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ABSTRACT

Outsourcing private data and heavy computation tasks
to the cloud may lead to privacy breach as attackers (e.g.,
malicious outsiders or cloud administrators) may correlate
any relevant information to penetrate information of their
interests. Therefore, how to preserve cloud users’ privacy
has been a top concern when adopting cloud solutions. In
this paper, we investigate the identity privacy problem for
the proxy re-encryption, which allows any third party (e.g.,
cloud) to re-encrypt ciphertexts in order to delegate the de-
cryption right from one to another user. The relevant iden-
tity information, e.g., whose ciphertext was re-encrypted
to the ciphertext under whose public key, may leak be-
cause re-encryption keys and ciphertexts (before and after
re-encryption) are known to the third party. We review
prior anonymity (identity privacy) notions, and find that
these notions are either impractical or too weak. To address
this problem thoroughly, we rigorously define the anonymity
notion that not only embraces the prior anonymity notions
but also captures the necessary anonymity requirement for
practical applications. In addition, we propose a new and
efficient proxy re-encryption scheme. The scheme satisfies
the proposed anonymity notion under the Squared Deci-
sional Bilinear Diffie-Hellman assumption and achieves se-
curity against chosen ciphertext attack under the Decisional
Bilinear Diffie-Hellman assumption in the random oracle
model. To the best of our knowledge, it is the first proxy re-
encryption scheme attaining both chosen-ciphertext security
and anonymity simultaneously. We implement a prototype
based on the proposed proxy re-encryption scheme and the
performance study shows that it is efficient.
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1. INTRODUCTION

Cloud computing has become an increasingly popular com-
puting paradigm as it offers numerous benefits, e.g., on-
demand service, service elasticity and low maintenance cost.
However, when outsourcing data and heavy computation
tasks to the cloud, cloud users can enjoy these benefits only
if they are willing to assume that the cloud is full trusted.
This assumption is inevitably impractical because the cloud
imposes great attack surface from the inside and outside at-
tackers. Therefore, privacy concern might hinder cloud users
deploying applications in the public cloud.

In this paper, we study the anonymity problem for Proxy
Re-Encryption (PRE), which is to delegate the decryption
right by re-encrypting ciphertexts decrypted by Alice to new
ciphertexts that can be decrypted by Bob without revealing
plaintexts. In order to understand the anonymity problem
for PRE, consider the following application: Company A has
an email gateway handling all incoming encrypted emails
and forwarding them to appropriate recipients. Alice (an
employee of Company A) can send a re-encryption request
to the gateway in order to delegate the decryption right to
Bob (another employee of Company A) when she is unable
to manage her emails properly (e.g., when she is traveling
or on vacation). Due to large amount of re-encryption re-
quests and its own limited computation capability, the gate-
way will outsource those re-encryption operations to a public
cloud. As re-encryption keys and corresponding ciphertexts
need to be delivered to the cloud, it is expected that the
re-encryption procedure does not reveal any participant’s



identity, which otherwise might leak important business in-
formation (e.g., schedule information).

To address this concern, the anonymity notion (or key-
private) for PRE was introduced by Ateniese et al. [5] '.

They pointed out that many prior proxy re-encryption schemes
(before their paper) cannot satisfy the intuition of anonymity:

an adversary cannot learn identities by observing sufficient
ciphertexts (before or after re-encryption) and re-encryption
keys, even it colludes with some corrupted users. That is, for
any probabilistically polynomial time adversary, it cannot
distinguish a valid re-encryption key for a pair of users, from
a random one selected from the re-encryption key space,
although it can access re-encryption key generation oracle
and re-encryption oracle (perhaps decryption oracle addi-
tionally).

Why prior anonymity notions are insufficient? There

are two anonymity notions in the literature. The first anonymity

notion of PRE in [5] suffers from the limitation that it only
allows one re-encryption key for any pair of users. As stated
in [5], the proposed scheme cannot achieve the anonymity
definition if someone could obtain multiple re-encryption
keys per pair of users. That is, if the cloud possesses multiple
re-encryption keys for the same pair of users, then it can de-
rive the identities involved in these re-encryption keys. Let
us take the above motivational application as an example:
If the cloud received two re-encryption keys that were used
to delegate the decryption right from Alice to Bob at differ-
ent times, then it is able to infer that the re-encryption key
corresponds to Alice and Bob. Consequently, the constraint
of allowing only one re-encryption key per pair of users does
not meet the requirement in practice, because in reality it
likely happens that multiple re-encryption keys coexist for
any pair of users.

Another anonymity notion was introduced by [19, 20].
While their notion allows multiple re-encryption keys co-
existing for any pair of users, it achieves weak anonymity be-
cause the adversary is not allowed to access the re-encryption
oracle (section 2.2.4 [19] and section 2.3.3 [20]) to obtain re-
encrypted ciphertexts. Instead, the adversary has to query
the re-encryption key generation oracle and applies the re-
turned re-encryption key to compute re-encrypted cipher-
texts. Intuitively, their notion fails to capture the follow-
ing attack: If knowing the identity corresponding to the
re-encrypted ciphertext, then the attack may be possible to
infer the identities involved in the re-encryption key that
is used to generate that re-encrypted ciphertext. To further
understand this attack, let us look at the scenario of the mo-
tivational example: The cloud receives a re-encryption key
to delegate the decryption right from Alice to Bob, then it re-
encrypts the ciphertext and sends the re-encrypted cipher-
text to the gateway. Since the cloud communicates with the
gateway without private channel (all communication data is
encrypted), an attacker can eavesdrop the channel to obtain
the re-encrypted ciphertext and might learn the related iden-
tity without seeing the re-encryption key (perhaps via some
side channels). Aslong as the attacker sees the re-encryption
key, he might be able to infer the participants’s identity be-
cause the corresponding re-encrypted ciphertexts leaks that

'The anonymity for PRE has two-fold: the anonymity of
ciphertexts and the anonymity of re-encryption keys. The
former has been investigated by Bellare et al [7] and the
latter one is the additional target in the context of PRE,
which is the focus of this paper.

information. Especially, this attack always happens when
the re-encryption algorithm is deterministic. Indeed, this is
the reason why the scheme in [19] satisfies their anonymity
notion while still suffering from this attack. Therefore, disal-
lowing the adversary directly accessing re-encryption oracle
weakens its capability of distinguishing the difference be-
tween a valid re-encryption key and a random one from the
re-encryption key space.

Our contributions. As prior anonymity notions are in-
complete, we rigorously define the anonymity notion which
adequately fixes these insufficiencies. We propose the first
PRE construction that not only achieves chosen-ciphertext
security (CCA) in the random oracle model, but also attains
the anonymity property. To be specific, our contribution
can be characterized as follows:

e We rigorously define the anonymity notion with a well-
defined anonymous game, which cannot be extended
trivially from that in [19, 20] by simply providing ac-
cess to the re-encryption oracle.

e We present a single-hop, unidirectional PRE scheme
satisfies the proposed anonymity notion. Our con-
struction is anonymous under the Squared Decisional
Bilinear Diffie-Hellman assumption and CCA secure
under the Decisional Bilinear Diffie-Hellman assump-
tion in the random oracle model, which resolves one of
the open problems stated in [5].

e Towards building a generic cloud-based re-encryption
service, we have built a prototype that integrates the
proposed scheme and the Amazon Web Services (AWS),
where EC2 is for re-encryption computation and S3 for
data storage. We defined general web services inter-
faces that can be easily integrated into existing appli-
cations to provide anonymous re-encryption function.
As a case study, we have implemented an anonymous
email forwarding service built upon our scheme. Our
experimental evaluation demonstrates that the pro-
posed anonymous PRE scheme is efficient.

Paper organization. Section 2 reviews the definitions of
single-hop, unidirectional PRE and its CCA security, and
then proposes a strong anonymity notion. Section 3 con-
structs an anonymous and CCA secure PRE and shows its
security analysis. Section 4 presents the detail of our im-
plementation and performance study. Section 5 summarizes
related work and Section 6 concludes this paper.

2. PRE: DEFINITION AND SECURITY NO-
TIONS

Let s & S denote selecting element s from set .S uniformly
at random, L denote an error message, and || denote string
concatenation. In the present paper we consider single-hop,
unidirectional proxy re-encryption only, and name an origi-
nal ciphertext as a second level ciphertext and the ciphertext
after re-encryption as a first level ciphertezt as in [6, 17]. Let
U be the set of users, denoted by U = {1,--- ,n}. Denote
the set of uncorrupted users by U, and the set of corrupted
users by Ue, such that U, |JU. = U. The following PRE
definition and the CCA notion are based on prior work [6, 5,
9].



DEFINITION 1. A single-hop, unidirectional PRE consists
of following algorithms:

e Param « Setup(1°): Given a security parameter 1°,
this algorithm is run by the trusted party to generate
the public parameter Param. For brevity, we assume
that the following algorithms implicitly take Param as
parts of inputs.

e (pk;,ski) < KeyGen(i): This algorithm is run by the
user i to generate public and private keys (pk;,sk;).

o rki;j < ReKeyGen(sk;, pk;): This algorithm is run by
user i to output a re-encryption key rk;_;, which can
be used to re-encrypt second level ciphertexts decrypted
by user i to first level ciphertexts decrypted by user j.

e C « Enc(pk;,m): This algorithm is run to encrypt
message m to a second level ciphertext C which can be
decrypted by user .

e C' < ReEnc(rki—;,C): This algorithm is run to re-
encrypt a second level ciphertext C to a first level ci-
phertext C' which can be decrypted by user j.

o {m, L} « Dec(sk;,C(C")): This algorithm is Tun to
decrypt a second level ciphertext C (or a first level ci-
phertext C'), which might output the message m or a
error message L.

Correctness: A single-hop, unidirectional PRE is correct if:
given any m from the message space, (i) Vi € U, (pk;, sk;) +
KeyGen (i), so that Dec(sk;, Enc(pk;,m)) = m, and (ii) Vi,j €
U, (pk,,sk;) + KeyGen(i), (pk;,sk;) < KeyGen(j), and rki—, ;
< ReKeyGen(sk;, pk;) , so that Dec(sk;, ReEnc(rk;—;, Enc(pk;,
m))) = m.

CCA Security: The CCA notion [9] can be formalized by
the following CCA-security game between an adversary A
and the challenger C.

Phase 1: C runs Setup(1%) to initialize the public param-
eter. A can access oracles below in polynomially many
times. Note that before querying OReKeyGen(pki,pk]-) and
Oretnc(Pk;, pk;; C), (pk;,ski) and (pk;,sk;) have been gen-
erated.

e key generation oracle Okeycen(?): (1) If ¢ has not been
queried before, C runs KeyGen to obtain (pk;, sk;) and
records (7, pk;,sk;). If 7 is a corrupted user, s.t. i €
Ue, C returns (pk,,sk;) to A, and pk, otherwise. (ii)
Otherwise C retrieves (pk;,sk;) and returns (pk;,sk;)
to A if i € Ue, and pk; otherwise.

e Re-encryption key generation oracle Orekeycen(Pk;, pkj):
If i € U, and j € Ue, C outputs L; otherwise C runs
ReKeyGen to obtain rk;—;, and returns it to A.

e Re-encryption oracle Oreenc(pk;, Pk, C): C runs rk;—;
ReKeyGen(sk;, pk;), computes C' < ReEnc(rki—;, C),
and returns C’ to A.

e Decryption oracle Opec(pk;, C): Given the ciphertext
C (either a first level ciphertext or second level cipher-
text), C runs {m, L} < Dec(ski,C) and returns the
result to A.

Challenge: Once A decides that Phase 1 is finished, it
outputs a public key pk*, and two messages mo, m; of equal

length, and sends them to C. C selects A yid {0, 1}, runs
C* < Enc(pk*, my), and returns C* to .A. Here the user with
respect to pk™ should be uncorrupted, namely belonging to
Uh,.

Phase 2: A queries oracles in polynomially many times
with these restrictions.

[ ] OKeyGen(i) and OReKeyGen(Pki7 pkj) : Work as in Phase
1.

® OReenc(pk;; pk;, C): If i € Uy and j € Ue, output L,
otherwise work as in Phase 1.

e Opec(pk;,C): Work as in Phase 1, subject to the con-
ditions that (i).A cannot query Opec if pk;, = pk™ and
C = C*, and (ii) A cannot query Opec if C is the ci-
phertext computed with a re-encrypted key of pk* and
pk; .

Guess: Finally, A outputs a guess A’ € {0,1}. A wins the
game if \' = ).

DEFINITION 2. Given any polynomial time adversary A,
we say a single-hop, unidirectional PRE scheme is CCA se-
cure for second level ciphertexts, if the probability of A win-
ning CCA-security game is at most % + e(£), where € is neg-
ligible in security parameter £.

Definition 2 describes the CCA security for second level
ciphertexts. We also can define a complementary definition
of CCA security for first level ciphertexts. We skip this and
refer readers to [17].

Anonymity notion: Now we define the anonymity notion
for re-encryption keys, which is partially inspired by prior
anonymity notions in [5, 19, 20]. The anonymity notion for
second level ciphertexts can be referred to [7].

We simulate the following anonymous game between an
adversary A and a challenger C, where C maintains a re-
encryption key list storing all rk;—; for users ¢ and j with
the form (i — 7, {(rki—;, query)}). ¢ — j is the search key to
identify each pair of users, and {(rk;—;, query)} is a set of re-
encryption keys, each of which is associated with a boolean
indicator query. If rk;—; has been queried via OrekeyGen, then
query = 1; otherwise query = 0. Initially, {(rki—;, query)}
is empty for the search key (i,7). The anonymous game
proceeds as follows, where C runs Setup(1) to set up the
public parameter.

Phase 1: The adversary A queries oracles below in polyno-
mially many times.

® OkeyGen(7): It works the same as Okeycen(t) described
in CCA-security game.

® ORekeyGen(pk;, pkj): Given pk; and pk;, C fetches (i —
J, {(rki—;, query)}) and works as follows:

1. If {(rki—j, query)} is null or all rk;—; have been
queried (i.e., all indicators query = 1), C runs
rki; < ReKeyGen(sk;, pk;), adds (rki—;, query =
1) to the set {(rki—;, query)} , and returns rk;_ j;

2. Otherwise C selects rki—; from {(rki—;, query =
0)} uniformly at random, updates query = 1 for
rki—; , and passes rk;—; to A.



e OReenc(pk;, pkj,C): Given pk; and pk;, C fetches (i —
J, {(rki—;, query)}) and works as follows:

1. If {(rki—;, query)} isnull, C runs rk;—; <— ReKeyGen

(ski, pk;) and adds (rki-;, query = 0) to the set
{(rki=j, query)};

2. Otherwise C randomly selects rk;—; from the set
{(rkisj, query)}.

Finally, C runs C' + ReEnc(rk;—;,C) and returns C’
to A.

e Opec(pk;, C): C executes {m, L} + Dec(sk;, C) and re-
turns the result to A. Note that C can be either a first
level ciphertext or a second level ciphertext.

Challenge: Once A decides that Phase 1 is finished, it
outputs a pair of users (¢, j). C fetches (" — 5*, {(rkix— =,
query)}) and works as follows:

e If i* € U, or 5* € Ue, C aborts;

e If the set {(rkjx— =, query)} is null or all rky=_, ;= have
been queried (i.e., all indicators query = 1), C runs
rkj+—j« < ReKeyGen(sk;~, pk;.), and adds (rkj+—;+ ,
query = 1) to the set {(rkix—j=, query)};

e Otherwise C selects a rki» ;= from {(rksx_ =, query =
0)} uniformly at random, and updates query = 1 for
rki* —j*.

C selects X & {0,1}. If A = 0, C delivers rkj«_j= to A,
otherwise returns a re-encrypted key selected from the re-
encryption key space uniformly at random.

Phase 2: A can continually query the oracles in polynomi-
ally many times.

o OKeyGen(i)z OReKeyGen(pkivpk]‘) and OReEnc(pkivpkjvc):
Works as in Phase 1.

¢ Obec(pk;, C): Work as in Phase 1 while being subject to
the condition that A cannot query Opec, where pk; =

2
pk -

Guess: Eventually, A outputs a guess A\’ € {0, 1} and wins
the game if A = \.

REMARK 1. Let us consider the challenge phase. If X =
0, then C returns the valid re-encryption key rkix ;. Ac-
cess 1o Oreenc(pk;, pk;, C) enables A to obtain enough first
level ciphertexts re-encrypted with rki«_;«. However, the
anonymity notion [19, 20] cannot model this case, because
ORekeyGen (PK;, pkj) does not return this rke=— ;= to A.

DEFINITION 3. We say a single hop, unidirectional PRE
scheme is anonymous for re-encryption keys, if for any poly-
nomial time adversary A, the probability of A winning the
anonymous game is at most 5 + €({), where € is negligible in
security parameter £.

Definition 3 characterizes the anonymity of the re-encrypted

key and [5] has discussed that the anonymity of re-encryption
keys implies the anonymity of first level ciphertexts.

2The reason is that it is hard for the challenger to distin-
guish whether C is a first level ciphertext computed by the
challenge re-encrypted key or not. This problem also exists
in [19, 20] in order to simulate the decryption oracle.

3. ANONYMOUS AND CCA SECURE PRE
CONSTRUCTION

3.1 Cryptographic Assumptions

Let G, Gt be two cyclic groups of order ¢, a £1 —bit prime,
and g be a generator of G. Let e be a bilinear map: e :
G xG — Gr satistying: (i) Va,y £ Zg,e(g%,9¥) =e(g,9)",
(ii) e(g,9) # 1, and (iii) e can be computed efficiently.

Let Ho, H1, H2, Hs be secure hash functions modeled as
random oracles, s.t. Ho : G — G,H; : {0,1}*2 x Gr —
Zq, Ha : GXGrxGx{0,1}2 = G, Hy : {0,115 2 xGr —
Zq and Hy : Zgq — Zgq, where {3 is another security param-
eter. Let Fi, F> be two secure pseudorandom generators,
where F1 : Gr — {0, 1}42 and F> : Gr — {0, 1}61{1"'[2.

Decisional Bilinear Diffie-Hellman (DBDH) Given (g,

9%, 9%, 9%, Q) where z,y, z yid Zq and Q yid G, for any prob-
abilistic polynomial algorithm .4, the advantage of A deter-

mining @ < e(g,9) is negligible to security parameter ¢;
at most, where the advantage is defined as

|PrlA(g, 9%, 9", 9%, e(g,9)""") = 1]
- Pr[A(gvgzvgy7gQO) = 1]'

TYz

Squared Decisional Bilinear Diffie-Hellman (SDBDH)

[25] Given (g,9%, 9%, Q) where z,y £ Zq and Q £ Gr, for
any probabilistic polynomial algorithm A, the advantage of

A determining @ < e(g,g)”zy is negligible to security pa-
rameter ¢1 at most, where the advantage is defined as

IPrlA(g, 9", 9%, e(g,9)" ") = 1]
—PrlA(g,9",¢%,Q) =1]|.

3.2 Our Construction
The anonymous and CCA secure PRE scheme can be con-
structed as follows:

setup(1%): Given the security parameter £, it obtains two
secondary security parameters f1,f2, and instantiates Ho,
H1, H2, Hs, Hs, F1, F> and the bilinear map (q, g, G, G, €)
as in section 3.1, where g is a £;-bit prime and the message

m € {0, 1}*2. In addition, let g; £ G and set
Param = {q,9,91,G,Gr, e}.

KeyGen(i): For use ¢, this algorithm selects a; ¥id Zgq and
sets

sk = aq, pk; = g

ReKeyGen(sk;, pkj): This algorithm generates the re-encryption

key by selecting s, t, w Fil Zq and setting rk;—; = (rki, rke,
I’k37 rk4, rk5, I’k(;) as

(Ho(pk,) i - pkifaCska) - gHalssk gt gt g,
e(pk;, pk;)™, e(pk;,9)™)

Note that rks cannot be altered due to unknown ¢t and w.
Thus, the re-encryption key rk cannot be manipulated (Ma-
nipulating rks, rke will be detected in Dec when decrypting
first level ciphertexts.)



Enc(pk;,m): Given m € {0,1}*2 and pk;, this algorithm
generates a second level ciphertext by selecting R yil Gr,
computing r = Hi(m, R), and setting C = (Cy, Cq, Cs, Cy,
Cs) as

(gT7 R- e(pki7 Ho(pki))T7 m @ F (R)v g;‘a

Hy(Cy,C2,C3,C4)")

Here we apply the Fujisaki-Okamoto (FO) transformation
[13] to generate C.

ReEnc(rk;—;, C): This algorithm first checks

e(g,Cs) = €(C1, H2(C1, C2, Cs, Ca)).

If the equation does not hold, it aborts; otherwise it re-
encrypts C = (Cq, Ca, Cs, Cy4, Cs) to a first level ciphertext
under pk; as follows:

o LetTy =Cy =g", T> = Ca-e(Cy,rki) = Ree(g", pkf“(s'Ski)),

T35 = Cs = m@P Fi(R) and Ty = C4 = g7, and set
I' = T |[T2||T5| Ts||rke||rks|[rka.

e Select R & Gr and let ' = Hs(T', R'), and set a first

level ciphertext C' = (Cf, Ch, C3) as

(kg , R'rk5 . T @D F2(R))

The intermediate ciphertext (7%, 72,73) cannot be manip-
ulated because r,m, R are correlated with each other and
the relation among them will be verified in decryption. It
is worth noting that we apply FO transformation again to
generate C' in order to achieve the CCA security for the first
level ciphertext.

Dec: It decrypts the ciphertext correspondingly:

e Given a second level ciphertext C = (Cyi, Co, C3, Cy,
Cs), it decrypts with sk; = a;:

1. If e(g, C5) # e(Cl, HQ(Cl, CQ, C37 C4))7 then out-
put L;

2. Otherwise let R = Ca/e(g”, Ho(pk;))™ , and have
m = C3 D F1(R);

e Given a first level ciphertext C' = (C}, Cj, C3), it
decrypts with sk; = a;:

1. Compute R’ = C,/C;™9, let I' = C4 @ Fa(R)),
and parse I' = T1||T2||T5]|T4||rka]|rks]||rka.

2. If e(rks, rk4)5k-7'H3(F’R,) # C), then return L. This
is to verify rks and rkg without being manipu-
lated.

3. Let R = TQ(%)Skj so that m = T5 @ Fi(R).

4. Let r = Hi(m, R) and verify T} < g". If so, return
m; L otherwise.

Correctness of the PRE scheme can be verified. In the con-
struction, we can see that we use FO transformation twice
to assure CCA security for the first and second level cipher-
texts. In addition, The PRE scheme is collusion-safe [6] even
that user j and the cloud collude together. Intuitively, user
j cannot derive pkf“(s'Ski) from the re-encryption key rk;—,;,
so that he is unable to infer Hy(pk,) ™ and decrypt user
i’s second level ciphertexts.

3.3 Security Analysis

We show the theorem regarding CCA security for second
level ciphertexts as follows. Similarly, we can prove our
scheme achieves CCA security for first level ciphertexts and
omit it here.

THEOREM 1. Assume that the DBDH assumption holds,
the PRE scheme is CCA secure in the random oracle model
for second level ciphertexts.

PrOOF. The challenger C maintains random oracles as
follows:

e Oracle Og,: If Ho(pk) has been queried before, it re-
trieves S from Op, according to pk; otherwise it se-

lects B & Zq, lets Ho(pk) = (g¥)?, and adds (pk, 8)
into Og,. It returns (g¥)".

e Oracles Op,, Omn,, On;,0mn,, Or, and OF, are mod-
eled as random oracles and we skip their details.
Suppose the challenger C is given a DBDH instance of

(g7gz7gyvgQO)7 Where z,Y,z & ZP: a'nd Q & GT7 a'nd
x,y, z are unknown. C simulates the CCA-security game with
A by letting g1 = ¢°, where ¢ ¥id Zq is known to C, and
proceeds the game as follows.

Phase 1: A can challenge the oracles in polynomially may
times and C responds as follows:

OkeyGen(7): C responds as follows:

e i € Up: If user 7 has been queried before, it retrieves

pk; from Oj,; otherwise C selects a; £ Zq, lets pk, =
(¢g®)*, and adds (i, pk;,a;) into Op. It returns pk; to
A, where it implicitly defines sk; = x - a;.

e i € U.: If user ¢ has been queried before, it returns
(pk;,ski) from O.; otherwise C selects b; £ Zq, lets
pk;, = g%, sk; = b;, adds (i, pk;,sk;) into O, and re-
turns (pk;, ski) to A.

ORekeyGen(Pk;, pk;): C generates rk;—; = (rki, rka, rks, rka,

rks, rke) for a pair of users i and j by selecting s, ¢, w £ Zq,
and :

o Ifi € Ue, let rky = Ho(pk,) ™ pk1( )ty = gHalssski) gt

w

rks = ¢g',rka = ¢“,rks = e(pk]-,pk]-)t and rke =

e(pk;,9)"™. C returns rk;; to A.

o Ifi € Uy and j € Uy, let rky = pk], rko = (g¥)%eFi/% g7/ gt

rks = g, rka = g%, rks = e(pkj,pkj)“” and rkg =

e(pk;, )", where £ 7, then C returns rki_,; to A.
Note that rk;—; is a valid re-encryption key. Let us
implicitly define Ha(s - sk;) = (aifiy + vai)/a; (note
s,sk; are unknown to A) so that

rky = pk;-y _ g*yﬁiwai+yﬁiwai+"/aﬂ

_ (gy)fﬁiaizgajz%j(yﬁiai“"Yai)
— Ho(pk) " pkf"1 )
e Otherwise returns L.

OReEnc(pki,pk]-,C)l Given a second level ciphertext C =
(C1,C2,C3,Cy,Cs), C does:



o If 6(g,C5) #* 6(C1,H3(C1,C2,C3,C4)) or i € U, and
7 € Ue, output L.

e Query ORekeyGen(Pk;, pkj) to obtain rk;—; = (rki, rka,
rk3, rk4, rk5, rk6).

e Execute ReEnc by taking as input C and rk;—;, and
output C' = (C}, Ch, C5).

Opec(pk;, C): To decrypt C for user ¢, C does:

e If i € U., run algorithm Dec by taking as input the
secret key b; and the ciphertext C, and return the out-
put.

e If C is a second level ciphertext, i.e., C = (Cy, Co, Cs,

C4, C5), Verify e(g,C5) ; e(Cl,I‘I3(C1,C27 C37 C4)) If
not hold, then output L; otherwise search Op, for the
tuple (m, R,7) where r = H1(m, R) and the oracle Op,
, such that C; = ¢" and Cs = m @ F1(R). If such tuple
exists, then return m; otherwise return L.

e If C is a first level ciphertext, i.e., C' = (Cf,C5,C5),
search Op, for the tuple (I', R',r"), where r’ = H3(I', R')
and Op,, such that C5 = '@ F>(R’). Then, parse I’
as Th, T, T3, Ty, rka, rks, rka. Search Op, for the tuple
(m, R,7), where » = Hi(m, R) and the oracle Op, ,
such that 71 = ¢" and T35 = m & Fi(R). If such tuple
exists, return m, else return L.

Challenge: Once A decides that Phase 1 is finished, it out-
puts a public key pk* and two messages mg, m; of the same
length, and sends them to C. C returns (Cj, C5, C3,C}, C5)
as follows: select R* & G and let Ci=g%0C = R:Q“*B*,
Ci =my@ Fi(R"),Ci = gf = (¢°)° and C5 = (¢°)"", where
0 & 7,.

If Q@ =e(g,9)*¥*, (Ci,C5,Cs,C;,C;) is a valid ciphertext
for my under pk*. To see it, we implicitly let H3(C7, C5, C3,
Cy) = gg*, and have

G = g,

G = RQP =Re((g")",(9")")* = Re(pk", Ho(pk"))*,
C; = m,\@Fl(R*),

C o= (9 =gi,

G = (69" =(9")" = Ha(C},C5,C5,Ch)7,

where Ho(pk™) = (¢%)°", pk™ = (g°)*".

Phase 2: C and A proceed the same as in Phase 1 while
complying with constraints defined in the CCA-security game.
Guess: Finally, A returns a guess ' € {0,1}. If ' = X, C

TYz, TYz

outputs @ = e(g, g)*??; otherwise, C returns Q # e(g,g)

Tyz
)

This completes the simulation. In Phase 2, if Q@ = e(g, g)
then the ciphertext (C7, C3,C3, Cj, C5) is a valid ciphertext
of my, so the probability of A outputting A" = X is § + p;
if @ is an element randomly that is selected from Gt and
independent from z, then the probability of A outputting
AN = Xis %, because the ciphertext has no information
about my. Therefore, the probability of C correctly guess-

ilnng ~ e(lg,g) . with the instance of (g,¢%,¢", 9%, Q) is
sGtrta)=3+4

Tyz

O

Theorem 2 states that our scheme achieves our anonymity
notion for re-encryption keys. Correspondingly, we can show
that our scheme also achieves the anonymity for second level
ciphertexts and first level ciphertexts, which are skipped
here.

THEOREM 2. Assume that SDBDH assumption holds, our
scheme achieves the anonymity for re-encryption keys in
Definition 3 in the random oracle model.

The challenger C maintains random oracles as follows:

e Oracle Opn,: if Ho(pk) has been queried, it retrieves

Ho(pk) from O, ; otherwise select 8 & Zgq,let Ho(pk) =
g?, and add (pk, ) into O,. It returns g”.

e Oracles Om,, On,, On,, On,, Or, and OF, are mod-
eled as random oracles and we skip their details here.

The proof strategy is that C randomly selects an uncor-
rupted user J from the set of uncorrupted users and lets
J be the targeted user in the Challenge phase. That is, if
j* = J in the Challenge phase, the challenger will proceed
the anonymous game; otherwise abort.

Proof of Theorem 2 Suppose A breaks the anonymous
game with the probability % + u, then we can construct

the challenger C solving @ z e(g,g)zzy for the instance
(g9,e,9%, g¥,Q) with probability % + 4~ at least, where n is
the number of users in the PRE scheme, i.e., [Uy|+ |Ue| = n.

Recall that C maintains a key list storing re-encryption
keys for (i,7): (i — 7,{(rkimj,query)}). Assume C se-
lects user J before proceeding the game. Given an instance
(g,e,9%,9%,Q), C selects ¢ £ Zq, lets g1 = ¢g¢, and proceeds

the anonymous game to determine Q = e(g,g)zzy as follows.

Phase 1: A queries oracles below in polynomially many
time:
OkeyGen(7): C responds as follows:

e i € Uy: If user i has been queried before, C retrieves
pk; from Op; otherwise (i) i = J, C selects a; ¥id Zq,
lets pk; = (¢%)*, and adds (¢,aq, pk;) into Oy, (ii)
1 # J, C selects a; ¥id Zq, lets pk, = ¢g“*, and adds
(4, as, pk;) into Oy. C returns pk; to A. Note that we
explicitly define sk; = z - a; when 7 = J.

e i € U.: If the query has been queried before, then C
returns (pk;, sk;) from O; else C selects a; vid Zq, lets
pk; = g%, sk; = a;, and adds (i, pk;,sk;) into Q.. It
returns (pk;, sk;) to A.

ORekeyGen(Pk;, pk;): Given pk,, pk;, C obtains (i — 7, {(rki-,
query)}) and

o If {(rki—j, query)}isnull or all rk;—; have been queried
before (i.e., all indicators query = 1), then

1. If ¢ = J, it generates rks—; by selecting s, w, v £
Zq and letting: rk; = (gm)_“'iﬁipk;.*7 rka = g7 g}, rkz =
g' ke = g, rks = e(pk;, pk;)™, rks = e(pk;, 9)™",
where ¥id Zq. We implicitly define Ha(s - sk;) =
v, and we can see rk;,; is a valid re-encryption
key.



2. Otherwise let rk;—; = (rki,rke,rks,rka,rks, rke)
as

(Ho(pk,) ™ - pkifatska) - gHalssk gb =gt gv,
e(pk;, pk;)™, e(pk;,9)™)

It adds (rki—j, query = 1) to {(rki—;, query)} and re-
turns rki—;

e Else, it chooses rk;—; randomly from {(rki—;, query)}
where query = 0, sets query = 1 correspondingly, and
returns rk;— ;.

OReEnc(pki,pkj,C): Given a second level ciphertext C =
(Cy,Co,Cs,C4q,Cs), C proceeds as follows:

e If e(g,Cs) # e(Cy, H3(C1,C2,C3,Cy4)), C outputs L.

o If the set {i — j,(rkimj,query)} is null, C gener-
ates a re-encryption key rki— as in OgekeyGen, and adds
(rki—, query = 0) to the key list; otherwise, C selects
rki—; randomly from the set {i — 7, (rki—;, query)}.

e C applies the algorithm ReEnc by taking input C and
rki—;, and outputs C' = (C}, C5, C5).

Obec(pk;, C): Given pk; and C, C does:

e If i # J, C applies the algorithm Dec by taking input
the private key a; and the ciphertext C, and returns
the output.

e If 1 = J and C is a second level ciphertext, i.e., C =
(C1,Ca,Cs,Cy, Cs), C verifies e(g,Cs) = e(Cy, Hs(Cy,
Ca, C3, C4)). If it does not hold, C outputs L; else
C searches Opg, for the tuple (m,R,r), where r =

Hy(m, R) and OF,, such that C; = ¢" and C3 = m & Fi(R).

If such tuple exists, C returns m; else returns L.

o If i = J and C is a first level ciphertext, i.e., C' =
(C1,Ch, C3), C searches Op, for the tuple (T, R',7"),

where 7’ = H3(T', R'), and Op,, such that C5 = T' @ F»>(R’).
Then, C parses I as T1, T, T3, T4, rka, rks, rka, and searches

Op, for the tuple (m, R, r), where r = Hi(m, R), and
Or,, such that 71 = ¢" and 75 = m @ F1(R). If such
tuple exists, C returns m; else returns L.

Challenge: Once A decides that Phase 1 is finished, it
outputs (i*,7%), where ¢*,5* € Uy,. If j© # J, C aborts;
otherwise C has rk™ = (rk7, rk3, rk3, rk}, rk3, rkg):

(Ho(pk;) ™ - pklja(es) - gHaleski gue - gu - gv,
a2'LU w
QY. elpks.g”)")
C adds (rk*, query = 1) to the set of {(rk*, query)}. C selects
Pyl {0,1}, and delivers rk* to A if A = 0, or a random key
from re-encryption key space if A = 1.
2
Note that if Q = e(g,9)" ¥, rk* is a valid re-encryption key
for (i*,j") since rki = e(g,g)" V""T = e(g"77, g™ ") =
e(pk, pk,)"™.
Phase 2: C proceeds the game as that in the Phase 1 by
following the constraints specified in the anonymous game.
Guess: Finally, A returns a guess ' € {0,1}. If ' = X, C
outputs Q = e(g,g)z2y; C returns Q # e(g,g)z2y.

This completes the simulation. Note rkj, rk3, rk3 are dis-
tributed uniformly and independently because of indepen-

dent and random pk;, Ha(ssk;) and c. If Q = e(g,g)zzy
(meaning rk;»_;« is a valid re-encryption key of (¢*, %)), A
will output A = A with the probability of § +; if Q is a ran-

dom element in G7 independent from e(g,g)”Qy, A will out-
put X = X with the probability of % since the challenged re-
encryption key reveals no information about (i*,j*). Hence,

the probability of C’s correctly guessing @ z e(g, g)zzy with
the instance of (g,e,9%, 9%, Q) is (3 + W+ D
because the probability of C proceeding the game is ﬁ.
Therefore, if A can break the anonymous game with a prob-
ability of % + p, we can solve the SDBDH problem at least

with a probability of 1 + .

4. PERFORMANCE EVALUATION

We implement the proposed PRE scheme co-operating with
Amazon Web Services (AWS) [1], an Infrastructure-as-a-
Service (IaaS) cloud platform. In particularly, we deploy
the proxy re-encryption as a service in Amazon EC2, provide
simple API for application integration, and adopt Amazon
S3 as storage server for ciphertexts. As a reference applica-
tion, we develop a secure email forwarding application based
on it and demonstrate its efficiency and feasibility.

4.1 Implementation

We implement the PRE in C language based on the Pairing-
based Cryptography (PBC) library [4]. We instantiate the
random oracles with OpenSSL/SHA256 and the convert-
ing function element_from_hash of PBC, and let each data
block with length of 64 Bytes, e.g. 2 = 512. The bilinear
map is instantiated with two different parameters:

e a.param: The group order is 160 bits long, and the
order of the base field is 512 bits long. It offers a level
of security that is equivalent to 1024-bit DLOG. The
operations is more efficient compared with other kinds
of parameters [4].

e e.param: The group order is 160 bits long, and the
order of the base field is 1024 bits long. It also offers a
level of security equivalent to 1024-bit DLOG, but the
specified pairing is not as efficient as that of a.param.

4.2 Asymptotic Complexity Comparison

Table 1 describes the asymptotic complexity for the pro-
posed PRE scheme, and summarizes the security properties
with the three anonymous schemes in the state of the art.
We can see that the scheme [5] achieves CPA security and
the scheme [19] achieves CCA security, both in the random
oracle model. However, both schemes cannot achieve the
anonymity as we defined. While the scheme [20] is proved
to achieve the anonymity property as their defined, we find
that their scheme does satisfy the anonymity notion we de-
fined in the present paper. Unfortunately, [15] proved that
the scheme [20] cannot attain CCA security as they claimed
due to the attack [15]. In contrast, the proposed scheme in
this paper not only achieves CCA security in the random or-
acle model, but also attains the desired anonymity property.

4.3 Efficiency of PRE Operations

To evaluate the efficiency of algorithms in the proposed
PRE scheme, we run experiments on a machine with Linux



Scheme [5] | Scheme [19] | Scheme [20] | Scheme in this Paper |
Property
Security Model RO RO RO
Semantic Security CPA CCA [CCA]™ CCA
Satisfying our No No Yes Yes
anonymity
Bilinear Map? Yes No Yes Yes
Assumption DBDH, DDH, 5-EDBDH, DDH DBDH
Decision Linear | CCA-secury SKE | CCA-secure SKE
Strongly unforgeable SIG
Complexity
ReKeyGen 1P +4E 2E+ 1Enc 11E 2P +8E
Enc 3E 4E4 1Enc 1P+ 5E+ 1ENC+ 1SIGN | 1P +4E
ReEnc 2P+2E 2E 5P + 6E + 1VER 3P +2E
Dec 1P + 1E 3E + 1DEC 5P+ 2E+ 1DEC +1VER | 3P +1E
(2nd level ciphertext)
Dec 1E 2E+ 1DEC 7E+ 1 DEC 3P +4E
(1st level ciphertext)

Table 1: Comparison between prior schemes and ours, where SKE denotes a one time symmetric encryption
scheme, SIG denotes a one time signature scheme, P denotes a pairing operation, E denotes an exponentiation
operation, ENC denotes an encryption operation of SKE, DEC denotes an decryption operation of SKE, SIGN
denotes a signing operation of SIG, and VER denotes a verification operation of SIG. * The scheme [20] is

not CCA secure shown in [15] (CT-RSA’13).

OS, Intel Duo CPU E7500 2.93GHz and 2GB RAM. We
average the execution time by running each experiment 20
times and show them in Table 4.3. We can see that ReKeyGen
is most costly compared with other algorithms. Fortunately,
this operation is executed infrequently. We observe that the
performance of the PRE scheme is quite acceptable in prac-
tice with the bilinear map specified by a.param, since the
operations only require around 10-14 milliseconds except the
re-encryption key generation.

Operation a.param (ms) | e.param (ms)
ReKeyGen 20.17 56.89
Enc 10.69 30.22
ReEnc 11.86 35.69
Dec(2nd level ciphertext) 10.79 32.47
Dec(1st level ciphertext) 12.37 39.49

Table 2: Efficiency of operations of the proposed PRE
scheme.

4.4 Implementation of Proxy Service

To investigate the utilization of our PRE, we implement
the proxy service on top of two AWS services: EC2 and
S3, where EC2 provides a virtualized environment to launch
virtual machine instances with optional computing resources
(CPU frequency/core/RAM) and S3 is a cloud-based storage
system to store data in buckets and provides management
interface, i.e., writing, reading and deletion.

We implement the proxy service as a PHP web server run-
ning on an EC2 virtual machine where the bilinear map is
specified by a.param. The proxy service provides a sim-
ple HTTP API ReEnc(rk, s3-url2, s3-urll), where rk is
a re-encryption key, s3-url2 is the URL of a second level
ciphertext object in S3, and s3-urll is the URL of a first
level ciphertext object (after re-encrypting s3-url?2) in S3.
When the re-encryption has been done, a successful HT'TP
response is sent out to notify that the operation is executed
successfully and the first level ciphertext has been stored to
the location specified by s3-urli. Note that the proxy ser-
vice itself does not manage any content. If necessary, the
proxy service should be granted permissions to read/write
data objects in S3. In addition, we can easily extend our

proxy service to support other cloud storage services such
as SQL (e.g., RDS) and NoSQL data (e.g., SimpleDB).

4.5 Secure Email Forwarding with Anonymous
Proxy Service

As a case study, we have developed a secure email for-
warding application with our proxy service in AWS.

System overview: As shown in Figure 1, our application
consists of three parts: (i) a web-based email client (email
sender /receiver here) provides regular browser interface for
users to login and send/read emails. To keep the email con-
fidential, it employs our PRE scheme to perform encryp-
tion and decryption, together with necessary functions, i.e.,
downloading ciphertext from S3. (ii)A email server, which
is to manage incoming emails and handle them, and (iii) the
proxy service deployed in EC2.

A secure email forwarding typically takes the following
steps. First, Alice sends to Bob the email in encryption
form (encrypting email body, and optional attachment) via
the email client (step 1). Upon receiving it, the email server
will upload the encrypted email body to s3-url2 (step 2),
and invoke the proxy service via the API ReEnc(rk, s3-
url2, s3-urll) with a re-encryption key so that the re-
encrypted email can be decrypted by Carol (step 3). The
proxy service will parse rk, fetch second level ciphertexts
specified by s3-url2 from S3, perform the re-encryption,
write re-encrypted ciphertexts to the location specified by
s3-urll, and return HTTP OK to the email server (step 4).
Finally the email server will send to Carol the final email
stored in the location specified by s3-urll (step 5), so that
Carol can decrypt and read it with its email client (step 6).

We use open source Hastymail [3] as the email client,
which is written in PHP. We extend Hastymail with three
important plugins: encryption, decryption, and key manage-
ment. The encryption plugin encrypts the email that will be
sent out and the decryption plugin decrypts the encrypted
emails (before or after re-encrypted) that are downloaded
from S3. On the other hand, we use Apache JAMES [2] as
the email server, which is responsible to upload the incom-
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Figure 1: System overview of cloud-based email for-
warding service with anonymous PRE.

ing email objects to S3, invoke the proxy service, and send
(or broadcast) forwarding emails to appropriate receivers.

Experiment evaluation: We evaluate the system perfor-
mance with two different EC2 instances:

e Small Instance: One core CPU of 1 ECU and 1.7GB
memory;

e Medium Instance: Two core CPU of 5 ECUs and 1.7GB
memory,

where an ECU provides the equivalent CPU capacity of 1.0-
1.2 GHz 2007 Opteron or 2007 Xeon processor. In par-
ticular, we are interested in the execution time on the re-
encryption operation by the proxy service.

We model the scenario that the proxy service receives
1,000 re-encryption requests simultaneously from the email
server. The sizes of plaintexts for emails are 8KB, 32KB, and
128KB respectively, which are close to the size of emails in
reality. we measure the execution time by the proxy ser-
vice, including downloading second level ciphertexts from
S3, performing re-encryption operations, and uploading first
level ciphertexts to S3. Note here we do not encrypt plain-
text with hybrid encryption methodology [14]: Encrypt the
symmetric key with the PRE, and then encrypt plaintext
with symmetric encryption. Instead we divide plaintexts
into multiple blocks and encrypt each block individually.

As shown in Figure 2, we can see that the performance of
the proxy service is acceptable. Taking the Medium Instance
as an example, an email of 8KB can be re-encrypted around
2.3 second, and an email of 128KB around 40 seconds. Sec-
ond, the computation capability has a positive influence on
the re-encryption operations: the operation in the Medium
Instance costs less time than that in the Small Instance.

Security properties: We use our anonymous PRE scheme
to reduce the trust of cloud for email forwarding, which is
ideal for large volume email sending, e.g., group email dis-
tribution. As an incoming email is encrypted with a user’s
(or an organization’s) public key, the cloud based proxy ser-
vice cannot access the encrypted content without its private
key, which is stored in an isolated domain (Hastymail in our
case). Furthermore, since users’ private keys are maintained
locally and re-encryption keys are generated out of cloud,
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Figure 2: Average processing time for re-encryption
in the cloud (one request).

the cloud cannot infer any identities information due to the
anonymous property in our PRE scheme. Therefore, the
identities of the re-encryption participants are kept private.

5. RELATED WORK

The cryptographic primitive of Proxy Re-Encryption (PRE)
was formalized in [8] and has become an important build-
ing block for constructing cryptographic solutions to many
application problems [6, 10, 11, 23, 24]. Various features of
PRE have been investigated: e.g. [5] initiated the anonymity
property, [9, 17] constructed CCA security PRE, [12] pro-
posed efficient PRE construction and [21] enriched the PRE
with conditional re-encryption feature.

The anonymity (key privacy) of PRE was first initiated
in [5], where they assumed that only one re-encryption key
existing for each pair of users. In addition, their proposed
PRE scheme achieved security against chosen-plaintext at-
tacks based on the DBDH assumption, and left constructing
anonymous CCA-secure PRE as an open problem. Another
anonymity notion came from the work [19], where allowed
multiple re-encryption keys for each pair of users while lack-
ing access to the re-encryption oracleiijN which weakened
the adversary’s capability as explained in Section 1. Their
proposed scheme [19] achieved their defined anonymity and
enjoyed the security against chosen-ciphertext attack in the
random oracle. Another work [20] claimed attaining the se-
curity against chosen-ciphertext attack and the anonymity
property simultaneously, but later was proved not CCA se-
cure.

In order to achieve chosen-ciphertext security, the work
[9] first formalized the notion of security against chosen-
ciphertext attacks for PRE and presented an efficient con-
struction satisfying that. The subsequent work on achieving
CCA security can be found in [12, 17, 22, 16, 18]. To achieve
both anonymity and CCA security in PRE, the construction
is quite difficult, since the CPA-to-CCA translations, such
as the Fujisaki-Okamoto transformation cannot be applied
directly [5, 20].

6. CONCLUSION

We consider the identity privacy problem for proxy re-
encryption, which is useful when cloud users outsource re-
encryption operations to public clouds. We propose a new



anonymity notion by comprehensively considering the lim-
itations of existing anonymity notions. We then present
an efficient construction, which achieves the anonymity and
security against chosen-ciphertext attack in random oracle
simultaneously. We implement and deploy our proposed
scheme in Amazon Web Services, based on which we develop
the prototype of secure email forwarding with anonymous
re-encryption. Our evaluation shows that the performance
is acceptable for many web-based applications. Our future
work includes designing anonymous and CCA secure PRE in
the standard model.
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