
A&A 577, A98 (2015)
DOI: 10.1051/0004-6361/201525660
c© ESO 2015

Astronomy
&

Astrophysics

Improved angular momentum evolution model for solar-like stars

II. Exploring the mass dependence

F. Gallet1,2 and J. Bouvier1,2

1 Univ. Grenoble Alpes, IPAG, 38000 Grenoble, France
e-mail: florian.gallet@unige.ch

2 CNRS, IPAG, 38000 Grenoble, France

Received 14 January 2015 / Accepted 18 February 2015

ABSTRACT

Context. Understanding the physical processes that dictate the angular momentum evolution of solar-type stars from birth to maturity
remains a challenge for stellar physics.
Aims. We aim to account for the observed rotational evolution of low-mass stars over the age range from 1 Myr to 10 Gyr.
Methods. We developed angular momentum evolution models for 0.5 and 0.8 M⊙ stars. The parametric models include a new wind
braking law based on recent numerical simulations of magnetised stellar winds, specific dynamo and mass-loss rate prescriptions, as
well as core-envelope decoupling. We compare model predictions to the distributions of rotational periods measured for low-mass
stars belonging to star-forming regions and young open clusters. Furthermore, we explore the mass dependence of model parameters
by comparing these new models to the solar-mass models we developed earlier.
Results. Rotational evolution models are computed for slow, median, and fast rotators at each stellar mass. The models reproduce
reasonably well the rotational behaviour of low-mass stars between 1 Myr and 8−10 Gyr, including pre-main sequence to zero-age
main sequence spin up, prompt zero-age main sequence spin down, and early-main sequence convergence of the surface rotation
rates. Fast rotators are found to have systematically shorter disk lifetimes than moderate and slow rotators, thus enabling dramatic
pre-main sequence spin up. They also have shorter core-envelope coupling timescales, i.e., more uniform internal rotation. As for the
mass dependence, lower mass stars require significantly longer core-envelope coupling timescales than solar-type stars, which results
in strong differential rotation developing in the stellar interior on the early main sequence. Lower mass stars also require a weaker
braking torque to account for their longer spin-down timescale on the early main sequence, while they ultimately converge towards
lower rotational velocities than solar-type stars in the longer term because of their reduced moment of inertia. We also find evidence
that the mass dependence of the wind braking efficiency may be related to a change in the magnetic topology in lower mass stars.
Conclusions. We have included in parametric models the main physical processes that dictate the angular momentum evolution
of low-mass stars. The models suggest that these processes are quite sensitive to both mass and instantaneous rotation rate. We have
worked out and reported here the main trends of these mass and rotation dependencies, whose origin still have to be addressed through
a detailed modelling of magnetised stellar winds, internal angular momentum transport processes, and protoplanetary disk dissipation
mechanisms.
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1. Introduction

Observational constraints on the rotational evolution of low-
mass stars have exponentially increased in the last decade,
thanks to a number of dedicated long-term monitoring studies
of nearby populations (see e.g. Irwin & Bouvier 2009; Hartman
et al. 2010; Agüeros et al. 2011; Meibom et al. 2011a; Irwin
et al. 2011; Affer et al. 2012, 2013; Bouvier et al. 2014; Gallet &
Bouvier 2013; McQuillan et al. 2014). These new observational
results provide extremely useful guidance for the modelling of
angular momentum evolution of low-mass stars (M∗ < 1.2 M⊙)
from 1 Myr to 10 Gyr (e.g. Irwin et al. 2007; Bouvier 2008;
Denissenkov et al. 2010; Spada et al. 2011; Reiners & Mohanty
2012; Gallet & Bouvier 2013) and offer a unique insight into the
physical processes that dictate rotational evolution. To account
for the observations, parametric models have to incorporate at
least three major processes: the star-disk interaction during the
early pre-main sequence (PMS; Matt & Pudritz 2005b; Zanni
& Ferreira 2009, 2013; Ferreira et al. 2000; Matt et al. 2010),
the loss of angular momentum through powerful stellar winds

on the early main sequence (MS; Weber & Davis 1967; Kawaler
1988; Matt & Pudritz 2005a; Vidotto et al. 2011, 2014b; Zanni
& Ferreira 2011; Cranmer & Saar 2011; Matt et al. 2012a,b;
Reiners & Mohanty 2012; Réville et al. 2015), and the redistri-
bution of angular momentum in the stellar interior at all phases
of evolution (MacGregor & Brenner 1991; Allain 1998; Talon &
Charbonnel 2003, 2005; Palacios et al. 2003, 2006; Charbonnel
& Talon 2005; Charbonnel & Lagarde 2010; Lagarde et al. 2011,
2012; Charbonnel et al. 2013). The angular velocity evolution of
low-mass stars appears to be controlled to a large extent by these
three physical processes, from their birth to the end of their MS
evolution and possibly beyond.

In the first paper of this series (Gallet & Bouvier 2013),
we developed a model to account for the angular momentum
evolution of solar-mass stars. The parametric model included
star-disk locking, a new braking law with dynamo, and mass-
loss prescriptions that relied on the latest numerical simulations
(Cranmer & Saar 2011; Matt et al. 2012a), and core-envelope de-
coupling to account for the reduced efficiency of internal angular
momentum transport processes. The aim of the present study is
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Fig. 1. Rotational period distribution of 0.4−0.6, 0.7−0.9, and 0.9−1.1 M⊙ stars (respectively shown as tilted triangles, crosses, and tilted squares)
in star-forming regions and young open clusters is plotted as a function of stellar mass. The panels are ordered by increasing age, from top to
bottom and left to right. The few black tilted crosses in NGC 6530, M 50, and Praesepe are stars rejected from the samples for reasons explained in
the text. The rotational periods of stars outside the selected mass bins are shown as small dots, as are subsamples not rich enough (i.e. Nstar < 15)
to yield statistically meaningful percentiles and therefore rejected from the analysis.

to extend this model to lower mass stars: can similar parametric
models account for the evolution of lower mass stars? How do
model parameters depend on mass? What does this mass depen-
dence reveal about the underlying physical processes? These are
the questions we attempt to address in this study. In Sect. 2, we
present the set of 18 rotational period distributions that we used
to constrain our models at various ages. We briefly describe in
Sect. 3 the assumptions we made to compute the angular mo-
mentum evolution of low-mass stars from birth to the end of the
MS. The results are presented in Sect. 4. In Sect. 5, we work out
the mass dependence of angular momentum evolution and dis-
cuss its implication for the physical mechanisms involved. We
will also discuss the impact of these new models on gyrochronol-
ogy and lithium depletion. Conclusions are drawn in Sect. 6.

2. Observational constraints on the rotational

evolution of low-mass stars: the data sets

The goal of the angular momentum evolution models is to repro-
duce the observed rotational evolution of low-mass stars from
birth to the end of the main sequence. To characterise the latter,
we used rotational period distributions measured for the coeval
populations of 18 star-forming regions and open clusters, thus
spanning an age range from 1 Myr to 1 Gyr, to which we added
results pertaining to old disk field stars from McQuillan et al.
(2014). The data for star-forming regions and young clusters, in-
cluding their age and angular velocity percentiles (25th, 50th,
and 90th) in each mass bin investigated here (0.4−0.6, 0.7−0.9,

and 0.9−1.1 M⊙), are provided in Table 1 (see Appendix A of
Gallet & Bouvier 2013, for a detailed description of the proper-
ties of these clusters).

Figure 1 shows the distributions of rotation periods plotted
as a function of stellar mass for star-forming regions and young
open clusters. Several patterns can be recognised in this fig-
ure that characterise the rotational evolution of young low-mass
stars. The youngest star-forming regions, with an age less than
10−15 Myr, exhibit a wide distribution of rotation periods, rang-
ing from less than 1 and about 10 days, with little dependence
on mass over the mass range investigated here (0.4−1.1 M⊙). A
well-defined relationship between rotation and mass starts to be
seen in older clusters, from the zero-age main sequence (ZAMS)
onwards, which first appears for solar-mass stars and later prop-
agates to lower masses. The oldest clusters indeed exhibit quite
a tight rotation-mass correlation, with rotation rates steadily de-
creasing towards lower masses. It is also noteworthy that the dis-
persion of rotational velocities is the lowest at ZAMS for very
low-mass stars (cf. M 50, 130 Myr) and increases later-on on the
early MS over a few 100 Myr, while it is quite the opposite for
solar-type stars whose wide rotational dispersion at ZAMS (cf.
Pleiades, 125 Myr) is promptly erased on the early MS. This
complex behaviour reflects the combination of various physical
processes acting on the angular momentum content of the stars
as they evolve.

Figure 2 shows the same data set as in Fig. 1 except that for
each cluster, we extracted the observed angular velocity distribu-
tion in a given mass bin and plotted it as a function of time. The
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OD 

OD

OD

Fig. 2. Angular velocity distributions are plotted as a function of time
for low-mass stars in star-forming regions and young open clusters.
Each panel covers a different mass bin: 0.9−1.1 M⊙ (upper panel),
0.7−0.9 M⊙ (middle panel), 0.4−0.6 M⊙ (lower panel). The red, green,
and blue tilted squares and associated error bars represent the 25th, 50th,
and 90th rotational percentiles, respectively. The open circle shows the
angular velocity of the present Sun for reference. The black rectangle
labelled OD (lower right corner of each panel) shows the angular veloc-
ity dispersion of old disk field stars. The black dashed line represents
the evolution of break-up velocity. The left vertical axis is labelled with
angular velocities normalised to the Sun’s, while the right vertical axis
is labelled with rotational periods (days).

three panels of Fig. 1 thus illustrate the evolution of the rotational
distributions of 0.5, 0.8, and 1 M⊙ stars, respectively. The 25th,
50th, and 90th percentiles of the distributions and their respec-
tive error bars were computed at each mass and age as described
in Gallet & Bouvier (2013). Figure 2 suggests a qualitatively
similar evolution of the rotation rates for stars in the three mass
bins. The evolution is characterised by a spin rate that hardly
or slowly varies during the first few Myr, then followed by a
rapid acceleration towards the ZAMS, and a subsequent braking
over longer timescales on the MS. Quantitatively, the rotational
evolution of the lowest mass stars appears delayed compared to
solar-type stars, as they reach the ZAMS later and are braked

on the main sequence over longer timescales. The models pre-
sented in the next sections aim to reproduce the overall evolution
as well as subtle differences as a function of mass.

While these distributions appear statistically robust and rel-
atively unbiased, some residual contamination by non-cluster
members cannot be totally dismissed. Indeed, some stars appear
to rotate beyond break-up, presumably due to contamination of
the samples by short period field binaries1. The reported pho-
tometric period is sometimes associated with harmonic of the
rotation period e.g. in case of two spots located at opposite lon-
gitudes on the stellar surface2. Finally, some stars simply have
a relatively low membership probability3 or an age estimate in
conflict with that of the cluster4.

Another issue lies in the difficulty of estimating the age of
clusters. Thus, for very young clusters with an age less than
about 5−10 Myr, age uncertainties may be approximately the
actual age estimate (Bell et al. 2013). Fortunately, the change in
rotation rates at these very young ages are relatively mild, so that
the modelling does not suffer much from these uncertainties (i.e.
shuffling the youngest clusters within the 1−5 Myr age range in
Fig. 2 would not significantly impact the models). The ages of
older clusters is much better known, with uncertainties close to
10%. We therefore neglect the age uncertainties in the models
developed below.

3. Parametric models of angular momentum

evolution: the assumptions

The angular momentum evolution of isolated low-mass stars is
controlled by the balance between three main physical mecha-
nisms: angular momentum removal by magnetised stellar winds
(here after “the wind braking”), the star-disk interaction, and the
angular momentum transfer within the stellar interior. We dis-
cuss in this section the corresponding model assumption.

3.1. Structural stellar evolution

We adopt the Baraffe et al. (1998) non-rotating, solar-metallicity
models computed for 0.5, 0.8, and 1 M⊙ stars, with a mixing
length parameter α = 1.9 and an helium abundance Y = 0.275.
These models provide the structural evolution (i.e. mass, radius,
moment of inertia) of the inner radiative core and outer convec-
tive envelope from the early PMS to the end of the MS i.e. from
1 Myr to 10 Gyr.

Figure 3 shows the evolution of the internal structure for 0.5,
0.8, and 1 M⊙ stars. Most stellar quantities increase for higher
mass stars (i.e. the stellar radius and moment of inertia, the mo-
ment of inertia of the radiative core, as well as its radius and

1 We thus rejected M 50-5-1624, -3-1468, -3-464, -7-7623, -3-5840,
-7-5624, -5-2673, -3-7334, -3-2531, -6-1574, -4-2077, -4-4939, and -8-
6076 from M 50 (Irwin et al. 2009), N2362-2-6989, and N2362-5-4947
from NGC 2362, #11041 (number from Hillenbrand 1997) from ONC,
and #494 (number from Moraux et al. 2013) from h Per, and #3245
(number from Littlefair et al. 2010) from CepOB3b.
2 We thus rejected 1SWASP J083722.23+201037.0 (KW 30) and
1SWASP J084005.72+190130.7 (KW 256) in Praesepe (Delorme et al.
2011).
3 We thus rejected JS 634 in Praesepe that has a membership prob-
ability of 0.62, compared to 0.94 for cluster members (Agüeros et al.
2011).
4 In NGC 6530 (2 Myr), we rejected XID 138 (0.94 M⊙, Prot =

0.18743 d) as its age is estimated to be 22 Myr and is probably already
accelerating towards the ZAMS (Henderson & Stassun 2012).
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Fig. 3. Evolution of the main stellar parameters from the Baraffe et al.
(1998)’s models for 1 M⊙ (solid line), 0.8 M⊙ (dotted line), and 0.5 M⊙
(dashed line). Upper panel, from left to right: stellar radius (in solar
unit), moment of inertia (in solar unit, I⊙ = 6.411 × 1053 g cm−2), and
moment of inertia of the convective envelope (in stellar unit). Lower
panel, from left to right: the radiative core’s moment of inertia, radius,
and mass (in stellar unit).

mass), except for the moment of inertia of the convective enve-
lope that decreases for higher masses. The size and mass of the
radiative core is strongly mass dependent. While for a 1 M⊙ star
the radiative core represents about 73% of the stellar size, this
fraction falls to 60% for a 0.5 M⊙ star. Similarly, for a 1 M⊙ star
almost all the stellar mass is contained in the radiative core while
only 73% of the total mass is stored in the core of a 0.5 M⊙ star.
Note that the rapid decrease of the star’s moment of inertia dur-
ing PMS evolution is expected to strongly impact on the star’s
surface velocity, since angular momentum is given by J = I · Ω
where I is the moment of inertia and Ω the angular velocity.

3.2. Magnetised stellar winds

Assuming a spherical outflow, the braking torque exerted by a
magnetised stellar wind on the stellar surface can be expressed as

Γwind ∝ Ω∗ · Ṁwind · r2
A, (1)

where Ṁwind is the mass-loss rate, and rA is the averaged value
of the Alfvén radius. The latter is obtained from Matt et al.
(2012a) as

rA = K1
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where Bp is the surface strength of the dipole magnetic field at
the stellar equator, vesc =

√
2GM∗/R∗ is the escape velocity, and

m = 0.22, K2 = 0.0506. As in Gallet & Bouvier (2013), we iden-
tify Bp to the strength of the mean magnetic field B∗ f∗where B∗
is the magnetic field intensity and f∗ is the filling factor, i.e. the
fraction of the stellar surface that is magnetised. The evolution of
the mean magnetic field B∗ f∗ as a function of stellar density, ef-
fective temperature, and angular velocity is taken from the model
developed by Cranmer & Saar (2011). To reproduce the mean
solar filling factor ( f⊙ = 10−1−10−3), we slightly modified the

expression of f∗ given by Cranmer & Saar (2011), as described
in Gallet & Bouvier (2013). Eventually, this yields

B∗ f∗ = 1.13 × Beq × f∗,

= 1.13

√

8πρ∗kBTeff

µmH

0.55
[

1 + (x/0.16)2.3]1.22
, (3)

where x = Ro/Ro⊙ and Ro = Prot/τconv is the Rossby num-
ber, i.e. the ratio of Prot the rotation period to τconv the convec-
tive turnover timescale, with Ro⊙ = 1.96 (Wright et al. 2011;
Oglethorpe & Garaud 2013). In Eq. (3), Beq is the equipartition
magnetic field strength (Cranmer & Saar 2011) with ρ∗ the pho-
tospheric mass density, kB the Boltzmann’s constant, Teff the ef-
fective temperature, µ the mean atomic weight, and mH the mass
of a hydrogen atom.

The mass-loss rate prescription we inject in Eq. (2) also
stems from Cranmer & Saar (2011) coronal wind models

Ṁwind ∝
(

R∗

R⊙

)16/7 (
L∗

L⊙

)−2/7

(FA∗)
12/7 f 5/7

∗ , (4)

where L∗ is the stellar luminosity, and FA∗ is the quantity of en-
ergy deposited in the photosphere by Alfvén waves. This energy
is converted into a heat energy flux that powers the stellar wind.
We also modified the original expression of FA∗ from Cranmer
& Saar (2011) to incorporate the difference of mixing length pa-
rameters used in their study and ours (see details in Gallet &
Bouvier 2013).

With these assumptions, Fig. 4 shows the evolution of B∗ f∗,
Ṁwind, and J̇ as a function of the angular velocity. All three quan-
tities exhibit different regimes, with a steeper dependence on
velocity at low spin rates and a shallower slope at high veloc-
ities. Indeed, this reflects the saturation of f∗ at high velocities
(see Eq. (3)). At a given velocity, lower mass stars exhibit higher
mean magnetic fields, which primarily results from their larger
photospheric pressure. The magnetic field also appears to satu-
rate faster in lower mass stars. This is a consequence of low-mass
stars having longer turnover timescale, while saturation occurs at
the same Rossby number for all masses (Rosat ≃ 0.1, cf. Eq. (3)
and the inset in Fig. 4’s upper panel). Unlike previous studies
that followed Kawaler (1988)’s prescription and used distinct re-
lationships to account for the non-saturated and saturated mag-
netic regimes, we use a single prescription that smoothly bridges
the two regimes. Moreover, as this prescription scales on the
Rossby number, it can be straightforwardly extrapolated to any
mass range.

Like the magnetic field, and for the exact same reason, the
mass-loss rate first increases with angular velocity at low spin
rates and then saturates at higher velocities. The strong mass de-
pendence of the mass-loss rate seen in Fig. 4 stems from FA∗
being very sensitive to mass. FA∗ is a function of Teff and log g
only and rapidly decreases towards lower masses. The angular
momentum loss rate can thus be computed at any age step for
any mass by combining Eqs. (1)−(4), together with the structural
evolution models of Baraffe et al. (1998). Figure 4 shows the run
of angular momentum loss rate as a function of angular veloc-
ity. The same trend for a steep increase with rotation at low spin
rates followed by a shallower rotational scaling at higher veloc-
ities is seen, which naturally results from the combined rotation
dependencies of the magnetic field and mass-loss rate discussed
above. The asymptotic expressions of the braking law are pro-
vided in Gallet & Bouvier (2013). Quantitatively, however, we
stress that we had to renormalise the K1 constant appearing in
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Fig. 4. Upper panel: mean magnetic field strength as a function of stellar angular velocity for 1, 0.8, and 0.5 M⊙ stars (solid, dotted, and dashed
lines, respectively). The insert shows the mean magnetic field as a function of the Rossby number. The Sun’s range of B∗ f∗ = 2−7.7 G is shown
as a vertical bar. Middle panel: mass-loss rate as a function of stellar angular velocity for 1, 0.8, and 0.5 M⊙ stars (solid, dotted, and dashed lines,
respectively). The Sun’s present day mass-loss is shown as an open circle. Lower panel: angular momentum loss rate normalised to the Sun’s as a
function of angular velocity for 1, 0.8, and 0.5 M⊙ stars (solid, dotted, and dashed lines, respectively). We used J̇⊙ = 7.169 × 1030 g cm2 s−2, and
Ω⊙ = 2.87 × 10−6 s−1 (Weber & Davis 1967).

Eq. (2) in a mass-dependent manner to reproduce the observa-
tions (see Sect. 5.3). With this renormalization, shown in Fig. 4,
the braking torque is found to be roughly the same for all masses
in the non-saturated regime, but saturates faster and at lower val-
ues for lower mass stars. We emphasise that this behaviour of the
braking torque indeed holds the keys of the rotational evolution
of aging low-mass stars: it encodes both the longer spin down
timescale of lower mass stars (due to the weaker braking torque
in the saturated regime) and their lower final velocities (due to a
higher ratio of braking torque to stellar moment of inertia in the
saturated regime). We return to this crucial point in Sect. 5.3.

3.3. Star-disk interaction

As apparent in Fig. 2, observations suggest that during the first
few Myr of the PMS phase a physical process acts to prevent the
stellar surface from spinning up. This behaviour is believed to
result from the magnetic interaction between the young stellar
object and its accretion disk, even though the actual physical
process is not totally elucidated yet (see Matt & Pudritz 2005a,
2008a,b; Zanni & Ferreira 2011, 2013; Bouvier et al. 2014).

As in Gallet & Bouvier (2013) the model developed here
assumes that the angular velocity of the stellar surface is held
constant as long as the star accretes from its circumstellar disk.
The disk lifetime τdisk, a free parameter of the model, thus dic-
tates the duration over which the star is kept at its initial spin
rate. When the disk eventually dissipates, after a few Myr, the
disk coupling ends, and from thereon, angular momentum is re-
moved at the stellar surface by stellar winds.

3.4. Core-envelope decoupling

The transport of angular momentum in the stellar interior is one
of the most important physical processes that occurs during the

early MS phase. Gallet & Bouvier (2013) showed that this pro-
cess is central to the rotational evolution of solar-mass stars as it
leads to the storage of a large fraction of the stellar angular mo-
ment within the rapidly spinning radiative core. As many uncer-
tainties remain in the actual physical process that control angu-
lar momentum transport in stellar interiors (Charbonnel & Talon
2005; Charbonnel et al. 2013), we adopt here a two-zone model
where the inner radiative core and the outer convective enve-
lope, each in uniform rotation, are loosely coupled. We follow
MacGregor & Brenner (1991) in assuming that a quantity ∆J is
exchanged between the core and the envelope over a timescale
τc−e (hereafter the core-envelope coupling timescale). This quan-
tity ∆J is the amount of angular momentum that the core and the
envelope have to exchange to restore uniform rotation through-
out the star, and is given by

∆J =
IenvJcore − IcoreJenv

Icore + Ienv
, (5)

where I and J refer to the moment of inertia and angular momen-
tum of the radiative core and the convective envelope, respec-
tively. We also assume, as in Allain (1998), that τc−e is constant
for a given model (see Sect. 3 of Gallet & Bouvier 2013, for a
more detailed discussion about τc−e).

3.5. Equation of evolution

The angular momentum evolution of low-mass stars is controlled
by the internal and external torques applied on and within the
stars (see Sect. 3). This evolution can be expressed as

dJ

dt
=

dI∗

dt
Ω∗ + I∗

dΩ∗
dt
= Γ, (6)

where J is the angular momentum, I the moment of inertia, Ω∗
the angular velocity, and Γ the sum of all the external torques. In

A98, page 6 of 16

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201525660&pdf_id=4


F. Gallet and J. Bouvier: Improved angular momentum evolution model for solar-like stars. II.

Eq. (6) the quantity İΩ∗ is the contraction torque. In the frame-
work of the assumptions described above, the equations that con-
trol the angular velocity evolution of the envelope can be ex-
pressed using Eq. (6) as

if t ≤ τdisk:

Ωconv = Ωinit

if t > τdisk:

dΩconv

dt
=

dJconv

dt

1
Iconv

− dIconv

dt

Ωconv

Iconv
, (7)

where

dJconv

dt
= −Γwind + Γce − Γrad, (8)

with Γwind the wind braking torque (see Eq. (1)), Γce = ∆J/τc−e
the quantity of angular momentum transported from the core to
the envelope over the timescale τc−e, and Γrad the rate of angular
momentum lost from the convective envelope during the forma-
tion of the radiative core. As the core develops, a fraction of the
convective envelope becomes radiative and the rate of angular
momentum transferred from the envelope to the expanding ra-
diative core is

Γrad =
2
3

R2
radΩconv

dMrad

dt
, (9)

where dMrad is the quantity of material that is contained in a thin
shell at a radius Rrad inside the star (Allain 1998). Finally, the
total torque applied on the stellar surface is

dJconv

dt
= −Γwind +

∆J

τc−e
− 2

3
R2

radΩconv
dMrad

dt
, (10)

and the associated angular velocity evolution is

dΩconv

dt
=

1
Iconv

∆J

τc−e
− 2

3

R2
rad

Iconv
Ωconv

dMrad

dt

−
dIconv

dt

Ωconv

Iconv
−
Γwind

Iconv
· (11)

Similarly, the angular velocity evolution of the core is com-
puted as:

dΩrad

dt
= −

1
Irad

∆J

τc−e
+

2
3

R2
rad

Irad
Ωconv

dMrad

dt

−
dIrad

dt

Ωrad

Irad
· (12)

4. Results: confronting models to observations

The free parameters of the model are adjusted so as to best re-
produce the observations. These are: the initial rotation period at
1 Myr, Pinit, the core-envelope coupling timescale, τc−e, the disk
lifetime, τdisk, and the calibration constant of the wind braking
law, K1. The best parameters found for the slow, median, and
fast rotator models are listed in Table 2.

4.1. The rotational evolution of low-mass stars

Figure 5 summarises the angular velocity evolution of slow, me-
dian, and fast rotators in the three selected mass bins, centred
on 0.5, 0.8, and 1 M⊙.

Table 2. Model parameters.

M∗ = 1 M⊙
Parameter Slow Median Fast
Pinit (days) 8 5 1.4
τc−e (Myr) 30 28 10
τdisk (Myr) 9 6 2

K1 1.7 1.7 1.7

M∗ = 0.8 M⊙
Parameter Slow Median Fast
Pinit (days) 9 6 1.4
τc−e (Myr) 80 80 15
τdisk (Myr) 7 5 3

K1 3 3 3

M∗ = 0.5 M⊙
Parameter Slow Median Fast
Pinit (days) 8 4.5 1.2
τc−e (Myr) 500 300 150
τdisk (Myr) 6 3.5 2.5

K1 8.5 8.5 8.5

4.1.1. Solar-mass stars

Solar-mass models were already presented in Gallet & Bouvier
(2013). The data set has been updated for this study by adding
the results recently published for five additional open clusters,
namely: Cep OB3b (4 Myr), IC 2391 (50 Myr), α Per (85 Myr),
NGC 2516 (150 Myr), and M 34 (220 Myr), although not all
of them have enough stars in a given mass bin to constrain the
models (see Table 1). We also restricted the mass bin to stars
strictly within the 0.9−1.1 M⊙ mass range. As a result, the val-
ues of the model parameters have changed slightly, and are listed
in Table 2. Compared to the values listed in Gallet & Bouvier
(2013), we fixed the K1 parameter to 1.7 for the three rotator
models (instead of 1.8 for the slow and median rotators, and 1.7
for the fast rotators), and used a longer disk’s lifetime for the
slow rotator model (9 Myr instead of 5 Myr). Other parame-
ters did not change by more than 20% from the previous study.
These updates do not significantly affect the overall angular ve-
locity evolution of solar-like stars and the results and discussion
provided in Gallet & Bouvier (2013) remain valid.

4.1.2. Stars of 0.8 M⊙

Figure 5b and a show a qualitatively similar angular momen-
tum evolution for 0.8 and 1.0 M⊙ stars. The initial rotation rates,
1.4, 6, and 9 days for rapid, median, and slow rotators, respec-
tively, are fixed by the percentiles of the rotational distributions
of the youngest clusters. The rapid spin up between the early
PMS and the 13 Myr h Per cluster requires a disk lifetime as
short as 3 Myr for rapid rotators, increasing to 7 Myr for slow
rotators. To rapidly accelerate the convective envelope up to the
ZAMS where ΩZAMS

∗ ≃ 50−60 Ω⊙, rapid rotators must maintain
nearly solid-body rotation, which requires a core-envelope cou-
pling timescale as short as 15 Myr. In contrast, median and slow
rotators have moderate velocities on the ZAMS, which calls for
a longer core-envelope coupling timescale of 80 Myr, so that the
envelope is readily braked while the core still spins fast. In these
models, the rotational gradient between the core and the enve-
lope reaches a maximum of ∆Ω/Ω ≃ 2−3 at about 100 Myr (cf.
Fig. 6b).

As in the case of a 1 M⊙ model, we find that the core-
envelope coupling timescale is similar in slow and moderate ro-
tators, and much longer than for fast rotators. In turn, such a
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Fig. 5. Angular velocity of the convective envelope (solid lines) and of the radiative core (dashed lines) shown as a function of time between
1 Myr and 10 Gyr for slow (red), median (green), and fast (blue) rotator models in three mass bins centred on 0.5 M⊙ (bottom panel), 0.8 M⊙
(upper right panel) and 1 M⊙ (upper left panel). The left vertical axis is labelled with angular velocity normalised to the Sun’s, while the right
vertical axis is labelled with rotational periods (days). The red, green, and blue tilted squares and associated error bars represent the 25th, 50th, and
90th percentiles of the observed rotational distributions at each sampled age. The black rectangle labelled OD (lower right corner of each panel)
shows the angular velocity dispersion of old disk field stars. The open circle is the angular velocity of the present Sun shown for reference, and the
dashed black line illustrates Skumanich’s (1972) relationship, Ω ∝ t−1/2.

long coupling timescale implies that the resurfacing of the an-
gular momentum stored in the radiative core will occur over an
extended period. Indeed, this long-term outward transport of an-
gular momentum partly compensates for the angular momentum
losses at the stellar surface due to stellar winds. This results in a
relatively shallow velocity decrease on the early main sequence,
as observed for slow and moderate rotators that exhibit a clear
change in the spin-down slope between 100 and 500 Myr (cf.
Fig 5b). In contrast, rapid rotators are spun down much more
easily on the early MS, as the braking torque scales with surface
velocity.

The angular velocity of the slow, median, and fast rotators
eventually converge towards the same spin rate at about 1 Gyr.
By the age of the Sun, all the models presented here exhibit a
nearly solid body rotation and have a surface velocity lower than
the Sun’s, in agreement with the Kepler results (see McQuillan
et al. 2013). The lower terminal velocity of 0.8 M⊙ models com-
pared to the solar-mass models directly stems from the calibra-
tion of the braking law. As shown in Table 2, the K1 constant of
the braking law was increased from 1.7 for solar-mass stars to
3 for 0.8 M⊙ stars. Indeed, regardless of the detailed rotational
history, the terminal velocity on the main sequence only depends
upon the normalization of the braking law, thus decreasing as
the K1 constant increases. Note that with this renormalization,

the braking torque of lower mass stars in the saturated regime
remains weaker than for solar-mass stars (cf. Fig. 4), which si-
multaneously accounts for their longer spin-down timescale on
the main sequence.

4.1.3. Stars of 0.5 M⊙

The main trends of the rotational evolution of solar-mass stars
can still be recognised in that of 0.5 M⊙ stars, as shown in Fig. 5.
A clear difference, however, is that the evolutionary timescales
become much longer at lower masses. In particular, the rota-
tional spin down occurs over several Gyr on the main sequence
for 0.5 M⊙ stars, compared to only a few 100 Myr for solar-mass
stars.

The early PMS evolution is not very different from that
of more massive stars: similar disk lifetimes, increasing from
2.5 Myr for fast rotators to 6 Myr for slow rotators, are required
to prevent the lower mass stars from spinning up. Once the disks
are dissipated, the spin up occurs on a longer timescale to the
ZAMS, which is reached at about 120 Myr. As for higher mass
stars, even though stellar winds are active during this phase, they
are unable to balance the acceleration torque due to decreasing
stellar moment of inertia.
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(a) 1 M⊙

(b) 0.8 M⊙

(c) 0.5 M⊙

Fig. 6. Upper panel: velocity shear at the base of the convective zone
(Ωcore − Ωenv)/Ωenv in the case of fast (blue), median (green), and
slow (red) rotator models. Lower panel: spin-down timescale (|J/J̇|) ex-
pressed in Myr, in the case of fast (blue), median (green), and slow (red)
rotator models. a) 1 M⊙, b) 0.8 M⊙, and c) 0.5 M⊙.

In comparison to the 1 M⊙, the core-envelope coupling
timescale increases by a factor of 10 or more in 0.5 M⊙ models,

amounting to 150 Myr for fast rotators and 500 Myr for slow
and moderate rotators. One recovers the increasing coupling
timescale from slow to fast rotators, as was the case for 0.8 and
1 M⊙ models. This allows initially fast rotators to reach high
velocities at the ZAMS, while the convective envelope of slow
and moderate rotators is already significantly braked before the
star reaches the ZAMS (see Fig. 5). Indeed, the increased core-
envelope decoupling in slower rotators, coupled to their system-
atically longer disk lifetime, is at the origin of the enhanced dis-
persion of rotational velocities on the ZAMS.

In these models, the largest amount of differential rotation
between the inner radiative core and the outer convective en-
velope is reached at 500 Myr for slow rotators and amounts to
∆Ω/Ω ≃ 3 (cf. Fig. 6c). The resurfacing of angular momentum
being transported from the core to the envelope on a timescale
of ≤1 Gyr on the MS is still seen in Fig. 5c as a kink in the spin-
down rate of slow rotators, even though it is not as pronounced
as in higher mass stars. This is also highlighted in Fig. 6c (lower
panel) where a small plateau can be seen at ≈400 Myr in the
spin-down timescale of slow rotators.

The angular velocity of the slow, median, and fast rotators
models eventually converges towards the same rotation rate at
about 3 Gyr in a state of nearly uniform rotation (see Figs. 5c
and 6c). As explained above for 0.8 M⊙ stars, the rotational con-
vergence is delayed for lower mass stars due to the weaker brak-
ing torque in the saturated regime (cf. Fig. 4). However, when
rotational convergence is completed, lower mass stars exhibit
lower terminal velocities, due to their reduced moment of inertia.
Indeed, at low velocities the ratio of braking torque to moment of
inertia increases for lower mass stars (cf. Fig. 4), i.e. lower mass
stars are more effectively braked in the non-saturated regime,
which directly results in lower terminal velocities.

4.2. Differential rotation

The radial differential rotation rate is defined here by ∆Ω/Ωconv
where ∆Ω = Ωcore − Ωenv. This quantity measures the velocity
shear at the tachocline between the radiative core and the con-
vective zone of the two-zone model. This is obviously a simplifi-
cation of the actual rotation profile expected to arise in the stellar
interior from angular momentum redistribution. Nevertheless, it
provides a measure of how much angular momentum may be
stored in the stellar interior at any given time of its evolution.

Figure 6 shows the evolution of differential rotation for
the models described above. A few systematic trends emerge.
Somewhat unexpectedly, slow and moderate rotators have sys-
tematically larger differential rotation rates than fast rotators.
This is the direct result of the assumption of longer core-
envelope coupling timescale for slower rotators (cf. Table 2).
This assumption is required to account for the widening of the
rotational velocity dispersion from the early PMS to the ZAMS:
initially fast rotators have to be spun up quite effectively while
the surface of initially slow rotators must be spun down before
they reach the ZAMS. The only way to achieve this, suppos-
ing realistic disk lifetimes (≤10 Myr), is to have a weaker core-
envelope coupling in slow rotators than in fast rotators. The
direct consequence of this assumption is the stronger differen-
tial rotation in slow and moderate rotators on the ZAMS, with
∆Ω/Ωconv ≃ 2−3 compared to ≤1 for fast rotators.

Another clear trend is that the peak of differential rotation
rate occurs earlier in slow and moderate rotators than in fast ro-
tators. While the former exhibit a maximum tachocline shear
at or close to the ZAMS, the maximum occurs later on the
main sequence for the latter (cf. Fig. 6). This differential effect
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presumably results from the complex interplay between the spin-
down rate, which is steeper for fast rotators, and the timescale
for angular momentum distribution, which is shorter for fast ro-
tators (shorter core-envelope coupling timescales, cf. Table 2).
Clearly, the evolution of differential rotation in stellar interiors
is relatively complex and depends on the details of the models.

Overall, the two-zone models suggest that a large quantity
of angular momentum can be hidden in the stellar interior over
duration of a few 100 Myr and up to about 1 Gyr on the main
sequence. This has obvious consequences on stellar evolution
(Charbonnel et al. 2013), the depletion of light elements such as
Lithium (Bouvier 2008; Eggenberger et al. 2012a), and the type
of magnetic dynamos that may be instrumental in young solar-
type stars (Vidotto et al. 2014a). We return to these aspects in the
next section.

5. Discussion

Thanks to the measurement of thousands of rotation periods in
star-forming regions and young open clusters, we are now able
to accurately trace the angular momentum evolution of low-mass
stars from the birthline (≤1 Myr) to the age of the Sun. Over the
mass range considered here, three main phases of rotational evo-
lution can be identified: a nearly constant surface rotation rate
during the first few million years of the PMS phase, a sharp
increase towards the ZAMS, and a steady decline on the early
MS on a timescale of a few 100 Myr. Furthermore, observa-
tions suggest a large initial spread of rotation periods for the
youngest star-forming regions. At the start of the PMS phase,
rotational distributions exhibit periods ranging from 1−3 days
to 8−10 days. This initial spread increases further at ZAMS,
with periods ranging from 0.2−0.4 days to about 6−8 days.
Eventually, the spread is erased on the early MS over a timescale
of a few 100 Myr, as surface rotation converges to a low, mass-
dependent terminal velocity. The models developed in the previ-
ous section show that these trends can be well reproduced with
a small number of assumptions: i) a magnetic star-disk interac-
tion that is believed to prevent the stars from spinning up during
the early PMS, which results in a nearly constant rotation rate
during the disk accretion phase; ii) angular momentum losses
due to magnetised stellar winds, a process whose magnitude
depends on stellar mass, magnetic field, and rotation rate, and
which dominates the rotational evolution of low-mass stars past
the ZAMS; and iii) angular momentum redistribution in the stel-
lar interior, which allows a large fraction of the initial angular
momentum to be temporarily stored in the inner radiative core
on the early MS.

The combination of star-disk interaction, wind braking, and
core-envelope decoupling fully dictates the surface evolution of
low-mass stars. In the following sections, we discuss the rele-
vance of each model parameters and their dependence on mass.

5.1. Initial conditions and disk lifetimes

In the early PMS, the central model parameter is the disk life-
time, τdisk. Since a constant rotation rate is assumed during the
accretion phase, the longer the disk lifetime, the lower the rota-
tion rate at ZAMS. Thus, disk lifetimes of a few Myr are required
by the models to reproduce the wide rotational distributions ob-
served at ZAMS. Recent measurements of infrared excesses and
disk accretion rates indicate that most stars are born with a disk,
while only half of them still have an accreting disk at about
3 Myr, and very few indeed by an age of 10 Myr (e.g. Hernández
et al. 2008; Wyatt 2008; Williams & Cieza 2011). Observations

thus suggest an average disk lifetime of 3−5 Myr, and a maxi-
mum lifetime of order of 10−20 Myr (Bell et al. 2013). This is
quite consistent with the disk lifetimes required by the models,
which range from 2 to 9 Myr (cf. Table 2).

The combination of the initial period, Pinit, and the disk life-
time, τdisk, primarily drives the surface velocity at ZAMS. There
is some degeneracy in the models between these two parameters,
as a longer initial period could be compensated by a shorter disk
lifetime in order to yield the same velocity at ZAMS. To solve
this degeneracy, we fixed the initial period based on the observed
rotational distributions of the youngest PMS clusters. As a re-
sult, we find that disk lifetimes do not vary much with stellar
mass but are systematically longer for slow rotators than for fast
rotators in each mass bin (cf. Table 2). As discussed in Gallet
& Bouvier (2013) for solar-mass stars, this correlation between
disk lifetime and initial period, which is shown here to extend to
lower mass stars as well, may be a sequel to the star-disk inter-
action process operating in the embedded phase. In other words,
more massive disks would yield lower initial velocities and live
longer. Hence, a distribution of protostellar disk masses might
actually be the source of the dispersion of initial rotation rates of
low-mass stars at the start of their PMS evolution.

5.2. Core-envelope decoupling and the timescale for angular
momentum transport

Past the disk regulation phase, the shape of the gyrotracks is
mostly dictated by the equilibrium between the wind braking
torque and the internal redistribution of the angular momen-
tum. The dominant angular momentum transport process has
not been securely identified yet, but several candidates have
been proposed, namely hydrodynamical instabilities (see e.g.
Krishnamurthi et al. 1997), internal magnetic fields (see e.g.
Denissenkov & Pinsonneault 2007; Denissenkov et al. 2010;
Spada et al. 2010; Eggenberger et al. 2012a), and internal gravity
waves (see Talon & Charbonnel 2005, 2003; Charbonnel et al.
2013).

Here, we used a simplified two-zone model consisting of
a radiative core and a convective envelope, which are both
in uniform rotation but at a different rate. The assumption of
core-envelope decoupling thus leads to a velocity shear, in-
deed a discontinuity, at the tachocline. This obviously should
be considered as a simplified approximation of more complex
internal rotational profiles (e.g. Spada et al. 2010; Denissenkov
et al. 2010; Brun et al. 2011; Turck-Chieze et al. 2011; Lagarde
et al. 2012). As described in Sect. 3, we consider that the angular
momentum transport mechanism acts to restore uniform rotation
between the core and the envelope. The central parameter is the
core-envelope coupling timescale, τc−e, which is the time it takes
to reach a state of uniform rotation. The efficiency of the angular
momentum transport process is then measured by τ−1

c−e.
A striking result of our models is that τc−e appears to strongly

depend both on mass and on spin rate. As Table 2 summarises,
lower mass stars have coupling timescales at least 10 times
longer than solar-mass stars, and slow rotators have coupling
timescales 3 to 6 times longer than fast rotators. Indeed, the
varying coupling timescales are mostly responsible for produc-
ing the noticeable differences exhibited by the slow and fast ro-
tator models presented in the previous sections.

A small value of τc−e for fast rotators will lead to high rota-
tion rate at ZAMS since angular momentum is effectively trans-
ported from the core to the envelope over a timescale shorter
than the contraction timescale. Once on ZAMS, rapid spin down
will occur because of theΩ-dependence of the wind braking law.
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Fig. 7. Angular momentum transport rate between the radiative core and
the convective envelope shown as a function of time for the three rotator
models: slow (red), median (green), and fast (blue), and for the three
mass bins explored here: 1 M⊙ (solid), 0.8 M⊙ (dotted), and 0.5 M⊙
(dashed).

This accounts for the triangular shape of the fast gyrotracks rel-
ative to the ZAMS (cf. Fig. 5). In contrast, the much longer τc−e
of slow rotators results in a more complicated gyrotrack shape,
which peaks slightly before the ZAMS as the envelope is spun
down first and flattens out on the early MS as angular momen-
tum hidden in the core resurfaces in the envelope over several
τc−e. The main differences between slow/moderate and fast rota-
tor models thus primarily arise from their widely different cou-
pling timescales. It is worth noticing that this behaviour is true
over the full mass range investigated here.

Bouvier (2008) and Irwin & Bouvier (2009) developed sim-
ilar models for solar-mass stars. They find a coupling timescale
of 110 Myr for slow rotators and 6 Myr for fast rotators. In com-
parison, our models yield 30 and 10 Myr, respectively. While the
values for slow rotators broadly agree, the coupling timescale for
fast rotators differs widely between our models. A major differ-
ence between former and current models lies in the adopted wind
braking law. While Bouvier (2008) and Irwin & Bouvier (2009)
used Kawaler (1988) braking law, we use here Matt et al. (2012a)
prescription. As the latter braking law is more effective at ex-
tracting angular momentum than the former (cf. Fig. 8 of Gallet
& Bouvier 2013), a shorter core-envelope coupling timescale
compensates for the enhanced surface braking torque and pro-
duces similar spin-down timescales on the MS. This instance
clearly illustrates how the absolute values of τc−e depend on the
assumed wind braking torque.

The coupling timescale τc−e we derived from our model also
significantly increases towards lower masses, a result that is
consistent with those of Irwin et al. (2007) and Denissenkov
et al. (2010). Figure 7 displays the evolution of the transport
rate ∆J/τc−e as a function of time for the three rotator models
over the three mass bins considered here. The angular momen-
tum transport rate of a 0.5 M⊙ star is 2 orders of magnitudes
smaller than for a 1 M⊙ star, as the coupling timescale shortens
from ≈300 Myr to ≈30 Myr for 0.5 and 1 M⊙, respectively.

Another way to estimate the angular momentum exchange
between the core and the envelope is to estimate the viscos-
ity ν involved in the angular momentum transport mechanism.
Denissenkov et al. (2010) converted this viscosity to a character-
istic timescale that can be compared to the core-envelope cou-
pling timescales used here. This conversion can be expressed as
τc−e = 6.3 × 1020 ν−1.208, with ν in cm2 s−1. The characteris-
tic timescale associated with angular momentum transport in the

stellar interior is related to the turbulent viscosity ν (Heger et al.
2000) by

τc−e = l2/ν (13)

where l is the characteristic length of the redistribution current.
Hence, identifying the constant 6.3 × 1020 above to l2, we find
a scale of l = 2.51 × 1010 cm i.e. 40% R∗ for a 1 M⊙ star. This
suggests that the diffusive approach and the two-zone models are
somewhat equivalent and yield similar results.

New constraints on the angular momentum transport rate in
stellar interiors have emerged from the recent asterosismic re-
sults derived from the analysis of Kepler light curves. In par-
ticular, the detection of mixed gravity and pressure modes have
allowed various groups to derive the internal rotation profile of
red giant stars, evolving off the main sequence (e.g. Deheuvels
et al. 2012; Mosser et al. 2012). Using a diffusive approach,
Eggenberger et al. (2012b) showed that an enhanced “anoma-
lous” viscosity of ν = 3 × 104 cm2 s−1 is required to account for
the rotational splitting of the red giant KIC 8366239, whose rota-
tional profile is much shallower than diffusive models would pre-
dict. Using the conversion we derived above from Denissenkov
et al. (2010), this translates into a coupling timescale of 78 Myr,
i.e. not very different than the one we derived from our PMS-MS
models. This opens the intriguing possibility that we might be
dealing with the same physical process being instrumental from
the PMS to the MS and beyond redistributing angular momen-
tum in stellar interiors, thus reducing the amount of rotational
shear to be expected at any evolutionary phase.

Ideally, one would hope to derive coupling timescales di-
rectly from the theory of angular momentum transport processes.
In practice, a characteristic timescale for angular momentum re-
distribution is difficult to derive from analytical calculations and
numerical simulations. In hydrodynamical simulations, such as
the STAREVOL model (Siess et al. 2000), the angular momen-
tum redistribution timescale can be linked to physical mecha-
nisms such as meridional circulation and thermal diffusivity. For
these processes, the coupling timescale varies from few 100 Myr
to few Gyr (L. Amard, priv. comm.). For internal gravity waves
the associated coupling timescale is about 10 Myr (Zahn et al.
1997).

A recent attempt to derive coupling timescale analytically
has been performed by Oglethorpe & Garaud (2013). Assuming
that a large fraction of the radiative core is held in solid-body
rotation by the internal magnetic field that is confined below
the tachopause (i.e. the base of the tachocline), while angular
momentum is transferred through the tachocline by large-scale
meridional flows, they derive a coupling timescale proportional
to the local Eddington-Sweet timescale across the tachocline
finding

τc−e ≃ tES ×
IcoreIconv

Itc(Icore + Iconv)
, (14)

with
tES = N2

tc/2Ω
2
conv × (δ/Rcore)

2 × δ2/κtc, (15)

where Itc, κtc, Ntc, and δ are the moment of inertia, thermal dif-
fusivity, buoyancy frequency, and thickness of the tachocline,
respectively.

With these analytic expressions, and using the parameter val-
ues of their reference model, the average coupling timescale
would be τ̄c−e = 0.34 Myr for the 1 M⊙ stars. For the 0.8 and
0.5 M⊙, we used the values of the density, buoyancy frequency,
and thermal diffusivity extracted from the STAREVOL model
(Siess et al. 2000; L. Amard, priv. comm.) and extrapolated
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Fig. 8. Coupling timescale as a function of surface angular velocity at
ZAMS for three mass bins: 1 M⊙ (solid), 0.8 M⊙ (dotted), and 0.5 M⊙
(dashed). The values derived from our models are shown as black dots
(cf. Table 2) and the red lines represent a power-law fit to the data.

Oglethorpe & Garaud (2013) model to derive τc−e = 8 Myr
and τc−e = 60 Myr, for 0.8 and 0.5 M⊙, respectively, adopt-
ing the surface velocities of median rotators at ZAMS. We cau-
tion, however, that we computed these values assuming the same
tachocline thickness for lower mass stars as for solar-mass stars,
while thicker tachoclines would lead to much longer coupling
timescales (cf. Eq. (15)). Even though these values do not match
those we empirically derive from parametric models, we note
that theoretically predicted coupling timescales increase towards
lower masses as required by the angular momentum evolution
models.

Oglethorpe & Garaud (2013)’s derivation further predicts
coupling timescales that are inversely proportional to the square
of the surface velocity, i.e. τc−e ∝ 1/Ω2

conv. Figure 8 shows
the variation of the coupling timescales upon angular velocity
as derived from our parametric models. A power-law fit yields
τc−e ∝ 1/Ω[0.4−0.6]

conv , while a previous study by Moraux et al.
(2013) of PMS and ZAMS clusters suggested τc−e ∝ 1/Ω. While
these parametric slopes are at variance with the analytical pre-
dictions, they nevertheless agree with the expected trend for a
shorter coupling timescale in faster rotators.

5.3. The mass-dependent efficiency of magnetic braking

As shown in Sect. 4, and discussed in Gallet & Bouvier (2013),
the adopted braking law is a crucial parameter of angular mo-
mentum evolution models, as it dictates most of the rotational
evolution on the main sequence. In the model presented here,
the recent results of the numerical simulations from Matt et al.
(2012a) and Cranmer & Saar (2011) have been combined to in-
fer the main properties of the surface wind generated by low-
mass stars. This new braking law contrasts with the well-known
Kawaler (1988) prescription used in almost all angular momen-
tum evolution models so far (e.g. Bouvier 2008; Irwin & Bouvier
2009; Denissenkov et al. 2010; Spada et al. 2011) as well as with
the Kawaler-modified model proposed by Reiners & Mohanty
(2012). A detailed comparison between these braking laws is
provided in Sect. 5.2 of Gallet & Bouvier (2013; see also Matt
et al. 2015).

In the Matt et al. (2012a) prescription adopted here, together
with the dynamo relationship and mass-loss estimates from
Cranmer & Saar (2011), the predicted braking torque already in-
cludes the mass dependency. This is seen in Eqs. (1)−(4), where
mass-dependent parameters appear explicitly (namely: R⋆, vesc,
Teff, Ro, L⋆, ρ⋆). Hence the braking law takes the form

Γwind = K2
1 × f (Ω⋆,M⋆,R⋆, B⋆, Ṁ⋆, ...), (16)

where K1, the calibration factor, is expected to be a constant for
a given magnetic topology. Thus, in Matt et al. (2012a), who
assumed a large-scale dipolar field, K1 = 1.30.

We were unable to fit the observed rotational evolution of
low-mass stars with a constant wind braking calibration factor
over the mass range explored here. As summarised in Table 2,
the K1 parameter had to be recalibrated to a value of 1.7, 3.0,
and 8.5, for 1 M⊙, 0.8 M⊙, and 0.5 M⊙ models, respectively. The
K1 factor was, however, kept the same at a given mass for the
slow, median, and fast rotator models. The increasing K1 factor
towards decreasing mass suggest that the efficiency of the mag-
netic braking by stellar winds increases towards lower masses5.
We offer two possible explanations for this result.

The stellar wind simulations of Matt et al. (2012a) computed
for a dipolar magnetic geometry were expanded to quadrupo-
lar and octupolar magnetic topologies by Réville et al. (2015).
As expected, all other parameters being equal, the radially av-
eraged Alfvén radius is found to be systematically smaller for
more complex magnetic geometries. Hence, our empirical recal-
ibration of the K1 factor could be interpreted as indicating that
higher mass stars have more complex magnetic geometries than
lower mass stars, thus reducing the efficiency of magnetic brak-
ing by stellar winds at higher masses. A mass-dependent mag-
netic topology is indeed suggested for main-sequence stars, with
solar-mass stars having more multipolar magnetic structure than
lower mass stars whose magnetic topology tends to be dipole
dominated (Petit et al. 2008; Donati & Landstreet 2009; Morin
et al. 2010; Gregory et al. 2012).

A more prosaic explanation, however, may simply be that the
mass-loss rate prescription that we use depends too strongly on
stellar mass. As seen from Eqs. (1) and (2) we find

Γwind ∝ K2
1 × Ṁ1−2 m

wind ≃ K2
1 × Ṁ0.56

wind (17)

so that we could produce the same results by varying the mass-
loss rate instead of recalibrating the K1 factor. Keeping the K1
factor to 1.30 as in Matt et al. (2012a) would require multiplying
the mass-loss rates of 1 M⊙, 0.8 M⊙, and 0.5 M⊙ stars by fac-
tors of 2.6, 20, and 860, respectively. Compared to the mass-loss
rates used in the parametric models above (see Fig. 4), which
range from 10−16.5 M⊙ yr−1 for 0.5 M⊙ stars to 10−13 M⊙ yr−1

for young solar-mass stars, this would translate into mass-loss
rates in the range ∼10−14−10−13 M⊙ yr−1 over the whole mass
range. The latter values might actually be in better agreement
with the observations (e.g. Vidotto et al. 2014b). Clearly, addi-
tional measurements of magnetic topologies and mass-loss rates
are needed for young solar-type stars to be able to better calibrate
the braking torque they undergo as they evolve on the early main
sequence.

As discussed in Sect. 4.1, lower mass stars take longer to
spin-down on the main sequence, but once they have reached
rotational convergence, their spin rate is lower than that of solar-
mass stars (cf. Fig. 5). The longer spin-down timescale and lower

5 Note that the braking torque always remains higher for higher mass
stars, as shown in Fig. 4.
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Fig. 9. Spin-down rate Ω̇ = J̇/I∗ plotted as a function of angular veloc-
ity for 1 M⊙ (solid), 0.8 M⊙ (dotted), and 0.5 M⊙ (dashed) stars. Note
the cross-over of the deceleration curves as the stars go from the mag-
netically saturated to the unsaturated regimes.

terminal velocities of lower mass stars both directly results from
the braking law. Since stars in the 0.5−1.0 M⊙ mass range have
about the same maximum velocities at ZAMS, the spin-down
timescale primarily depends on how much angular momentum
is extracted in the magnetically saturated regime. As shown in
Fig. 4, this quantity decreases towards lower mass stars, thus
accounting for their longer spin-down timescale. The terminal
velocity, however, depends mostly on the extraction of angu-
lar momentum once the star is nearing rotational convergence,
i.e. in the unsaturated regime (low rotation rate). Figure 4 shows
that the braking torque is then about the same for all stars in the
0.5−1.0 M⊙ mass range, and since the lower mass stars have a
lower moment of inertia, they are more easily braked, eventually
reaching lower terminal velocities. Hence, the two major prop-
erties of the rotational evolution of low-mass stars on the main
sequence are fully encoded into the mass-dependent braking law.
This is illustrated in Fig. 9, which shows the deceleration rate of
low-mass stars, Ω̇ = J̇/I, as a function of their instantaneous ve-
locity. It is seen that the curves for the three mass bins cross-over
at intermediate velocity, i.e. higher mass stars are more rapidly
spun down at high velocities, while lower mass stars are at low
velocities.

5.4. Gyrochronology and the Skumanich relationship

Figure 1 shows the observed period-mass distributions of the
various clusters used in this study together with the model pre-
dictions for evolution of slow, median, and fast rotators over the
0.5−1.0 M⊙ mass range. It is seen that the stellar spin smoothly
evolves with time at all masses investigated here and models
closely follow this evolution. Hence, the possibility of uniquely
relating the spin rate to the age of the star, i.e. to explore gy-
rochronology as originally suggested by Barnes (2003) follow-
ing the pioneering work of Skumanich (1972). The Skumanich’s
relationship, Ω∗ ∝ t−1/2, was derived for solar-mass stars with
an age between 100 Myr and the Sun’s. In the models presented
here, the asymptotic behaviour of low-mass stars at large ages
appear to follow this relationship quite closely (cf. Fig. 5). It
is however important to stress that: i) this relationship is valid
only past the time of rotational convergence, i.e. after ∼0.5 Gyr
for solar-mass stars and after ∼3 Gyr for 0.5 M⊙ stars; ii) prior
to the epoch of rotational convergence, there is no one-to-one

relationship between a star’s age and its surface velocity as the
initial dispersion of rotation rates has not been erased yet; and
iii) the rotational evolution on the early MS can be steeper (fast
rotators) or shallower (slow rotators) than the Skumanich rela-
tionship would predict depending on the amount of angular mo-
mentum being stored in the stellar core and slowly resurfacing
into the envelope (cf. Fig. 5).

On the late-MS, all stars in the 0.5−1.0 M⊙ mass range
have reached rotational convergence. Indeed, the recent results
of Meibom et al. (2015) on NGC 6819, a 2.5 Gyr open clus-
ter, yield a tight mass-rotation period relationship over the mass
range 0.85−1.3 M⊙ at this age. In this cluster, solar-mass stars
have rotational periods narrowly distributed within P1 M⊙ =

17−19d; while 0.85 M⊙ stars have periods in the range P0.85 M⊙ =

21−24d. Our solar-mass model interpolated at this age predicts
P1M⊙ = 18.5 ± 0.8d (with a median period of 17.7d), while the
0.8 M⊙ model yields P0.8 M⊙ = 24.8±2.0d (median P = 22.67d),
in excellent agreement with observations.

The largest set of rotational periods has been recently ob-
tained by McQuillan et al. (2014) for a sample of more than
34 000 field stars using the Kepler satellite. We reproduce their
results in Fig. 11 where the spin rates are plotted as a function of
mass, and where we over plotted isochrones predicted from our
0.5, 0.8, and 1.0 M⊙ models. It is seen that the lower envelope of
the Kepler rotational distribution is well reproduced by the mod-
els at an age of 7 Gyr, as expected for the oldest field stars of the
Kepler sample. The upper envelope of the main rotational locus
roughly corresponds to 0.5 Gyr-old stars, and the “rain” of stars
above it consists of even younger field dwarfs.

Finally, we should emphasise that there is no dichotomy in
the rotational evolution of low-mass stars. We illustrated here
models for slow, median, and fast rotators and all three mod-
els rely on the same assumptions. Indeed, the evolution of slow
and fast rotators alike is driven by the same underlying phys-
ical processes. These processes act on different timescales de-
pending on stellar mass and initial velocity, which leads to the
observed, peculiar and rapidly evolving, shape of the cluster’s
rotational distributions (cf. Fig. 10) and, ultimately, to the field
distribution (cf. Fig. 11). Thus, the observed rotational distribu-
tions of young open clusters and field stars do not prompt for
different processes operating in fast and slow rotators. Instead,
the sequence of rotational distributions from 1 Myr to several
Gyr can be described as deriving from the smooth temporal evo-
lution of a single, widely dispersed initial distribution of angular
momenta at birth.

There are others two-zone models in the literature, such as
Keppens et al. (1995), Irwin & Bouvier (2009), and Denissenkov
(2010). These models are based on the Kawaler (1988) braking
law and their numerical structures are quite similar to our model
(star-disk interaction, core-envelope decoupling, and wind brak-
ing). The main difference lies in the wind braking law used.
The Matt et al. (2012a) braking law contains more physics than
Kawaler’s, especially through the mass-loss rate, which is not
included in Kawaler (1988). Moreover, while in these models
the saturation of the braking low has to be manually set, in the
model presented in this article the saturation is fixed by the ob-
servations via the magnetic filling factor.

We also highlight that there are other modelling approaches
that do not necessarily invoke the two-zone formalism. These
models usually assume solid body rotation for the whole stars.
Barnes (2010) and Barnes & Kim (2010) propose a model
based on gyrochronology analysis (Barnes 2003) and a Kawaler-
modified braking law. This model only works for moderate-
to-old MS stars once the convergence is achieved, but fails to
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Fig. 10. Same as Fig. 1. The red and blue crosses are the values derived from our evolution model for the slow and fast rotator models, respectively.

reproduce the rotation behaviour of young stars. In Reiners &
Mohanty (2012) the braking torque is inversely proportional to
the mass-loss rate, which is assumed to be constant during all
the evolution. This behaviour somehow contrasts with what we
expect, i.e. that the magnetic braking is induced by the quantity
of angular momentum extracted by the stellar wind. However,
their model can easily be extended to very low-mass star thanks
to their mass and radius dependencies. Finally, Brown (2014)
proposed a more sophisticated Barnes (2010) like model. His
models are quite good for intermediate ages (≈200 Myr) but fail
to reproduce the youngest clusters (α Per) because of a lack of
slow rotation (due to the solid body rotation) and the old cluster
(M 37, NGC 6811) especially for low-mass stars.

6. Conclusion

The rotational evolution of low-mass stars in the range from
0.5 to 1.1 M⊙ can be described, from birth to the end of the
main sequence by parametric models that rely on a limited num-
ber of physical processes: star-disk interaction, wind braking,
and core-envelope decoupling. The physical processes involved
in the angular momentum evolution are included in the mod-
els through parametric prescriptions that either rely on observa-
tional evidence (e.g. rotational regulation during PMS star-disk
interaction), are physically driven simplifications of actual pro-
cesses (e.g. core-envelope decoupling), or are based on recent

numerical simulations (e.g. wind braking). We explored here
how the model parameters vary with mass to get deeper insight
into the underlying physical mechanisms. The disk lifetimes and
initial rotation periods seem to have little dependence on mass,
and the former are consistent with the distribution of disk life-
times derived from the evolution of IR excess in young stars.
However, we do find a correlation between initial period and disk
lifetime, which may point to the impact of protostellar disks in
establishing the initial distribution of angular momenta. In con-
trast, the core-envelope coupling timescale and the wind braking
efficiency strongly vary with mass, and both increase towards
lower mass stars. While the former result may reflect the prop-
erties of a still to be identified angular momentum transport pro-
cess operating in stellar interiors, which is also shown to strongly
depend on rotation, the latter may derive from a change in the
magnetic topology of dynamo fields as one goes to lower masses.
We find that these models do reproduce the run of rotational pe-
riod distributions as a function of time, from the youngest star-
forming regions to the oldest open clusters, and provide a re-
markable fit to the oldest field stars from the Kepler sample. The
implications are manifold. A large amount of angular momen-
tum must be stored in the radiative core during several 100 Myr
on the early main sequence, which will undoubtedly impact on
the stellar properties, such as lithium content, even long after
the end of the spin-down phase on the main sequence. Also, the
build-up of a wide dispersion of rotational velocities at ZAMS
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Fig. 11. Angular velocity (left axis) and rotation periods (right axis) as a function of mass for the 34 030 field stars whose rotational periods have
been measured by McQuillan et al. (2014). The stellar mass was derived from Teff using the isochrones of Baraffe et al. (1998) for a mean age of
1 Gyr.

from an initially dispersed PMS distribution and its subsequent
evolution on the early MS partly reflect this process. The mod-
els also naturally account for the longer spin-down timescale of
lower mass stars and their lower velocities compared to solar-
type stars at the end of the spin-down phase. Finally, we show
that the models naturally yield a Skumanich-type rotational evo-
lution on the late main sequence for stars in this mass range,
but that until about 1 Gyr, there is no one-to-one relationship
between stellar rotation and stellar age, thus undermining the
determination of accurate stellar ages for individual young stars
from their rotational properties. Indeed, the slow release on the
early main sequence of angular momentum hidden in the stel-
lar core delays the epoch at which a Skumanich-type rotational
evolution eventually sets in.
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