA cleavage ef fect;

w ¼ genetic interaction to other target genes ð1 ¼ no interactionÞ;

p ¼ probability of cleavage

Since guides that target multiple protein-coding loci

can induce off-target locus-specific effects, it is inappro-

priate to use gRNA1 to calculate a locus-independent

DNA cleavage effect, and gRNA1 is discarded. To calcu-

late the incremental BF, we only considered gRNAs tar-

geting only gene A plus potential off-target non-coding

regions. Thus, the BF of gRNA2-4 are:
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Fig. 1 Improvement of BAGEL algorithm. a A brief flow diagram of CRISPR pooled library screen analysis using BAGEL pipeline. b Improvements

in the model selection algorithm. The red and the blue curves indicate kernel density plots of fold changes of reference core-essential and non-

essential genes, respectively. The gray curve indicates the ratio (difference in logs) of core-essential density to non-essential density at the point

of fold change. Since there are few data points in the marginal area, BAGEL limited calculation area of fold change between the point that blue

curve hits the density threshold (2−7 was used in BAGEL) as a lower bound and the first local minimum ratio as an upper bound (red dashed

lines). In BAGEL2, we employed linear regression to interpolate marginal area outside this region (black line). c Comparison of gene essentiality

(Bayes Factor) between BAGEL and BAGEL2 using RPE-1 cell line screened by TKOv3. Known tumor suppressors (NF2, KIRREL, and KEAP1) that are

scored BF ~ − 20 with hundreds of other genes in BAGEL were measured as much lower Bayes Factor and distinguished clearly from others in

BAGEL2. d Dynamic range of BAGEL2 results were increased from BAGEL across screens in the Avana dataset. e Jaccard index between predicted

essential gene sets in Avana by 10-fold cross-validation and bootstrapping. f Pearson correlation coefficient of essentiality across 517 cell lines in

Avana data between frequently amplified genes near ERBB2 on chromosome 17. After CRISPRcleanR is applied, essentiality correlation due to

copy number amplification effect was successfully corrected. g Prediction performance benchmark between BAGEL, BAGEL2 applied linear

interpolation and 10-fold cross-validation (BAGEL2 Raw), and BAGEL2 + CRISPRcleanR applied version (BAGEL2 CCR applied)
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BFðgRNA2Þ ¼ ðgA þ tÞpper fect þ ðtÞpper fect þ ðtÞpper fect…

þðtÞp1bp − mismatch þ ðtÞp1bp − mismatch…

¼ gA þ nper fecttpper fect þ n1bp − mismatchtp1bp − mismatch

BFðgRNA3; 4Þ ¼ ðgA þ tÞpper fect

Then, the incremental BF between gRNA2 and the

average of gRNA3 and gRNA4 is:

BF Increment ¼ BFðgRNA2Þ −meanðBFðgRNA3; 4ÞÞ
¼ ðnper fect − 1Þtpper fect
þn1bp − mismatchtp1bp − mismatch

Aggregating data across many genes, we can estimate

tpperfect and tp1bp −mismatch by multiple linear regression

(Fig. 2a, b, and Additional file 1: Fig. S2). Finally, we ap-

plied a guide-level BF penalty based on the number of

off-target perfect match and single-mismatch sites:

BF′ ¼ BF − ½ðnper fect − 1Þtpper fect þ n1bp − mismatchtp1bp − mismatch�

tp ¼ estimated by multiple linear regression model

F-measure and false discovery rate (FDR) calculation

F-measure or F1 score (BF = 5) is the harmonic mean of

precision and recall at the threshold of Bayes Factor 5

and it can represent the performance of essentiality pre-

diction. We calculate F-measure using a precision-recall

table generated by BAGEL pr function.

Precision ¼
TP

TPþ FP

Recall ¼
TP

TPþ FN

TP = positives in reference+ core-essential set

FP = positives in reference \kern-1ptnon-essential set

FN = negatives in reference core-essential set

Since it is rare that a gene is exactly BF 5, we used the

precision and the recall that is the nearest but greater

than BF 5. False discovery rate used in this study was

calculated as 1.0 – Precision.

Acquiring publicly available screen data

There are large-scale, public CRISPR screen datasets for can-

cer cell lines such as Depmap (Avana dataset) by Broad Insti-

tute [5] and Project Score by Sanger Institute (Score dataset)

[6]. We downloaded read count data for the Avana 2018Q4

release, which contains screens of 517 cancer cell lines, from

the DepMap official website (http://www.depmap.org). Since

the Avana library contains sgRNA targeting genetic loci, we

discarded gRNAs targeting multiple protein-coding genes

without mismatch at the read count-level data based on the

guide-gene map of the Avana library. Protein-coding gene in-

formation was obtained from CCDS [20] (06.14.2018 version,

genes annotated as Public or Reviewed, update pending). We

also downloaded read count data of Project Score for 339

cancer cell lines from the official website (https://depmap.

sanger.ac.uk/). Gene names used in read counts were up-

dated based on NCBI official symbols. Then, we applied

standard BAGEL2 pipeline with CRISPRcleanR copy number

effect correction [16]. Since DepMap screens were conducted

in four different batches, we used corresponding pDNA read

counts as controls of each batch number. We used pDNA

Avana4_010115_1.5Ex_batch0 and pDNA Avana4_060115_

1.5Ex_batch0 for batch 0 screens; pDNA Avana4_010115_

1.5Ex_batch1, pDNA Avana4_060115_1.5Ex_batch1, “pDNA

Avana4_0101215_0.55Ex_batch1,” and pDNA Avana4_

060115_0.55Ex_batch1 for batch 1 screens; Avana4pDN

A20160601-311cas9 RepG09_batch2, Avana4pDNA2016

0601-311cas9 RepG10_batch2, Avana4pDNA20160601-

311cas9 RepG11_batch2, and Avana4pDNA20160601-

311cas9 RepG12_batch2 for batch 2 screens; and Avana 4+

Hu pDNA (M-AA40, 9/30/15)_batch3, Avana 4+ Hu pDNA

(M-AA40, 9/30/15) (0.2 pg/uL)_batch3, and Avana 4+ Hu

pDNA (M-AA40, 9/30/15) 0.2 pg/uL_batch3 for batch 3

screens. For Project Score screen analysis, we used

“ERS717283.plasmid” as a control of screens. For RPE-1 cells,

we re-analyzed screens used in Hart et al. [14]. Processed

Bayes Factor tables are downloadable on Figshare [17].

Essentiality calculation using other dependency

identifiers, MAGeCK, JACKS, and CERES

We downloaded MAGeCK [19] version 0.5.9.3 from the

MAGeCK distribution website (https://sourceforge.net/

p/mageck/wiki/Home/) and applied it to Avana read

count data with default parameters. For CERES [5], we

used pre-calculated 2018Q4 dependency data down-

loaded from the Depmap official website. We also down-

loaded JACKS [21] from the official github page (https://

github.com/felicityallen/JACKS) and ran it for the Avana

read count data with gene guide map and replicate infor-

mation. To decide whether a gene is essential or not, we

used “neg|fdr” for MAGeCK, dependency score for

CERES, and p value for JACKS.

False positive analysis

To estimate screen false positives, we downloaded CCLE

RNA-seq log TPM data for approx. 1000 cell lines from

DepMap [22]. False positives of each cell line were de-

fined log-expression below 1.0. Since the number of false

positives was sensitive to the number of essential genes,

we used varying thresholds to keep the number of essen-

tial genes similar across pipelines (Fig. 2c). The thresh-

olds were BF > 10 for BAGEL2 data without correction

and BF > 7 for BAGEL2 data with multi-targeting correc-

tion. Additional thresholds were score − 0.6, FDR 0.15,
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and p value 0.001 for CERES, MAGeCK, and JACKS, re-

spectively. Then, we counted how many false positives

were present in essential gene calls from each algorithm

across good quality cell lines (F-measure > 0.85) in the

Avana dataset. For an alternative definition of false posi-

tives, we downloaded shRNA screens analyzed by DEME

TER2 [23] from DepMap and defined genes above score

zero as non-essential genes of each cell line.

Quality score analysis

Measuring the quality of a single replicate is important to in-

form experimental strategy. We measured Cohen’s D of

Fig. 2 The multi-targeting effect correction reduces false positives from off-targets with 1-bp mismatch. a, b Increment of Bayes Factors of multi-targeting

gRNAs but targeting only a single protein-coding gene in comparison with Bayes Factor of gRNAs targeting the protein-coding gene without any other targets

a before the multi-targeting effect correction and b after the multi-targeting effect correction. c The number of essential genes across good quality cell lines

(F-measure > 0.85) in the Avana dataset predicted by BAGEL2 with or without CRISPRcleanR and other algorithms, CERES, MAGeCK, and JACKS with cut-off

threshold BF 10, BF 7, score− 0.6, FDR 0.15, and p value 0.001, respectively. The cut-off threshold was aimed for obtaining similar numbers of essential genes.

d The number false positives predicted by each algorithm. False positives were defined by non-expressed genes in RNA-seq data of corresponding cell lines.

BAGEL2 after multi-targeting effect correction shows comparable results with CERES and much lower numbers than results of MAGeCK and JACKS. e The

number of false positives in predicted essential genesets when the scope is limited to genes having gRNAs mapped over than five 1-bp mismatched targets

that are likely from multi-targeting effects of 1-bp mismatched targets. The result of BAGEL2 after correction shows the best performance among algorithms
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reference core-essential genes and non-essential genes as a

quality score of single replicates.

Quality Score ¼ Cohen
0

s D

¼
mean fcnon − essential −mean fccore − essential

pooled standard deviation

For each single replicate in the Avana dataset, we col-

lected all log fold change values of gRNAs targeting ei-

ther reference core-essential genes or non-essential

genes. To demonstrate the relationship between predic-

tion performance and quality of single-replicate screens,

we compared F-measure (BF = 5) from Bayes Factor

using all replicates and mean quality score of each repli-

cates calculated from fold change level.

Results
An improved log likelihood/regression model

The analysis pipeline for a loss-of-function fitness screen

consists of three steps: (1) mapping reads to the guide

sequences in the CRISPR library and building a table of

read counts, (2) normalizing counts across samples and

calculating guide-level fold change, and (3) compiling

guide-level information into gene-level fitness scores

(Fig. 1a). CRISPR screen analysis starts from the step of

mapping raw sequencing read files to their correspond-

ing CRISPR library. Mapping reads can be done with a

variety of sequence analysis tools, including Bowtie [24],

MAGeCK [19], and poolQ (https://portals.broadinsti-

tute.org/gpp/public/software/poolq). Fold change is cal-

culated by comparing endpoint to starting plasmid or

T0 sample, a function now available in BAGEL2 using

the fc option.

To calculate a gene essentiality score, BAGEL2

adopts the same Bayesian model selection approach

as BAGEL. The “essential” model is represented by a

kernel density estimate (KDE) of the distribution of

guide-level fold changes of gRNA targeting a training

set of essential genes [14], and the “non-essential”

model is likewise trained on a set of non-essential

genes (Fig. 1b) [12, 14]. Then, for each gRNA target-

ing each gene, a guide-level log Bayes Factor (BF) is

calculated as the log ratio of these two kernel density

estimates, evaluated at the observed log fold change

of the guide.

The stability of this calculation depends heavily on the

local density of data points used to calculate the training

set KDEs. For example, at extreme fold changes, sparsity

of training data from the non-essential set results in ex-

treme ratios. For this reason, in the previous version of

BAGEL, we defined the boundaries of the near-linear

range of this ratio and truncated all data outside these

boundaries (Fig. 1b). Guide-level log BFs are then

summed to gene-level log BFs (hereafter all Bayes

Factors are in log2 space). BAGEL2 relaxes this limita-

tion by calculating a linear best fit to the log ratio in this

space and using this fit to extrapolate the BF calculation

to all observed fold changes (Fig. 1b, gray line). The net

result is a better usage of the total fold change data, a

correction for log-ratio instability at positive or extreme

negative guide-level fold changes, and a broader dynamic

range of gene-level BFs reported by the algorithm.

An unanticipated result of this broader dynamic range is

that BAGEL2 now detects putative tumor suppressor

genes. We re-analyzed a previously reported genome-scale

screen of RPE1 retinal pigmented epithelium cells per-

formed with the TKOv3 library [14], and comparing

BAGEL to BAGEL2 results shows the truncation of gene-

level BFs in BAGEL (Fig. 1c). Notably, outliers with ex-

treme negative BFs in BAGEL2 (Fig. 1c, red) include genes

with known tumor suppressor activity, including KEAP1

[25, 26] and Hippo pathway genes NF2 and KIRREL [27].

We confirmed the regression scheme increases dynamic

range across hundreds of cell lines in the Avana dataset

downloaded from DepMap [5] (Fig. 1d).

Another improvement in BAGEL2 involves replacing

bootstrapping with 10-fold cross-validation. Bootstrap re-

sampling of the training sets, used in BAGEL, provides a

robust method to evaluate the effect of training data

variance on gene-level BF calculations, but is computa-

tionally expensive. However, given the large size of

training sets used for genome-scale fitness screens,

resampling introduces relatively little variance. Ten-fold

cross-validation yields nearly identical Bayes Factor distri-

butions as bootstrapping in most cases, and comparing

BAGEL and BAGEL2 hits (BF ≥ 5) in the DepMap data

yields Jaccard coefficients ~ 0.99 (Fig. 1e). Cross-validation

is the default setting in BAGEL2 and speeds up running

time on a single processor by roughly 50-fold.

Copy number amplifications are a known source of

potential artifacts in CRISPR knockout fitness screens

[9, 15, 28], and BAGEL2 does not correct for this source

of error. Instead, we employed an unsupervised copy

number correction algorithm, CRISPRcleanR [18], as a

preprocessing step. CRISPRcleanR corrects amplicon-

induced artifacts based on guide position and fold

change, without copy number information. We find that

BAGEL2 with copy number correction preprocessing

successfully reduces amplicon-induced artifacts (Fig. 1f)

while maintaining high sensitivity and specificity (Fig. 1g).

Overall, BAGEL2 improves performance and sensitivity

over BAGEL.

Correcting multi-targeting effects and false positive

analysis

It is widely accepted that the specificity and sensitivity of

CRISPR reagents far exceeds that of prior-generation

shRNA reagents [4]. However, off-target effects of CRIS
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PR reagents can still confound loss-of-function screens.

Recently, several studies reported that CRISPR/Cas9

reagents have a non-negligible effect on off-target cut

sites with mismatches of 1–2 bp from the intended

target site [29, 30]. These off-targeting effects by mis-

matched targets can cause additional ad hoc DNA cut-

ting or, depending on the locus, knockout of genes. We

found that many of guide RNAs in the Avana and KY

libraries target several sites with perfect matches, and

our TKOv3 library was specifically designed to allow up

to one perfect-match, off-target cut site in an intergenic

region [14] (Additional file 1: Fig. S2). These multi-

targeting gRNAs can result in unexpected fitness defects,

the effect of which can be decomposed into target-

specific and off-target/multiple-targeting effects (see Im-

plementation). To implement multi-targeting effect cor-

rection in a single cell line screen, we re-aligned gRNA

sequences of CRISPR/Cas9 libraries to the human gen-

ome with mismatches allowed. In this study, we only

consider perfect matched targets and 1-bp mismatched

targets. Using this alignment information, BAGEL

discards promiscuous gRNAs (perfect match > 10 loci or

1-bp mismatch > 10 loci) from libraries. Then, to

measure the component of fitness defect specific to multi-

targeting effects, we took sgRNAs targeting multiple loci

with 0–1 mismatch to non-protein-coding regions

(excluding protein-coding off-target sites to minimize the

contribution from other genes and genetic interactions;

Additional file 1: Fig. S2). The multiple-targeting effects of

gRNAs can be estimated by the incremental BF in com-

parison with gRNAs targeting the same gene but with no

off-target cut sites. For example, in ovarian endometrioid

cancer cell line OVK-18, the multiple-targeting effects of

the Avana library showed an incremental BF due to off-

targets that increased roughly linearly with the number of

perfect-match, off-target cut sites in the genome and a

smaller incremental guide-level BF with the frequency of

mismatched off-target sites (Fig. 2a; Additional file 1: Fig.

S2B). Since we only addressed sgRNAs targeting multiple

loci but targeting only one protein-coding locus, these

effects were exclusively from multi-targeting effects, not

the effect of genetic interaction. In our example case, each

additional perfect-match target boosted the BF of a single

gRNA by 3.5 and each additional 1-bp mismatched target

increased the BF by 1.4 (~ 40% of the boost attributable to

perfect matches). We removed these off-target effects by

guide-level regression of incremental BF vs. off-target

effects (i.e., applied a BF penalty based on the number of

predicted off-target cut sites) and confirmed that the bias

was no longer present after the effect was removed

(Fig. 2b).

We compared BAGEL2 with multi-targeting correc-

tion to BAGEL2 without correction, as well as to other

contemporary screen analysis algorithms, including

CERES [5], MAGeCK [19], and JACKS [21], run against

the DepMap 2018Q4 data release, using raw read counts

per guide as a starting point. Since the number of false

positives is sensitive to the number of essential genes,

we identified thresholds for each algorithm that returned

roughly the same median number of essential genes

across the 518 cell line screens analyzed (Fig. 2c). Then,

for each cell line, we identified a set of genes with no to

low expression (logTPM < 1), judging that genes with

trace mRNA expression levels cannot be essential and

following the concept used to define the non-essential

reference gene set [12]. For each algorithm, we identified

the total number of expression-defined false positives

(Fig. 2d). BAGEL2 results after multi-targeting effect

correction showed the lowest number of false positives

and resulted in significantly fewer false positives than

MAGeCK and JACKS, while CERES showed a similar

number as BAGEL2. To further investigate whether the

correction can minimize false positives from multi-

targeting effects, we limited the scope to non-expressed

genes targeted by gRNA with 5 or more 1-bp mis-

matched off-target cut sites in the genome. BAGEL2

multi-target correction effectively filters these genes

(Fig. 2e). We also see consistent performance when

using alternative definitions of false positives, including

non-essential genes in matched shRNA screens (score >

0, DEMETER2 [23]) and reference non-essential genes

(Additional file 1: Fig. S3). We further demonstrate that

agreement of gene essentiality across cell lines screened

using both the Avana and KY libraries can be improved

by multi-targeting effect correction (Additional file 1:

Fig. S3). Overall, we show that BAGEL2 can correct the

multi-targeting effects from perfect-matched and 1-bp

mismatched targets, reducing the number of false posi-

tives arising from promiscuous sgRNA effects, and that

BAGEL2 accurately discriminates essential genes from

non-essentials in comparison with other algorithms.

Replicate quality score can predict performance of cell

line screens

CRISPR screens require significant technical expertise, but

even in the best hands, results can vary for numerous rea-

sons, including environmental, experimental, and intrinsic

factors such as variable Cas endonuclease efficiency, batch

effects, PCR noise, stochastic off-target events of guide

RNAs, and characteristics of individual cell lines [30–33].

Understanding and identifying effective and ineffective

screens is necessary to understanding gene essentiality

and differential essentiality. Previously, we defined lists of

core-essential and non-essential genes [12, 14]. These ref-

erence gene sets are not only used as training sets in

BAGEL, but also can be used to evaluate the quality of a

screen (Fig. 3a). We compared a good screen (SNU-761,

replicate B) and a marginal screen (U-178, replicate A)
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from the same batch in the Avana dataset. While the good

screen shows clear separation of core-essential (red) and

non-essential guides (blue), the marginal screen shows

much greater overlap between the two distributions. To

distinguish good from marginal screens, we employed as a

quality score the Cohen’s D statistic, which is the differ-

ence in mean log fold change between core-essential and

non-essential genes divided by the pooled standard devi-

ation of log fold change of all reference genes (Fig. 3b).

Using this scheme, we calculated the quality scores of

SNU-761 (rep B) and U-178 (rep A) as 2.21 and 0.79, re-

spectively (Fig. 3a). We further applied this quality score

measurement to all individual replicates in the Avana

dataset, and we compared with the F-measure of cell lines

derived by BAGEL2 aggregation of all replicates (Fig. 3c).

Many low-performing cell lines (F-measure < 0.7) in-

cluded replicates having low mean quality score (below

1.0). Notably, even when average replicate quality is less

than ideal, multiple replicates can boost overall screen

quality; likewise, even high-quality, single-replicate screens

show lower overall F-measure than equivalent quality

screens with two or more replicates. We confirmed the

generality of these trends by conducting the same analysis

with data from Project Score [6] (Fig. 3d). The relationship

between replicate quality score, number of replicates per

screen, and overall screen F-measure was highly consistent

with the Broad data and supports the applicability of the

Cohen’s D statistic as a replicate-level quality score.

Fig. 3 Variable screen performance. a Kernel density estimates of reference core-essential genes (red) and non-essential genes (blue) with SNU761

replicate B as an example of good screen (upper panel) and U178 replicate A as an example of marginal screen (lower panel). The good screen shows

clear separation between core-essential and non-essential curves whereas the marginal screen shows less separation. b The equation of quality score.

c Mean quality score of replicates and F-measure in cell line level shows clear correlation trends and differentiated by replicate screen counts per cell

line. d Project Score CRISPR screen data recapitulated and followed the same trends of Avana set. e, f Relationship between the number of false

positives in e BAGEL2 results and f CERES results across 517 cell lines in Avana data. Each dot colored by the number of essential genes
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Although quality scores of replicates were directly

related to the overall reliability of an experiment, we

evaluated the effect of including one low-quality repli-

cate in an otherwise high-quality screen. We took one

replicate from a screen and added random noise to

the fold change for each sgRNA, dropping the

Cohen’s D from > 2 to ~ 1.1 (Additional file 1: Fig. S4).

The overall trend supports the general notion that

additional replicates can smooth out random noise and in-

crease overall screen performance (Fig. 3c, d), and we find

that a single low-quality replicate (quality score = 1.08)

among one or more high confidence replicates (quality

score > 2.0) has only marginal overall effect on perform-

ance (Additional file 1: Fig. S4).

Data quality has different effects on different algorithms

Although BAGEL2 is robust to variation in data quality

within a screen, overall screen quality can have profound

effects on the results of an analytical pipeline. We com-

pared how quality score affects the results of BAGEL2

and CERES (Fig. 3e, f, Additional file 2: Table S1). Inter-

estingly, the two algorithms show opposite behavior as

the quality of the underlying data degrades. In BAGEL2,

the number of false positives remained similar across all

quality levels, but BAGEL2 calls very few essential genes

for low-quality data (Fig. 3e). In contrast, CERES ampli-

fies the number of hits and the corresponding number

of false positives as quality degrades (Fig. 3f). These

results reflect the approaches adopted by the two algo-

rithms. The Bayes Factor approach provides a summary

statistic that essentially combines effect size and statis-

tical significance. Since lower quality screens offer both

lower effect size (fold change) and corresponding statis-

tical power, the number of essential genes in a lower

quality screen will be fewer than in a high-quality screen.

In contrast, CERES rescales results by setting the score

of core-essential genes to − 1.0 and non-essential genes

to zero. Since low-quality screens poorly distinguish be-

tween essential genes and non-essential genes (Fig. 3a),

significant error can be introduced by this rescaling. It

should be noted that most CRISPR data in the DepMap

and Project Score are of sufficiently high quality that this

is not an important factor (95% of screens have quality

scores > 1.0); nevertheless, researchers should be wary

when including marginal quality screens in their

analyses.

Conclusions
In this study, we introduced an improved version of

BAGEL algorithm, BAGEL2, for genome-wide pooled li-

brary loss-of-function fitness screens. We showed the

linear interpolation of score expands the dynamic range

of Bayes Factor in comparison to the previous version of

BAGEL, enabling more accurate quantitation of fitness

defects as well as discovery of putative tumor suppressor

genes whose knockout results in faster proliferation.

We show that BAGEL2 can remedy false positives

caused by CRISPR multi-targeting guides. That these ef-

fects can be mitigated algorithmically is important and

useful. However, in the future, this effect should be ad-

dressed at the library design level. In particular, the

Avana library contains many multi-targeting sgRNAs,

compared to the Brunello [34], TKOv3 [14], and KY

libraries [6]. However, there is clearly an advantage to

screening with the Avana library and comparing results

with the large and growing corpus of cell line

characterization data available. Researchers will have to

make their own informed decisions weighing these

advantages and disadvantages.

To correct false positives caused by copy number

amplification, we employed an unsupervised correc-

tion algorithm, CRISPRcleanR, in the BAGEL pipeline.

Correlation analysis of genes in amplified regions

demonstrated CRISPRcleanR corrected unexpected de-

pletion adequately. Since CRISPRcleanR does not re-

quire copy number information for correction, it has

an advantage for screens that do not have accom-

panying copy number data such as PDX models.

However, in rare cases, we noticed CRISPRcleanR

falsely corrected regions of high density of essential

genes. Therefore, if copy number information is avail-

able, other supervised algorithms such as Crispy [15]

may yield better results.

We suggest the Cohen’s D statistic, evaluated

against reference core-essential and non-essential

genes, to provide a quantitative measure of the qual-

ity of single screen replicates. We show that, as

expected, the number and quality of replicates is

directly related to the overall screen performance (F-

measure). Interestingly, however, we also show that

individual “bad” replicates do not seriously degrade

the overall performance of an otherwise “good”

screen. Nevertheless, we recommend evaluating qual-

ity at the replicate level and, if performance suffers,

discarding low-quality outliers from groups of other-

wise high-quality replicates.

Availability and requirements
Project name: BAGEL2

Project home page: https://github.com/hart-lab/bagel

Operating system(s): Platform independent

Programming language: Python3

Other requirements: scipy, pandas, numpy, click, sklearn

License: MIT license

Any restrictions to use by non-academics: No restriction

for non-academic use
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Supplementary Information
The online version contains supplementary material available at https://doi.

org/10.1186/s13073-020-00809-3.

Additional file 1: Fig. S1. A) A brief flow diagram of CRISPR pooled

library screen analysis using BAGEL pipeline with additional description

about threshold B) A brief scheme of downsampling analysis for defining

a log decay threshold function C) A scatter plot represented log-density

after down-sampling (50%, 25%, 10%, 5%, 1%) at the original left side x

limit, XL0. D) A plot of maximum log density of each down-sampling pro-

portion using DepMap screens and the applied log-decay function in

BAGEL2 derived from DepMap Achilles CRISPR screens. Fig. S2. A) A plot

explains how to calculate increment of Bayes Factor for measuring multi-

targeting effect. B) A two-dimensional dot plot gRNAs targeting multiple

regions but only targeting one protein-coding gene. Each dot is located

at the number of perfect-matched targets and 1-bp mismatched targets

with random jitter and colored by increment of Bayes Factor. Fig. S3.

A,B) The number of false positives defined by A) non-essential genes in

matched shRNA screens (score > 0, DEMETER2) and B) reference non-

essential genes in predicted essential genesets when the scope is limited

to genes having gRNAs mapped over than five 1-bp mismatched targets

that are likely from multi-targeting effects of 1-bp mismatched targets.

C,D) Agreement of genes that have gRNAs targeting 5 or more regions

with 1-bp mismatch between Sanger data (Project Score data) and Broad

data (Avana dataset) A) before multi-targeting effect correction and B)

after multi-targeting effect correction. Fig. S4. A,B) Fold change distribu-

tion plots for a replicate of HUP-T3 cell (A) before and (B) after fold

change perturbation. To generate an low performance outlier sample, we

added random noise to foldchange value. C) Quality scores of each repli-

cate. D) F-measures (BF = 5) of combination of replicates. Adding the out-

lier (replicate D) to other high confident replicates reduce overall

performance in condition of a few replicates (A vs AD and AB vs ABD).

Additional file 2: Table S1. The number of dependency calls in

BAGEL2 (BF > 7) and CERES (score < − 0.6) and false positives in the calls

across DepMap 2018Q4 screens with expression data (515 cells).
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