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Abstract

Background: Since ancient times the filamentous fungus Aspergillus oryzae has been used in the
fermentation industry for the production of fermented sauces and the production of industrial
enzymes. Recently, the genome sequence of A. oryzae with 12,074 annotated genes was released
but the number of hypothetical proteins accounted for more than 50% of the annotated genes.
Considering the industrial importance of this fungus, it is therefore valuable to improve the
annotation and further integrate genomic information with biochemical and physiological
information available for this microorganism and other related fungi. Here we proposed the gene
prediction by construction of an A. oryzae Expressed Sequence Tag (EST) library, sequencing and
assembly. We enhanced the function assignment by our developed annotation strategy. The
resulting better annotation was used to reconstruct the metabolic network leading to a genome
scale metabolic model of A. oryzae.

Results: Our assembled EST sequences we identified 1,046 newly predicted genes in the A. oryzae

genome. Furthermore, it was possible to assign putative protein functions to 398 of the newly
predicted genes. Noteworthy, our annotation strategy resulted in assignment of new putative
functions to 1,469 hypothetical proteins already present in the A. oryzae genome database. Using
the substantially improved annotated genome we reconstructed the metabolic network of A.

oryzae. This network contains 729 enzymes, 1,314 enzyme-encoding genes, 1,073 metabolites and
1,846 (1,053 unique) biochemical reactions. The metabolic reactions are compartmentalized into
the cytosol, the mitochondria, the peroxisome and the extracellular space. Transport steps
between the compartments and the extracellular space represent 281 reactions, of which 161 are
unique. The metabolic model was validated and shown to correctly describe the phenotypic
behavior of A. oryzae grown on different carbon sources.

Conclusion: A much enhanced annotation of the A. oryzae genome was performed and a genome-
scale metabolic model of A. oryzae was reconstructed. The model accurately predicted the growth
and biomass yield on different carbon sources. The model serves as an important resource for
gaining further insight into our understanding of A. oryzae physiology.
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Background
A. oryzae is a member of the diverse group of aspergilli that
includes species that are important microbial cell facto-
ries, as well as species that are human and plant pathogens
[1]. A. oryzae has been used safely in the fermentation
industry for hundreds of years in the production of soy
sauce, miso and sake. Today A. oryzae is also used for pro-
duction of a wide range of different fungal enzymes such
as α-amylase, glucoamylase, lipase and protease and it is
regarded as an ideal host for the synthesis of proteins of
eukaryotic origin [1]. In the post genome-sequencing era,
various high-throughput technologies have been devel-
oped to characterize biological systems on the genome-
scale [2]. Discovering new biological knowledge from
high-throughput biological data and assigning biological
functions to all the proteins encoded by the genome is,
however, challenging and allowing systems level investi-
gations of microbial cell factory. For fungi, several
genome-sequencing and annotation projects have been
presented, including Saccharomyces cerevisiae [3], A. nidu-
lans [4], A. fumigatus [5], and A. niger [6,7]. Recently,
genome sequence of A. oryzae by Machida and his cowork-
ers has been published [8]. Based on their sequence anno-
tation using gene-finding software tools such as ALN [9],
GlimmerM [10] and GeneDecoder [11], this analysis
12,074 genes encoding proteins were predicted to be
present in the genome [8]. Despite this prediction many
genes had not been assigned a definite function, and of
the 12,074 genes, more than 50% were annotated as
hypothetical proteins. Hence, there are clearly opportuni-
ties for refining the gene prediction and improving the
annotation. However, the present one dimensional data
does not allow for complete annotation of all genes and it
would therefore be interesting and potentially fruitful to
use integrative biological tools in the process of improv-
ing the annotation of fungal genomes [12]. In this process
reconstruction of a genome-scale metabolic model is a
good starting point as it allows for integration of various
types of data. Nowadays, there are several open sources of
fungal metabolic models, such as for S. cerevisiae [13], A.
nidulans [14], A. niger [15] and a model for the central car-
bon metabolism of A. niger [16]. These models currently
are prominent as one of the most promising approaches
to achieve an in silico prediction of cellular function in
terms of physiology [17].

The aim of this study is to improve the annotation of the
genome sequence of A. oryzae and further integrate
enhanced annotated data to construct a genome-scale
metabolic model of A. oryzae. The first A. oryzae EST
library, sequencing and assembly were performed in order
to improve gene prediction. Then functional assignment
was done by our developed annotation strategy and a
combination of different bioinformatics tools and data-
bases. The bioinformatics tools used were BLAST [18],

HMMER [19], and PSI-BLAST [20]. Several databases used
were namely the A. oryzae genome database [21], the EST
database of A. flavus [22], the A. nidulans genome database
[23], the A. fumigatus genome database [24], the S. cerevi-
siae genome database [25], the Pfam protein families
database [26], the COG database [27], and the Non-
Redundant (NR) protein database [28]. Subsequently,
manual inspection was through in order to achieve a solid
annotation for enzyme functions that were needed for
reconstruction of the metabolic network. Based on the
improved annotated genome, the genome-scale meta-
bolic network was reconstructed. The network was built
by comparison with other related metabolic models,
namely models for S. cerevisiae [13], A. nidulans [14], and
A. niger [15,16], and biochemical pathway databases, lit-
erature, as well as experimental evidence for the presence
of specific pathways. The biomass composition was taken
from the literature, whereas, maintenance and growth-
associated ATP consumption rates were estimated based
on literature data on yields and growth rates. Finally, Flux
Balance Analysis (FBA) was used to predict the flux distri-
butions in the metabolic network, and the biomass yields
as well as growth rates on different carbon sources were
estimated to validate the metabolic model of A. oryzae.

Results and Discussion
Gene discovery and validation

The assembled EST sequences of A. oryzae were achieved
from this study (see Additional file 1) where were depos-
ited into Genbank database under accession numbers
"EY424375–433412". Within our assembled EST data
analysis of A. oryzae, we found 9,038 EST contig sequences
with a GC content of 51.2% and an average EST length of
738 base pairs (bps). Based on analysis of sequences
obtained from Machida and coworkers [8], the A. oryzae
genome consists of eight chromosomes containing 37.2
Megabases (Mb) with a GC content of 48.2% and 12,074
annotated genes. According to the described strategy
implemented for gene finding (See Methods), the 9,038
EST sequences were searched against the 12,074 previ-
ously identified genes [8] in the sequenced genome using
various search parameters to create lists of predicted genes
with different match stringencies. Using the criteria
described in the Methods, many dissimilar sequences
between the EST sequences and previously identified gene
sequences of A. oryzae [8] were found. This suggests the
presence of many newly predicted genes. Interestingly,
approximately 12% (1,046 out of the 9,038 EST
sequences) were categorized as newly predicted genes in
the genome. Many homolog sequences were also found
strongly validating previously identified genes [8], with
approximately 75% of the total EST sequences (6,773 out
of the 9,038 EST sequences) matching earlier identified
genes (See Figure 1). To confirm that all the EST sequences
do existed in the A. oryzae genome, the 9,038 EST

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EY424375
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sequences were searched by BLASTN [18] against the com-
plete genome, and the results showed that only 20 EST
sequences could not be found to be present in the
genome. Therefore, this suggests that the assembled EST
data of A. oryzae had very high quality and showed an
excellent success rate for gene discovery and validation,
even though approximately 13% (1,219 out of the 9,038
EST sequences) could not be used to predict genes,
because 6% (582 out of the 9,038 EST sequences) were
too short and about 7% (637 out of the 9,038 EST
sequences) were too weakly validated in the original gene
list using a conservative cut-off. In another attempt to pre-
dict new genes in A. oryzae genome, A. flavus EST contigs
stored in the TIGR public database [22] were also used
because A. flavus and A. oryzae are very closely related [29].
Also, there is a high degree of DNA homology between the
two organisms (e.g. aflatoxin cluster > 96%) [29]. A. flavus
EST library contained 7,218 sequences with a GC content
of 49.7% and an average EST length of 636.2 bps. Using
these A. flavus EST sequences to search against the genes in
our new gene list for the A. oryzae genome, no new genes
were predicted but 3,320 genes in the A. oryzae genome
were validated by EST sequences (see Figure 1). Based on
all the results of the gene finding a total of 13,120 protein-
encoding genes were identified in the A. oryzae genome.
This total number of genes derives from 12,074 previously
annotated genes by Machida et al and 1,046 newly pre-
dicted genes from our assembled EST library.

Identification of protein functions by pairwise comparison

In order to assign protein functions to the 13,120 pre-
dicted genes, sequence alignment analysis by pairwise
comparison between A. oryzae and closely related fungi
was performed. These fungi included A. nidulans, A. fumi-
gatus and S. cerevisiae. Table 1 shows some genome char-
acteristics of the related fungi in comparison with A.
oryzae. Initially pairwise comparison was done by similar-
ity searching of the protein sequences of A. oryzae against
the protein sequences of other related fungi as described
in the Methods. With a chosen threshold of the alignment
length (bps) and identity (%), a list of putative protein
functions was created. The results are summarized in
Table 1. Pairwise comparison shows that A. fumigatus has
6,274 homologs with A. oryzae sequences. It is the highest
number of sequence homologs and this indicates the
highest percentage (88%) of the homologs obtained
between the three species tested. This result is consistent
with the fact that A. oryzae and A. fumigatus are the phylo-
genetically closest species of those evaluated [4,30]. Upon
completion of the similarity searching, the results suggest
that 7,161 genes in A. oryzae could be assigned as orthol-
ogous genes from the three fungi used for comparison. Of
these 7,161 protein sequences, 5,836 sequences were
assigned putative protein functions for A. oryzae. These
functions were mainly obtained from A. fumigatus (Table
1). The remaining 1,325 sequences that have homologs in
the three other fungi could not been assigned any func-
tion yet, and they are therefore classified as hypothetical
proteins. The putative functions annotated here were clas-

Gene discovery and validation of existing genesFigure 1
Gene discovery and validation of existing genes. The bars show the number of new genes discovered and the number of 
existing gene validated by our assembled EST sequences of A. oryzae and EST data of A. flavus [22].
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sified using biological process (BP) type from the Gene
Ontology (GO) database [31]. The genes and functions
that have biological process terms involved in metabo-
lism, including both biosynthesis and catabolism, were
extracted and used for metabolic network reconstruction.
The results of this process show that the A. oryzae genome
contains 1,924 genes (15% of the 13,120 total genes)
encoding 1,070 different protein functions involved in
metabolism.

Metabolic pathway mapping

The metabolic models for S. cerevisiae [13], A. nidulans
[14], and A. niger [15,16] were combined to generate an
initial reaction list for the construction of the A. oryzae
metabolic network. Duplicated reactions were removed
resulting in a list of 1,924 genes and 1,070 functions
involved in metabolism. For each enzyme function
involved in this reaction list it was searched in the above
generated list of metabolic proteins present in A. oryzae. If
an enzyme name matched, then the enzyme-encoding
genes, enzyme functions and Enzyme Commission (EC)
numbers of A. oryzae were selected and mapped onto this
reaction list. Hereafter a classification system was estab-
lished to divide reactions in the whole metabolic network
of A. oryzae into 7 main metabolic pathways: carbohy-
drate metabolism, energy metabolism, amino acid metab-
olism, nucleotide metabolism, lipid metabolism, cofactor
metabolism and secondary metabolism. It is hereby
found that the highest number of enzyme-encoding genes
is involved in carbohydrate metabolism, which is consist-
ent with the fact that A. oryzae has the ability to use a wide

range of carbohydrate substrates. For amino acid and lipid
metabolisms, many enzyme-encoding genes were also
found. A lower number of enzyme-encoding genes were
found in nucleotide, cofactor and energy metabolisms.
The lowest number of enzyme-encoding genes was found
in secondary metabolism. In fact, the A. oryzae genome
contains a lot of enzyme-encoding genes involved in sec-
ondary metabolism [29], but most of these genes are with-
out EC numbers and could therefore not be mapped onto
the metabolic network. The hereby resulting metabolic
network contains several gaps, which means that there are
metabolic reactions without corresponding enzymes.

Filling gaps in the metabolic network using an integrated 

bioinformatics tool

In order to identify genes encoding more enzyme func-
tions and hereby reduce the number of gaps in the meta-
bolic network, an integrated bioinformatics tool was
developed and used to identify these missing enzymes.
This tool called "Gap Filler for Aspergillus oryzae Pathway
(GFAOP)" was developed in- house by combining differ-
ent bioinformatics tools (i.e. BLAST [18], HMMER [19],
and PSI-BLAST [20]) and databases (i.e. A. oryzae genome
[21], Pfam [26], COG [27], and NR [28]). GFAOP is sim-
ilar to the McConkey searching algorithm which has been
used for enzyme identification in eukaryote genomes
[32]. The method is also related to Osterman's method for
the identification of bacterial genes encoding metabolic
functions [33]. An overview of GFAOP is shown in Figure
2. First, the tool was validated by searching for 441 known
protein functions in A. oryzae using the information from

Table 1: Comparison of genome characteristics and function assignments between A. oryzae and other related fungi

Genome characteristics

Features ANI1 AFU2 SC3 AO4

Genome size (Mb) 30.1 29.4 12.1 37.2
Number of chromosomes 8 8 16 8
Number of total predicted genes 10,701 10,267 5,869 13,120

Function assignments

Pairwise comparison ANI and AO AFU andAO SC andAO AO

Number of protein sequence homologs 6,095 6,274 1,794 7,161
Percentage of sequence homologs 85 88 25 100
Number of assigned putative functions 837 5,482 1,731 5,836
Percentage of assigned putative functions 14 93 30 100
Number of predicted genes involved in metabolism 567 1,556 837 1,924
Number of putative functions involved in metabolism 377 1,132 495 1,070

ANI1: Data were obtained from A. nidulans genome database [23]
AFU2: Data were obtained from A. fumigatus genome database [24]
SC3: Data were obtained from S. cerevisiae genome database [25]
AO4: Data were obtained from A. oryzae genome database [21]. Notably, total predicted genes were achieved from both database [21] and our EST 
sequence analysis.
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the genome database [21]. The tool confirmed 100%
accuracy of the prediction. This tool was then used to
search for functional activity related to missing enzyme
(Gap) in the metabolic reaction. To illustrate this
approach, one of the missing enzymes ("D-xylose reduct-
ase" (EC: 1.1.1.21)) in the pathway of xylose degradation
of A. oryzae is selected as an example. To answer the ques-
tion of whether there is a gene encoding D-xylose reduct-
ase in A. oryzae. GFAOP was applied as follows. First the
HMMER program generates a Hidden Markov Model
(HMM) profile of this enzyme (D-xylose reductase) from
the protein families databases (such as Pfam or COG).
Second, a consensus sequence is generated. Third, the

consensus sequence is searched against the A. oryzae
genome by a PSI-BLAST [20]. Sequences where the hit has
suitable statistical significance values are selected and
extracted for protein function assignment by searching
against the NR protein database [28] using BLAST [18] to
verify its probable function.

The result clearly shows that there is a high probability for
that the gene called "AO090003000859" encode D-xylose
reductase. Based on searching of this gene in the A. oryzae
genome database [21], the gene name AO090003000859
is only reported for general prediction and poorly charac-
terized functions. Moreover, the exploration in other data-

Filling gap by integrated bioinformatics approachFigure 2
Filling gap by integrated bioinformatics approach. A diagram of the integrated bioinformatics tools used for filling the 
gaps in the metabolic network. A missing enzyme of D-xylose reductase in xylose degradation pathway is used as an example 
to illustrate the gap filling process.
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bases such as the Genbank, this gene name is only showed
to have a region encoding aldo/keto reductase family pro-
teins, but there is no evidence on the specific function of
the gene. As a result from using GFAOP, the missing
enzyme of D-xylose reductase is entered into the pathway.
Our method results in an improved annotation of the
genome using the context of the metabolic network. An
iterative process was done for filling all the gaps in the
whole metabolic network. Ultimately, 210 gaps in the
metabolic network were closed using GFAOP. These gaps
distributed with 86 gaps in lipid metabolism, 31 gaps in
secondary metabolism, 34 gaps in amino acid metabo-
lism, 23 gaps in nucleotide metabolism, 17 gaps in carbo-
hydrate metabolism, 10 gaps in cofactor metabolism, and
9 gaps in energy metabolism.

Characteristics of the improved annotation and 

reconstructed metabolic network

The annotation process resulted in the improved anno-
tated data shown in Table 2 where the data are compared
with values in the A. oryzae genome database by Machida
et al [21]. The results show that the number of improved
annotated genes is 13,120 which are higher than the
number of genes in the database [21]. Of these improved

annotated data, the predicted genes and the putative func-
tions are distributed into different groups. The first group
contains new putative protein functions assigned to newly
predicted genes, and it contains 398 new putative protein
functions that are divided into 154 metabolic functions
and 244 other functional groups. The second group con-
tains hypothetical proteins assigned to newly predicted
genes and it contains 648 hypothetical proteins. The third
group is new putative protein functions assigned to pro-
teins previously annotated as hypothetical proteins, and
this group comprises 1,469 proteins of which 562 pro-
teins have metabolic functions. The final group contains
genes that is found to have the same putative protein func-
tion as previously reported in the database [21]. In total
the hereby annotated genome of A. oryzae contains 5,391
protein functions of which 3,178 have metabolic func-
tions. Even though the genome still contains 5,214 hypo-
thetical proteins this is less than the 6,683 hypothetical
proteins currently reported in the database [21], and our
work therefore resulted in a substantial improvement of
the genome annotation. An enhanced annotated data
were mapped on the A. oryzae genome by using the Perl
Scalable Vector Graphics (SVG) Module V2.33 [34]. Fig-
ure 3 shows an example of gene and EST mapping on the

Table 2: Statistical characteristics of improved annotation and metabolic reconstruction.

Characteristics of improved annotation Improved annotated data Database

Total protein-encoding genes 13,120 12,074
New putative protein functions to newly predicted genes 398 -

Metabolic functions 154 -
Other functional groups 244 -

Hypothetical proteins to newly predicted genes 648 -
New putative protein functions to previously hypothetical proteins 1,469 -

Metabolic functions 562 -
Other functional groups 907 -

Same putative protein functions 5,391 5,391
Metabolic functions 3,178 3,178
Other functional groups 2,213 2,213

Hypothetical proteins 5,214 6,683

Characteristics of network A. oryzae A. nidulans

Enzymes-encoding genes 1,314 666
Enzymes 729 466
Metabolites 1,073 733
Biochemical reactions 1,846 (1,053 Unique) 1,090 (676 Unique)

Cytosol 832 551
Mtochondria 172 103
Glyoxysome - 5
Peroxisome 19 -
Extracellular 30 17

Transport reactions 281 (161 Unique) 118 (113 Unique)
Reactions with gene assignments 173 (53 Unique) 15 (12 Unique)
Reactions without gene assignments 108 (108 Unique) 103 (101 Unique)

An improved annotated data is compared with genome database of A. oryzae [21]. The reconstructed metabolic network of A. oryzae is compared 
with the reconstructed metabolic network of A. nidulans [14]
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contig of AP007151 which is a part of chromosome 1 of
the A. oryzae genome. The complete genomic map is avail-
able as Additional file 2. The list of all ESTs and genes con-
tained on the genomic map is presented as Additional file
3.

As previously mentioned the improved annotation
resulted in a final reconstructed metabolic network that
contains 729 enzymes, 1,846 (1,053 unique) biochemical
reactions and 1,073 metabolites (Table 2). The large
number of isoenzymes (indicated by the difference
between total biochemical reactions and unique bio-
chemical reactions) points to a very high degree of flexi-
bility in the metabolic network of A. oryzae. The 1,053
unique biochemical reactions are distributed into 832
cytosolic, 172 mitochondrial, 19 perosixomal, and 30
extracellular reactions. There are 281 (161 unique) reac-

tions that function as transport processes, and of these
173 (53 unique) are included on the basis of gene assign-
ments whereas there are no annotated genes for 108 of the
transport reactions. All the genes and functions involved
in metabolism were inspected manually. A total of 1,314
genes without duplication represented as enzyme-encod-
ing genes are included in the reconstructed network. This
corresponded to about 10% of the 13,120 total predicted
genes of A. oryzae. For model comparison, the metabolic
network of A. nidulans [14] was chosen, and it shows that
the metabolism of A. oryzae is much larger than that of A.
nidulans as it contains a higher number of genes,
enzymes, metabolites and reactions (see Table 2). A list of
the reactions in the reconstructed metabolic network that
comprised the genes, EC numbers and enzymes was
hereby obtained (see Additional file 4). To illustrate a
whole network, overall metabolic map of A. oryzae was

Gene and EST mapping on the A. oryzae genomeFigure 3
Gene and EST mapping on the A. oryzae genome. An example of how we map genes and ESTs on the AP007151 contig, 
a part of chromosome 1 of the A. oryzae genome. Along this contig, we mapped EST sequences defining new genes with anno-
tation, EST sequences validating genes, and also re-annotated genes.



BMC Genomics 2008, 9:245 http://www.biomedcentral.com/1471-2164/9/245

Page 8 of 14

(page number not for citation purposes)

drawn as shown in Figure 4 (also see in Additional file 5
for full size) to represent a valuable link between genes,
enzymes, metabolic reactions and metabolites. The com-
plete metabolite list (with full name) is also given as Addi-
tional file 4.

Biomass growth simulation

Using the reconstructed metabolic network, a stoichio-
metric model was developed and subsequently used to
simulate growth. A list of the reactions that comprise the
stoichiometric model is presented as Additional file 4. To
describe growth, biomass production is regarded as a
drain of macromolecules and building blocks required to
produce cellular components. The demands on each of
these compounds are estimated based on the biomass
composition. No drain of free metabolites or dilution of
the metabolite pool due to biomass growth is considered
[35]. The cellular composition considered for A. oryzae is
based on the contents of the main biomass components
of A. oryzae [36] as shown in Table 3 (see also Additional

file 4 for the original data used to perform this analysis).
In addition, concerning the biomass composition, the
only parameters that have to be estimated are key ener-
getic parameters: ATP requirement for non-growth associ-
ated purposes (mATP), ATP requirement for synthesis of
biomass from macromolecules (KATP) and the operational
P/O ratio. These parameters can not be determined inde-
pendently, but if one of the parameters is known the oth-
ers can be estimated from experimental data. The
operational P/O ratio was assumed to be 1.5 [35], and
mATP (mmol/gDW) was estimated to be 1.9 and KATP

(mmol/gDW) was estimated by fitting model simulation
with experimental data obtained at a specific growth rate
of 0.1 h-1 [36] with glucose as the sole carbon source. The
value of KATP was hereby estimated to be 49 mmoles ATP/
g DW.

Assessment of model validation of A. oryzae

The model was evaluated by simulating A. oryzae cell
growth on different carbon sources and comparison of the

Overall metabolic map of A. oryzaeFigure 4
Overall metabolic map of A. oryzae. A full size of metabolic map of A. oryzae is viewed in Additional file 5.
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simulated data to the experimentally determined growth
rate and biomass yield from literature data [37,38]. For
each carbon source the substrate uptake rate was esti-
mated from measurements of the substrate concentration
in the medium, and this value is used as input to the
model. From this input the flux distributions correspond-
ing to optimal growth are calculated by maximizing the
flux of the reaction leading to biomass. The validation
results are shown in Figure 5 and Figure 6. From the

results, Figure 5 indicates that the model can accurately
predict the maximum specific growth rate (h-1) during
batch cultivations on different carbon sources (when the
uptake rate of the carbon source is given as input). The
accuracy is on average about 98% of the experimentally
determined value. Figure 6 also shows that the model can
accurately predict the biomass yield (gDW/mmol sub-
strate) during chemostat cultivations on different carbon
sources. The small deviation can be explained by kinetic

Table 3: Biomass composition in the metabolic model of A. oryzae

Biomass component Average molecular weight1 [g/mol] Content2 [g/100 g DW] Stoichiometric coefficient4 [mmol/g 
DW]

Normalized3

Proteins 134.58 40 47.1 3.50075
Carbohydrates - 28 33 -

Glycogen 666.6 0.1 0.1 0.00212
Chitin 203.2 7 8.3 0.40759
Glucan 162.1 20.8 24.6 1.51453

RNA 341.9 5.3 6.2 0.18259
DNA 332.3 0.8 0.9 0.02836
Lipids - 6.8 8 -
Triacylglycerol 954.96 2.12 2.49 0.02617
Free fatty acid 301.31 0.35 0.41 0.01365
Phosphatidylethanolamine 782.5 0.97 1.14 0.01468
Phosphatidylcholine 834.8 2.38 2.8 0.03356
Phosphatidylserine 827.3 0.4 0.47 0.00564
Phosphatidylamine 755.24 0.58 0.68 0.00903
D-Mannitol 182.2 3.3 3.9 0.21333
Glycerol 92.1 0.7 0.8 0.08952
Ash - 15.1 - -

1Average molecular weights (units: g/mol of monomers in polymer)
2For growth on glucose, using ammonia as the nitrogen source and for a specific growth rate of 0.1 h-1

3Without considering ash
4In the equation representing biomass formation (units: mmol of monomers in polymer/g DW)

Model validation by experimental dataFigure 5
Model validation by experimental data. Comparison of the maximum specific growth rate (h-1) between simulated data 
and experimental data. The experimental data were obtained from batch fermentation.
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or genetic regulation within the metabolism, which is not
accounted for in the model [17].

Conclusion
A strategy for the improved annotation of the genome
sequence of A. oryzae was developed. Using our assembled
EST library, 1,046 EST sequences (about 12% of 9,038 EST
sequences) were discovered as newly predicted genes and
about 75% (6,773 of 9,038 EST sequences) were used to
validate previously annotated genes. This indicates that
the developed annotation strategy is a very useful
approach for gene prediction. Applying a combination of
various bioinformatics tools and databases, this annota-
tion strategy was successfully applied for function assign-
ment of genes. A high number of newly predicted genes
were assigned with 398 new putative functions, and with
new putative functions to 1,469 proteins previously anno-
tated as hypothetical proteins. Therefore our analysis
results in a substantially reduced number of hypothetical
proteins. In particular, more enzyme-encoding genes
could be assigned functions and this led to filling of 210
missing enzymes in the metabolic network. Applying the
enhanced annotated genome, biochemical pathway data-
bases, other related metabolic models, and the literature,
a metabolic network was reconstructed. The network con-
tains 729 enzymes, 1,314 enzyme-encoding genes (10%
of 13,120 total predicted genes), 1,073 metabolites and
1,846 (1,053 unique) biochemical reactions. The 1,053
unique reactions are distributed into different compart-
ments, with 831 reactions located in the cytosol, 173 reac-
tions located in the mitochondria, 19 reactions located in
the perosixome, and 30 reactions located in the extracel-
lular space. Transport reactions between the different

compartments and the extracellular space represents 281
(161 unique) reactions. This metabolic network was for-
mulated to a stoichiometric model. The model was
applied for Flux Balance Analysis (FBA) to obtain the flux
distributions corresponding to maximized growth. A
physiological study on different carbon sources of A.
oryzae was performed to validate the genome-scale model,
and the model is found to accurately predict the maxi-
mum specific growth rate and the biomass yield on differ-
ent carbon sources. This indicates that the A. oryzae
metabolic model is able to simulate the phenotypic
behavior and the model will hereby serve as an important
resource for gaining further insight into our understand-
ing of the important cell factory A. oryzae.

Methods
An overview of the approach employed here for improved
genome annotation of A. oryzae is depicted in Figure 7. For
gene discovery and validation, we constructed EST library
and performed sequencing as well as assembly as
described in following section.

EST library construction

The EST sequences of A. oryzae strain A1560 were con-
structed from a normalized library and an un-normalized
library. The normalized library was constructed by insert-
ing cDNA of A. oryzae in pCMV-Sport6 plasmids between
the MluI and the NotI sites (Vector – NotI – poly A (3' of
insert) – 5' of insert – MluI – SalI- vector). The plasmids
were amplified in Escherichia coli EMDH10B-TONA (a
recA strain). The un-normalized library was made by
inserting cDNA of A. oryzae between the EcoR1 and NotI

Model validation by literatureFigure 6
Model validation by literature. Comparison of biomass yield (gDW/mmol substrate) obtained by model simulation data 
and data from the literature [37, 38]. The biomass yield was obtained from chemostat fermentation.
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sites in the vector pYES2. The plasmids were amplified in
E. coli DH10B.

EST sequencing and assembly

The EST sequences were generated by sequencing on ABI
377 and ABI 3700 instruments from Applied Biosystems
using BigDye terminators version 1 and 2. In total 23,072
EST sequences were produced. Quality clipping, vector
removal, E. coli contamination removal and assembly
were done with the phredPhrap package [39]. The
sequences were assembled into 9,038 EST contigs.

Genome annotation process

The strategy of gene finding as shown in Figure 7A was car-
ried out based on our assembled EST sequences of A.
oryzae (see Additional file 1, also available online in Gen-
bank database under accession number "EY424375–
433412") together with public EST data of A. flavus [22].
Our assembled EST data of A. oryzae were compared to the
genes previously identified [8] in the genome of A. oryzae
strain RIB 40 by BLASTN [18]. The purpose of this com-
parison was to validate genes that were already annotated

and to discover new genes that had not been annotated by
Machida et al [8]. The 9,038 EST sequences were classified
into four categories as outlined in Additional file 3 and
described as follows. All sequences shorter than 300 bases
were discarded from the analysis. If the length of an EST
sequence was over 500 bps and the highest ranking hit
had a score lower than 50 bits, then the EST sequence was
categorized as a sequence that served as a newly predicted
gene. If the length of the EST sequence was over 300 bps
and the highest ranking hit had a score over 100 bits, then
the EST sequence was categorized as validating an earlier
identified gene [8]. If the highest ranking hit had a score
lower than 100 bits, the EST sequence was classified as
weakly validating a gene [8]. In the effort to predict new
genes in the A. oryzae genome, A. flavus EST data from the
TIGR database [22] was also used. The cut-off for gene dis-
covery and validation was selected to be the identical as
with our assembled EST data of A. oryzae. After performing
gene finding, assignment of protein function was done.
The main principle was performed based on sequence
alignment analysis, metabolic pathway mapping, filling
the gaps by integrated bioinformatics tool and lastly man-

Overview of annotation process of A. oryzae genomeFigure 7
Overview of annotation process of A. oryzae genome. Illustration of the annotation process, which is divided into two 
steps, namely gene finding (Figure 7A) and function assignment (Figure 7B).

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EY424375
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=433412
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ual curation. The sequence alignment was done to assign
putative function to newly predicted genes by BLASTX
[18]. The newly predicted gene was searched against the
NR protein database [28] and Protall_e protein database
[Unpublished]. The assignment of putative protein func-
tion was transferred if the alignment length of the highest
ranking hit was over 50 amino acids and the identity over
25%. The sequence alignment was done through pairwise
comparison of protein sequences by BLASTP [18] between
A. oryzae and other related fungi (i.e. A. nidulans strain
FGSC-A4, A. fumigatus strain Af293, S. cerevisiae strain
S288c) as shown in Figure 7B. The criteria for similarity
searching were alignment length (bps) and identity (%),
with the parameters depending on the type of fungus used
for the comparison [40]. An estimated suitable cut-off for
S. cerevisiae was an alignment length above 100 bps and
an identity higher than 40%. For other related Aspergillus
species, the cut-off was an alignment length above 200
bps and an identity higher than 40%. All cut-off values
were determined by using sequences with known protein
functions. After finishing the annotation process, the met-
abolic network of A. oryzae was reconstructed. At the
beginning, an initial metabolic reaction list for A. oryzae
was constructed by combination of S. cerevisiae [13], A.
nidulans [14], and A. niger [15,16] metabolic models. In
addition, data collection from metabolic pathway data-
bases, such as KEGG [41] and BioCyc [42], of other organ-
isms was integrated into this reaction list. The improved
annotated genomic data (i.e. enzyme-encoding genes,
enzyme functions, and EC numbers) were then mapped
into the reaction list. In order to visualize all the meta-
bolic reactions, overall metabolic map was drawn (see Fig-
ure 4 and Additional file 5 for full size). The improved
annotated data were placed onto this map. At the end,
gaps that existed in the metabolic network were then filled
using an integrated bioinformatics tool that allowed for
automatic searching for specific enzyme functions.
Finally, manual curation of the model was done for final-
izing the reconstruction process.

Metabolic network reconstruction

The metabolic network reconstruction aimed at represent-
ing the whole metabolism of A. oryzae, which consists of
primary catabolism of carbohydrates, biosynthesis of
amino acids, nucleotides, lipids, cofactors and production
of Gibbs free energy required for biosynthesis, as well as
of secondary metabolism. Combination of different types
of information was essential to carry out a solid recon-
struction. Information was collected from the improved
annotated data of A. oryzae, biochemical pathways, publi-
cations on specific enzymes, online protein databases
(e.g. Swiss-Prot database [43]) and also literature. In addi-
tion, there was physiological evidence for the presence of
a reaction or pathway in A. oryzae, e.g. when there was
information of presence of a specific enzyme activity or

presence of a pathway involved in consumption of a given
substrate or formation of a given metabolic product, then
the underlying reaction was added to the model, even if
there was no annotated gene supporting the presence of
the reaction. In the processes of stoichiometry for cofac-
tors as well as the information on reversibility or irrevers-
ibility for each reaction, these were verified and added as
information into the reconstructed network. Different cel-
lular compartments were considered and consequently
biochemical reactions were distributed into four different
compartments: the extracellular space, the cytosol, the
mitochondria, and the peroxisome [44]. Identification of
localization of each biochemical reaction was analyzed
according to enzyme localization, which was performed
by applying protein localization predictors. Herein, pTAR-
GET [45] and CELLO [46] were selected to predict sub-cel-
lular protein localization because they contain databases
of known eukaryotic protein localizations. If there is no
information on localization of a biochemical reaction or
its corresponding enzyme, then by default this reaction
was considered to occur in the cytosol. In addition, the
reconstructed metabolic network included transport steps
between the different intracellular compartments and
between the cell and the environment.

Modeling and simulation based Flux Balance Analysis 

(FBA)

After the metabolic network was reconstructed, this was
transformed into a mathematical framework to perform
Flux Balance Analysis (FBA) [47]. This approach is based
on conservation of mass under steady-state conditions.
This conversion requires stoichiometry of metabolic path-
ways, metabolic demands and a few specific parameters.
An optimal flux distribution can be obtained within the
feasible region by using linear programming [48]. A reac-
tion is selected as an objective function that is to be max-
imized or minimized. For physiologically meaningful
results, the objective functions must be defined as the
ability to produce the required components of cellular
biomass for a specified uptake rate of a selected carbon
source. By maximizing the flux towards biomass forma-
tion, a flux is obtained for each reaction in the metabolic
network.

Model validation of A. oryzae by physiological study on 

different carbon sources

Model validation is an important step in the reconstruc-
tion process. In this study, the model was validated by
simulating the rate of biomass formation on different car-
bon sources in batch experiments. Here the uptake rate of
the carbon source was given as input to the simulations.
Different carbon sources namely glucose (C6), maltose
(C12), glycerol (C3) and xylose (C5), which were selected
as they result in widely different physiological responses
and parameters. The strain used for generating these data
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was A. oryzae wild type strain A1560, which was obtained
from Novozymes A/S, Denmark. Three biological repli-
cates were done for each carbon source. The fermentations
were performed using an in-house fermenter with a work-
ing volume of 1.2 L, and operated at 34°C and pH was
kept constant at 6 by adding 10% of H3PO4 or 10% NH3

solution. The aeration flow rate was set at 1.2 L/min. The
stirrer speed was controlled at 800 rpm for the first 4 hrs
and later increased to 1100 rpm. The dissolved oxygen
tension was initially calibrated at 100%. The concentra-
tions of oxygen and carbon dioxide in the exhaust gas
were measured by a gas analyzer (Magnos 4G for O2, Uras
3G for CO2, Hartmann & Braun, Germany). Biomass dry
weight measurements were done as follows: A sample was
filtered using nitrocellulose filters (pore size 0.45 µm,
Munktell, Sweden), and the filter cake was therefore dried
at 110°C overnight. Hereafter the filter was placed in a
dessicator overnight, and subsequently, weighed. In addi-
tion, the extracellular concentration of sugars, organic
acids, and polyols were measured by using high-perform-
ance liquid-chromatography (HPLC) on an Aminex HPX-
87H, 300 mm*7.8 mm column. The column was kept at
45°C and eluted at 0.6 ml/min with 5 mM H2SO4.
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