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Abstract—An improved adaptive beamforming technique of antenna
arrays is introduced. The technique is implemented by using a novel
Invasive Weed Optimization (IWO) variant called Adaptive Dispersion
Invasive Weed Optimization (ADIWO) where the seeds produced by a
weed are dispersed in the search space with standard deviation specified
by the fitness value of the weed. The adaptive seed dispersion makes
the ADIWO converge faster than the conventional IWO. This behavior
is verified by applying both the ADIWO and the conventional IWO on
well-known test functions. The ADIWO method is utilized here as an
adaptive beamformer that makes a uniform linear antenna array steer
the main lobe towards the direction of arrival (DoA) of a desired signal,
form nulls towards the respective DoA of several interference signals
and achieve low side lobe level (SLL). The proposed ADIWO based
beamformer is compared to a Particle Swarm Optimization (PSO)
based beamformer and a well known beamforming method called
Minimum Variance Distortionless Response (MVDR). Several cases
have been studied with different number of interference signals and
different power level of additive zero-mean Gaussian noise. The results
show that the ADIWO provides sufficient steering ability regarding the
main lobe and the nulls, works faster than the PSO and achieves better
SLL than the PSO and MVDR.
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1. INTRODUCTION

Modern communications involve many new and challenging issues,
especially those concerning smart antennas [1–5]. Antenna array
beamforming is one of them [5–18]. It helps the array improve the
reception of any desired signal and also reduce the reception of any
interference or other undesired signal, improving thus the signal-to-
interference ratio (SIR). To cope with that, an adaptive beamformer
has to calculate the array excitation weights that steer the main lobe
towards the direction of arrival (DoA) of the desired signal and create a
pattern null towards the DoA of every undesired or interference signal.
In practice, the above calculation is a real time procedure, since the
DoA of all the incoming signals change with time. Therefore, the
calculation must be completed as soon as possible.

Many adaptive beamforming (ABF) techniques have been
proposed so far in order to optimize the steering ability of the
array regarding the main lobe and the nulls and therefore improve
the signal-to-interference-plus-noise ratio (SINR). Such a technique
is the Minimum Variance Distortionless Response (MVDR) [2, 16].
Nevertheless, a radiation pattern with low side lobe level (SLL) is also
desirable since it avoids an unreasonable spatial spread of radiated
power. A conventional ABF technique like MVDR aims at improving
the SINR but it cannot minimize the SLL. To maximize the SINR
and also minimize the SLL, several evolutionary optimization methods
have been introduced and applied as adaptive beamformers with great
success [3, 12–14, 18]. The basic drawback of such methods is the
increased computational time which is a prohibitive factor for real
time techniques. Therefore, a fast evolutionary method would be more
suitable for ABF applications.

In the present paper, the authors introduce an improved variant
of the recently proposed Invasive Weed Optimization (IWO) [18–26]
called Adaptive Dispersion Invasive Weed Optimization (ADIWO).
The ADIWO algorithm is based on the IWO source code provided
by Mehrabian and Lucas [19]. The main difference between the IWO
and the ADIWO lies in the way the seeds produced by a weed are
dispersed in the search space. In the conventional IWO, the standard
deviation of the seed dispersion decreases as a function of the number
of iterations and is the same for all the seeds at a given iteration.
However, in the ADIWO, the standard deviation of the dispersion of
the seeds produced by a weed is a function of the fitness value of this
weed. The adaptive seed dispersion makes the ADIWO converge faster
than the conventional IWO. This behavior is verified by applying both
the ADIWO and IWO on well-known test functions [27].
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The ADIWO algorithm is utilized here as an adaptive beamformer,
which optimizes the steering ability of uniform linear arrays (ULAs)
regarding the main lobe and the nulls and also achieves low SLL.
The ADIWO based beamformer is compared to a Particle Swarm
Optimization (PSO) based beamformer and the MVDR technique.
The input data for all the beamformers are the signal-to-noise ratio
(SNR) and the DoA of the incoming signals. These directions are
considered to be already estimated by well-known DoA algorithms [28–
34]. Due to uncertainties in the amplitudes of the interference signals
that may be observed in practice, the exact element values of the
interference correlation matrix are not taken into account. Therefore,
the interference correlation matrix is taken as the identity matrix.
Several cases have been studied with different number of interference
signals and different power level of additive zero-mean Gaussian noise.
The results show that the ADIWO provides sufficient steering ability
regarding the main lobe and the nulls, works faster than the PSO and
achieves better SLL than the PSO and MVDR.

2. BEAMFORMING PROBLEM FORMULATION

The beamforming problem has already been described in [12]. A ULA
of M monochromatic isotropic elements receives a desired signal s from
angle of arrival (AoA) θ0 and N interference signals in (n = 1, . . . , N)
arriving respectively from θn (n = 1, . . . , N), in the presence of
additive zero-mean Gaussian noise with variance σ2

noise. Each θn

(n = 0, 1, . . . , N) is defined by the DoA of s or in and the normal
to the array axis direction. The signals s, in (n = 1, . . . , N) and
the noise signals are all uncorrelated with each other. The quiescent
pattern (QP) of the array is derived when all the excitation weights are
of equal amplitude and phase. This pattern has to be modified in order
to steer the main lobe towards θ0, place nulls towards θn (n = 1, . . . , N)
and achieve low SLL.

According to the formulation of the beamforming problem given
in [12], the steering ability of the ULA regarding the main lobe and
the nulls is optimized by minimizing the fitness function given below:

F =
w̄HĀ ĀHw̄ + σ2

noise w̄H w̄

w̄H ā0 āH
0 w̄

(1)

where
w̄=[ w1 w2 . . . wM ]T (2)
Ā=[ ā1 ā2 . . . āN ] (3)

ān =
[
1 ej 2π

λ
q sin θn . . . ej(M−1) 2π

λ
q sin θn

]T
, n = 0, 1, . . . , N (4)
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are, respectively, the vector of the ULA excitation weights, the M ×N
array steering matrix, and the array steering vector that corresponds to
AoA θn. Also, q is the distance between adjacent elements of the ULA,
while the superscripts T and H imply the transpose matrix and the
Hermitian transpose matrix, respectively. The consideration about the
interference correlation matrix, which is taken as the identity matrix as
explained in the previous section, has already been taken into account
in (1). In order to satisfy the additional requirement for low SLL, the
fitness function expression must be modified as follows:

F = bf1
w̄HĀ ĀHw̄ + σ2

noise w̄H w̄

w̄H ā0 āH
0 w̄

+ bf2 SLL (5)

The factors bf 1 and bf 2 are used to balance the minimization of the
two terms shown in (5). The fitness function as given in (5) is used by
both the ADIWO-based and PSO-based beamformers to estimate the
respective array excitation weights. The calculation of the excitation
weights using the MVDR technique is also described in [12].

3. ADAPTIVE DISPERSION IWO

The original IWO method was initially proposed by Mehrabian and
Lucas in [19]. Since then, several studies have been published on
antenna design using IWO [18, 20–22, 24, 25]. In addition, several
efficient IWO variants have been proposed [23, 26]. Nevertheless, the
original IWO and all the IWO variants proposed so far have a common
feature concerning the way the seeds produced by a weed are dispersed
in the search space: The standard deviation of the seed dispersion σ
decreases as a function of the number of iterations iter. Obviously,
the value of σ defines the exploration ability of the weeds. Therefore,
as iter increases, the exploration ability of all the weeds is gradually
reduced. At the end of the optimization process, the exploration ability
has diminished so much that every weed can only fine tune its position.
Then, if the optimal position has not been found yet, it will never be
found.

In the ADIWO, the standard deviation σ of the dispersion of the
seeds produced by a weed is a linear function of the fitness value f of
this weed. Considering that the goal is the minimization of the fitness
function, σ can be estimated according to the following expression:

σ =
σmax − σmin

fmax − fmin
f +

σminfmax − σmaxfmin

fmax − fmin
(6)

where σmax and σmin are the standard deviation limits defined in the
same way as in the original IWO algorithm, while fmax and fmin
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represent respectively the maximum and minimum fitness values at
a certain iteration. The ADIWO algorithm has the same structure
as the original IWO algorithm described in [19]. The only difference
lies in the calculation of σ which is performed by using (6). It is easy
to realize that the best weed (f = fmin) disperses its seeds with the
minimum σ (σ = σmin), while the worst weed (f = fmax) disperses
its seeds with the maximum σ (σ = σmax). Therefore, the weeds have
different behavior depending on their fitness values. As the fitness
value gets closer to fmin, the exploration ability of the weed is reduced
and thus the weed can only fine tune its near-optimal position. On the
contrary, as f gets closer to fmax, the exploration ability of the weed
increases and thus the weed is capable of exploring the search space
to find better positions. In this way, the exploration ability of the
weed colony is maintained until the end of the optimization process.
Moreover, the adaptive seed dispersion makes the ADIWO converge
faster than the original IWO. This behavior is verified in the next
section.

4. CONVERGENCE RESULTS

The ADIWO was compared to the original IWO in terms of
convergence. Both algorithms were applied to minimize two well-
known test functions, i.e., the generalized Rastrigin function and the
generalized Rosenbrock function [27]. Both functions were applied in
30 dimensions. For each function, the ADIWO and IWO algorithms
were executed 100 times in order to extract comparative graphs that
display the average convergence. For both algorithms, the population
size is limited to 30 weeds, the number of seeds produced by a
weed ranges from 5 to zero depending on the fitness value of the
weed, and finally the standard deviation limits are σmax = 10 and
σmin = 0.5. The comparative graphs given in Figures 1 and 2 show that
both algorithms result in the same solutions. However, the ADIWO

0 50 100 150 200 250 300 350 400 450 500
0

1000

2000

3000

4000

Number of Iterations

A
v
e

ra
g

e
 F

it
n

e
s
s
 V

a
lu

e

IWO

ADIWO

Figure 1. Comparative conver-
gence graphs for 30-D Rastrigin
function.
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Figure 2. Comparative conver-
gence graphs for 30-D Rosenbrock
function.
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algorithm outperforms the IWO algorithm regarding the convergence
speed. Due to its fast convergence, the ADIWO algorithm is suitable
for real time applications like ABF.

5. ADAPTIVE BEAMFORMING EXAMPLES

The ADIWO algorithm was applied as an ABF technique on a 9-
element ULA (M = 9), with q = 0.5λ, in comparison to a PSO-
based beamformer and the MVDR technique. The parameter values
concerning the ADIWO algorithm are the same as in the previous
section. The PSO algorithm used here is a PSO variant known
as Constriction Factor PSO (CFPSO) [35]. In this algorithm, the
parameters c1 and c2 are set equal to 2.05 and thus the constriction
factor K calculated by (6) in [35] is found equal to 0.7298. In addition,
both the CFPSO and the ADIWO use the same population size (i.e.,
30 particles) and take 500 iterations to complete each execution.

In all the ABF cases studied here, the algorithms were executed
on an Intel Core i5 computer running Microsoft Windows 7. The
mean CPU time per execution required by the ADIWO algorithm was
found 250 times less than the corresponding time required by the PSO
algorithm. Due to the short execution time and the fast convergence,
the ADIWO algorithm is more suitable for real time applications than
other evolutionary optimization methods, such as the PSO.

The three ABF algorithms were applied to four sets of 100 random
cases per set. Each case is a group of N + 1 random values different
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Figure 3. Optimal radiation patterns for SNR = 10 dB, a desired
signal arriving from θ0 = −22◦, and five interference signals arriving
from θ1 = −49◦, θ2 = −6◦, θ3 = 36◦, θ4 = 47◦ and θ5 = 59◦
(derived SLL values: SLLqp = −12.90 dB, SLLadiwo = −15.96 dB,
SLLpso = −12.59 dB, SLLmvdr = −12.40 dB).
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from each other given to θn (n = 0, 1, . . . , N). The first two sets use
five interference signals (N = 5) and refer respectively to SNR = 10dB
and SNR = 30 dB. Also, the last two sets use seven interference signals
(N = 7) and refer respectively to SNR = 10 dB and SNR = 30 dB. For
each random case, the algorithms are applied to find the near-optimal
excitation vectors, respectively w̄adiwo, w̄pso and w̄mvdr, that produce
a main lobe towards the AoA θ0 of the desired signal, N nulls towards
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Figure 4. Optimal radiation patterns for SNR = 30 dB, a desired
signal arriving from θ0 = −5◦, and five interference signals arriving
from θ1 = −60◦, θ2 = −40◦, θ3 = 19◦, θ4 = 28◦ and θ5 = 40◦
(derived SLL values: SLLqp = −12.90 dB, SLLadiwo = −21.18 dB,
SLLpso = −5.52 dB, SLLmvdr = −10.06 dB).
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Figure 5. Optimal radiation patterns for SNR = 10 dB, a desired
signal arriving from θ0 = −25◦, and seven interference signals arriving
from θ1 = −67◦, θ2 = −40◦, θ3 = −15◦, θ4 = 15◦, θ5 = 30◦,
θ6 = 50◦ and θ7 = 65◦ (derived SLL values: SLLqp = −12.90 dB,
SLLadiwo = −9.57 dB, SLLpso = −5.49 dB, SLLmvdr = −6.01 dB).
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the AoA θn (n = 1, . . . , N) of the interference signals and, if possible,
minimize the SLL. Then, the vectors w̄adiwo, w̄pso and w̄mvdr are used
to produce the respective radiation patterns and thus calculate the
corresponding angular deviations ∆θmain

adiwo, ∆θmain
pso and ∆θmain

mvdr of the
main lobe direction from its desired value θ0, the angular deviations
∆θnull

adiwo, ∆θnull
pso and ∆θnull

mvdr of the null directions from their respective
desired values θn (n = 1, . . . , N), and the corresponding side lobe levels
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Figure 6. Optimal radiation patterns for SNR = 30 dB, a desired
signal arriving from θ0 = −11◦, and seven interference signals arriving
from θ1 = −58◦, θ2 = −38◦, θ3 = −25◦, θ4 = 0◦, θ5 = 27◦,
θ6 = 44◦ and θ7 = 65◦ (derived SLL values: SLLqp = −12.90 dB,
SLLadiwo = −14.82 dB, SLLpso = −12.87 dB, SLLmvdr = −9.02 dB).

Table 1. Statistical analysis performed on the ABF results.

Set 1st 2nd 3rd 4th
SNR 10 dB 30 dB 10 dB 30 dB
N 5 5 7 7

∆θ main
adiwo 0.64◦ 1.50◦ 1.41◦ 1.42◦

∆θ main
pso 0.62◦ 1.47◦ 1.44◦ 1.39◦

∆θ main
mvdr 0.62◦ 0.96◦ 1.39◦ 1.10◦

∆θ null
adiwo 0.20◦ 0.18◦ 0.29◦ 0.28◦

∆θ null
pso 0.17◦ 0.14◦ 0.26◦ 0.24◦

∆θ null
mvdr 0.16◦ 0.10◦ 0.17◦ 0.15◦

SLLadiwo −12.87 dB −14.78 dB −10.75 dB −13.99 dB
SLLpso −11.53 dB −11.34 dB −9.72 dB −11.76 dB

SLLmvdr −11.49 dB −11.25 dB −9.62 dB −11.57 dB
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SLLadiwo, SLLpso and SLLmvdr. Finally, the average absolute angular
deviation values ∆θ main

adiwo, ∆θ main
pso and ∆θ main

mvdr concerning the main
lobe direction, the average absolute angular deviation values ∆θ null

adiwo,
∆θ null

pso and ∆θ null
mvdr concerning the null directions, and the average

SLL values SLLadiwo, SLLpso and SLLmvdr are calculated for each set
of 100 random cases. The statistical analysis performed on the ABF
results is given in Table 1. It is obvious that the ADIWO provides

Table 2. Optimal excitation weight values for SNR = 10 dB, a desired
signal arriving from θ0 = −22◦, and five interference signals arriving
from θ1 = −49◦, θ2 = −6◦, θ3 = 36◦, θ4 = 47◦ and θ5 = 59◦.

m wadiwo wpso wmvdr

1 −0.059−j0.356 −0.028−j0.516 −0.057−j0.467
2 −0.614−j0.195 −0.657−j0.167 −0.627−j0.176
3 −0.459+j0.426 −0.385+j0.595 −0.324+j0.443
4 0.215+j0.783 0.128+j1.000 0.195+j0.796
5 1.000+j0 1.000+j0 1.000+j0
6 0.215−j0.783 0.128−j1.000 0.195−j0.796
7 −0.459−j0.426 −0.385−j0.595 −0.324−j0.443
8 −0.614+j0.195 −0.657+j0.167 −0.627+j0.176
9 −0.059+j0.356 −0.028+j0.516 −0.057+j0.467

Table 3. Optimal excitation weight values for SNR = 30 dB, a desired
signal arriving from θ0 = −5◦, and five interference signals arriving
from θ1 = −60◦, θ2 = −40◦, θ3 = 19◦, θ4 = 28◦ and θ5 = 40◦.

m wadiwo wpso wmvdr

1 0.046+j0.049 −0.513+j1.141 −0.063+j0.442
2 0.309+j0.280 0.401+j1.168 0.421+j0.509
3 0.577+j0.254 1.263+j1.062 0.929+j0.447
4 0.976+j0.220 0.500−j0.024 0.795+j0.036
5 1.000+j0 1.000+j0 1.000+j0
6 0.976−j0.220 0.500+j0.024 0.795-j0.036
7 0.577−j0.254 1.263−j1.062 0.929−j0.447
8 0.309−j0.280 0.401−j1.168 0.421−j0.509
9 0.046−j0.049 −0.513−j1.141 −0.063−j0.442
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sufficient steering ability regarding the main lobe and the nulls, and
achieves better SLL than the PSO and MVDR. This is also shown
in Figures 3–6, which display the optimal radiation patterns of four
typical cases chosen respectively from the four sets mentioned above.
The optimal excitation weights are given respectively in Tables 2–5.

Table 4. Optimal excitation weight values for SNR = 10 dB, a desired
signal arriving from θ0 = −25◦, and seven interference signals arriving
from θ1 = −67◦, θ2 = −40◦, θ3 = −15◦, θ4 = 15◦, θ5 = 30◦, θ6 = 50◦
and θ7 = 65◦.

m wadiwo wpso wmvdr

1 0.894−j1.022 0.274+j0.477 1.119−j1.634
2 −0.284−j1.428 1.372+j0.690 −0.593−j2.135
3 −0.974+j0.456 1.886−j0.072 −1.542+j0.477
4 0.322+j0.876 1.344−j0.428 0.129+j1.020
5 1.000+j0 1.000+j0 1.000+j0
6 0.322−j0.876 1.344+j0.428 0.129−j1.020
7 −0.974−j0.456 1.886+j0.072 −1.542−j0.477
8 −0.284+j1.428 1.372−j0.690 −0.593+j2.135
9 0.894+j1.022 0.274−j0.477 1.119+j1.634

Table 5. Optimal excitation weight values for SNR = 30 dB, a desired
signal arriving from θ0 = −11◦, and seven interference signals arriving
from θ1 = −58◦, θ2 = −38◦, θ3 = −25◦, θ4 = 0◦, θ5 = 27◦, θ6 = 44◦
and θ7 = 65◦.

m wadiwo wpso wmvdr

1 −0.881+j0.566 −1.000+j0.694 −1.101+j0.943
2 −0.282+j0.739 −0.367+j1.000 −0.425+j1.169
3 0.256+j0.823 0.344+j1.000 0.202+j1.207
4 0.826+j0.633 1.000+j1.000 0.841+j0.921
5 1.000+j0 1.000+j0 1.000+j0
6 0.826−j0.633 1.000−j1.000 0.841−j0.921
7 0.256−j0.823 0.344−j1.000 0.202−j1.207
8 −0.282−j0.739 −0.367−j1.000 −0.425−j1.169
9 −0.881−j0.566 −1.000−j0.694 −1.101−j0.943
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6. CONCLUSION

A robust ABF technique based on the ADIWO method has been
presented. The ADIWO is a novel optimization method based
on the recently proposed IWO and improved by incorporating an
adaptive seed dispersion mechanism. A comparative study applied
on well-known test functions reveals the superiority of this mechanism
regarding the convergence speed. By recording the CPU time in four
sets of 100 ABF cases per set, the ADIWO algorithm seems to be
much faster than the PSO algorithm. Both the increased convergence
speed and the short execution time make the ADIWO algorithm more
suitable for real time applications, like ABF, than other evolutionary
optimization algorithms. The ABF cases studied in the present paper
take into account the knowledge of the DoA of all the signals received
by the antenna array. However, the interference correlation matrix
is not used here, considering uncertainties in the amplitudes of the
interference signals that may be observed in practice. The statistical
analysis performed on the ABF results shows that the ADIWO-based
beamformer provides sufficient steering ability regarding the main lobe
and the nulls, and also achieves better SLL than the PSO-based
beamformer and the MVDR. Therefore, the ADIWO method seems
to be very useful in ABF applications.
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