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ABSTRACT

Motivation:Proteochemometrics is a novel technology for the analysis

of interactions of series of proteins with series of ligands.We have here

customized it for analysis of large datasets and evaluated it for the

modeling of the interaction of psychoactive organic amines with all

the five known families of amineGprotein-coupled receptors (GPCRs).

Results: The model exploited data for the binding of 22 compounds

to 31 amine GPCRs, correlating chemical descriptions and cross-

descriptions of compounds and receptors to binding affinity using a

novel strategy. A highly valid model (q2= 0.76) was obtained which

was further validated by external predictions using data for 10 other

entirely independent compounds, yielding the high q2ext = 0.67.

Interpretation of the model reveals molecular interactions that govern

psychoactive organic amines overall affinity for amine GPCRs, as well

as their selectivity for particular amine GPCRs. The new modeling

procedure allows us to obtain fully interpretable proteochemometrics

models using essentially unlimited number of ligand and protein

descriptors.

Contact: jarl.wikberg@farmbio.uu.se

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Drug discovery relies essentially on combinatorial chemistry and

high throughput screening (HTS). Computations (e.g. docking)

using the three-dimensional (3D) structure of the target and quant-

itative structure–activity relationships (QSAR) are also used. How-

ever, neither QSAR nor docking can assure that a drug

candidate will interact only with the target and not with other

members of the proteome. Deriving high-resolution 3D structures

is also often problematic.

Ligands bind often to series of proteins and approaches that focus

on the differences in the molecular recognition mechanisms and

which are able to predict selective interaction partners are warran-

ted. To this end we recently introduced a bioinformatics approach

for drug-design termed proteochemometrics (Prusis et al., 2001;

Wikberg et al., 2003, 2004).

In proteochemometrics one analyses the experimentally determ-

ined interaction strength of series of ligands with series of proteins.

Proteochemometrics is based on quantitative descriptions derived

from structural and physicochemical properties of interacting lig-

ands and proteins, which are correlated to interaction affinity using

mathematical modeling. In this way, proteochemometrics models

the so-called ligand–receptor interaction space (Wikberg et al.,
2004).

The first proteochemometric studies modeled peptide interactions

with chimeric and wild-type melanocortin G protein-coupled

receptors (GPCRs) (Prusis et al., 2001, 2002) and organic com-

pound interactions with wild-type and chimeric a1-adrenergic

receptors (Lapinsh et al., 2001). More recent studies analyzed

the binding of organic compounds to multi-chimeric melanocortin

receptors (Lapinsh et al., 2005) and the interactions of organic

amines to a series of 21 different amine GPCRs (Lapinsh et al.,
2002b). The latter study represented four out of the five biogenic

amine GPCR families, namely, serotonin, dopamine, histamine and

adrenergic receptors. However, 10 of the receptors were serotonin

receptor subtypes, while only one was a histamine receptor and none

was a muscarinic acetylcholine receptor. The dataset was thus

unbalanced and it also suffered from a large fraction of missing

affinity values. Applying proteochemometrics onto it still yielded a

statistically valid model. However, the modeling required a very

complex description of the data, which involved more than 12 000

cross-terms and higher order cross-terms, which made it very dif-

ficult to comprehend the physical meaning of the model (see

Lapinsh et al., 2002b for details).

The current study was undertaken to derive a more simple and

sturdy proteochemometric modeling approach and apply it to the

five families of amine GPCRs. To achieve this the modeling

algorithms were altered to make the analysis of large-scale datasets

affordable, while improving modeling quality. These improvements

made the interpretation of the model straightforward, revealing

particular molecular interactions that govern the studied com-

pounds’ overall affinity for amine GPCRs, as well as each particular

compound’s selectivity for each particular amine GPCR.�To whom correspondence should be addressed.
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2 METHODS

2.1 Interaction data

Data for 32 organic amine interaction with 31 amine GPCRs were

taken from the Psychoactive Drug Screening Program (PDSP) database

(http://pdsp.cwru.edu/pdsp.asp) (see Supplementary data for details). The

receptors represented five amine GPCR families and included ten serotonin,

seven adrenergic, five dopamine, five muscarinic acetylcholine and four

histamine receptor subtypes. Most of the organic amines were tricyclic

and/or piperidine/piperazine ring containing compounds; the series included

approved and candidate drugs (antipsychotics, antidepressants, antiparkin-

son agents, antihistamines, etc.) as well as some other psychoactive amines.

The affinity values covered a range of more than five logarithmic units.

Particular receptor subtypes (e.g. DRD2, ADA1A, 5HT2A and HRH1)

showed high average affinity for the compound series, whereas the com-

pounds preferred none of the receptor families as a whole, when compared to

any other family.

The large number of observations allowed us to divide the dataset into a

work-set comprising 22 compounds that were used for model creation and

a prediction set comprising 10 compounds set aside and used after the

completion of the proteochemometric model to assess the model’s predictive

ability. (For further details see Supplementary data).

2.2 Description of organic compounds

Structures of compounds were drawn using ISIS/Draw and converted to 3D

by the Corina unit of the Tsar 3.3 (Accelryc Inc., http://www.accelrys.com)

software package. Partial atomic charges were derived using the Charge2

unit of Tsar 3.3 and the geometry was optimized by performing energy

minimization using the Cosmic utility of Tsar 3.3.

The thus obtained 3D structures were described by grid independent

descriptors (GRINDs) (Pastor et al., 2000) calculated by Almond 3.1

(Multivariate Infometric Analysis S.r.l., http://miasrl.com) software.

GRINDs are alignment independent descriptors that relate to the ability

of a compound to form favorable interactions with independent pharmaco-

phoric groups. The generation of these descriptors involves several steps.

First, molecular interaction fields (MIFs) are calculated by placing probe

groups on grid points surrounding the molecule. Grid nodes that show the

energetically most favorable interactions with the molecule and concomit-

antly are situated as far as possible from each other are then extracted from

the MIFs. The distances between each of any two extracted nodes and the

products of their energy values are then calculated. Finally, the maxima of

products falling within specified distance ranges (smoothing windows)

for node pairs of the same MIF (auto-correlograms) and different MIFs

(cross-correlograms) are used as descriptors for the molecules.

The Almond software allows the use of up to four MIFs, i.e. it provides

four auto-correlograms and six cross-correlograms. The MIFs used herein

were obtained using the following probes: DRY (hydrophobic probe), O (sp2

carbonyl oxygen), N1 (neutral flat NH) and Cl (chlorine). Default parameters

were selected for the distance between grid points (0.5 s) and the number of

extracted nodes (100 for each MIF). Moreover, the default width was used

for the smoothing window (0.8 grid units, i.e. 0.4 s), resulting in 67 GRINDs

in each of 10 correlograms.

We also created four additional sets of descriptors, using in each set three

of the four abovementioned MIFs and substituting the fourth by a newly

developed molecular shape field (Fontaine et al., 2004). Molecular shape

was described by using N1 field nodes at a repulsion energy of 1 kcal/mol to

outline the surface of the molecule. The local curvature of the surface was

then calculated at each node, as described by Fontaine et al. (2004). Convex

regions were considered to be more important for the shape than concave.

This is because the former may form complementary interactions in the

receptors’ ligand-binding pockets or cause steric hindrances. Here we selec-

ted 100 of the most convex nodes (these actually outline the most protruded

regions of the molecule and are referred to as TIPs). The TIP–TIP

auto-correlogram was generated using curvature–curvature products and

cross-correlograms with MIFs were generated using curvature-energy

products.

2.3 Description of receptors

Previous 3D modeling and mutagenesis studies indicate that the GPCR

ligand-binding pockets for endogenous amines and low molecular weight

organic compounds are located in a cavity formed between the receptors’

transmembrane regions (Bikker et al., 1998; Jacoby et al., 1999). We accord-

ingly derived the receptor descriptions from the differences in the physico-

chemical properties of the seven cell membrane-spanning alpha-helical

regions in the receptor series. Receptor amino acid sequences were retrieved

from the Swiss-Prot database (http://www.ebi.ac.uk/swissprot) and aligned

according to the conserved amino acid positions (Baldwin et al., 1997).

The amino acids of TM1–TM7 were as follows (using the numbering of

the ADA1A human): 25–49, 62–86, 98–122, 145–166, 185–206, 273–292

and 309–328. Of the 159 sequence residues selected 16 were conserved in

all receptors. The non-conserved residues were subsequently coded using the

three z-scale descriptors, z1–z3, derived by Sandberg et al. (1998). Thus, the

physicochemical differences in the ligand-binding region of the amine

GPCRs were accordingly encoded by a total of 143 � 3 ¼ 429 descriptors.

2.4 Principal component analysis of compound and

receptor descriptors

Prior to further computations descriptors were preprocessed. First, the

number of descriptors was reduced by applying principal component ana-

lysis (PCA).

PCA is a multivariate projection method that can be used to compress

datasets containing large numbers of variables. Contrary to the original vari-

ables, the so-termed principal components (PCs) are orthogonal to each

other (Wold et al., 1987; Eriksson and Johansson, 1996). After calculating

A PCs, the X matrix with size N rows (objects) and K columns (variables) is

decomposed into two smaller matrices, the score matrix T of size N by A and

loading matrix P of size K by A according to the following equation:

X ¼ TP0 þ E ¼ t1p
0
1 þ t2p

0
2 þ � � � þ tAp

0
A þ E‚ ð1Þ

where P0 is the transpose of the loading matrix, t the score vector, p0

the transpose of the loading vector and E the matrix of residuals (unex-

plained part of the data). The majority of the variation within the original

data can often be represented by a small number of components. Extracting

N – 1 components explains all the variation of the original data. PCA was

performed using SIMCA-P 9.0 software (Umetrics AB, http://www.

umetrics.com).

Since the descriptors of the ligands are not correlated to the descriptors of

the receptors we performed the PCA separately on the z-scales of the

31 receptors and on the GRINDs of the 22 work-set compounds (the 10

test-set compounds were not included in the PCA; the PC scores for them

were calculated by summing the products of value of each GRIND descriptor

for the compound with the loading of the respective descriptor). Prior to PCA

all descriptors were mean centered and scaled to unit variance. Moreover, in

order to fully preserve interpretability of models all components were extrac-

ted. Thus, having at hand 22 organic compounds the variance of GRIND

descriptors was compressed into 21 components (GRIND-PCs), while the

z-scale descriptors of 31 receptors were compressed into 30 components

(ZSCALE-PCs).

2.5 Calculation of ligand–receptor cross-terms

Ligand–receptor recognition can evidently only partially be explained by

linear combinations of ligand and receptor descriptors. For example if the

ligands by virtue of some feature (property) interact with non-varied receptor

residues, a simple assumption would be that the binding affinity relates

linearly with the intensity of this given property. In reality, however, binding

is governed by complex processes that depend on the complementarity of

the properties of the interacting entities. In proteochemometrics this may
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be accounted for by computation of ligand–receptor cross-terms (see e.g.

Lapinsh et al., 2005 and references therein). Cross-terms were here formed

by multiplying the principal components of descriptors of compounds

(GRIND-PCs) and receptors (ZSCALE-PCs). In this way one additional

descriptor block was obtained comprising 21 � 30 ¼ 630 descriptors. The

total number of descriptors obtained thus became 21 + 30 + 630 ¼ 681.

In fact, for any proteochemometrics dataset this number would be equal to

the number of possible ligand–receptor combinations minus one with the use

of the present approach for data preprocessing.

2.6 Block scaling of descriptors

In the PCA step the components became scaled relatively to each other.

The first component of each block, which encapsulates the major differences

between ligands and receptors, obtained the largest variance. The second

component obtained the second largest variance, etc. Any further scaling

(e.g. to unit variance) would hide the major patterns in the initial data and

exaggerate minor non-systematic variations. Furthermore, when cross-terms

are computed from the PCA space each cross-term obtains a variance that is

proportional to the product of the variances of its originators. Therefore

scaling of the cross-term descriptors reflects the significance of the under-

lying ligand and receptor properties, and accordingly no re-scaling is

required.

However, the use of three descriptor blocks for which the descriptors are

not directly comparable prompts the need for block scaling. Accordingly,

while the mutual scaling of descriptors within each of the three blocks was

frozen, each block was scaled to unit variance (i.e. the sum of variances of all

GRIND-PCs, all ZSCALE-PCs and all cross-terms being set to unity). Block

scaling was then afforded by systematically changing the variance of the

blocks in 0.25 variance unit intervals until an optimal model was obtained.

2.7 Partial least-squares projections to

latent structures

Correlation of descriptions to ligand–receptor affinity was performed by

partial least-squares projections to latent structures (PLS) (for an in-depth

review of the PLS see Geladi and Kowalski, 1986).

PLS derives a regression equation in which the regression coefficients

reveal the direction and magnitude of the influence of x-variables on the

response. For a proteochemometric model, including L ligand descriptors

(i.e. GRIND-PCs), R receptor descriptors (ZSCALE-PCs) and cross-terms

thereof, the equation derived for the response variable (i.e. ligand–protein

interaction affinity) is expressed as follows:

y ¼ y
� þ

XL
l¼1

ðcoeffl � xlÞ þ
XR
r¼1

ðcoeffr � xrÞ þ
XL �R

1¼1‚ r¼1

ðcoeffl‚ r � xl � xrÞ:

ð2Þ

The goodness-of-fit of the PLS models was characterized by the fraction

of explained variation of Y (r2). The predictive ability was characterized by

the fraction of the predicted Y-variation (q2), assessed by cross-validation, as

previously described (Wold, 1995; Baroni et al., 1993). The q2 computed

using five randomly formed groups was used to adjust the variance of

descriptor blocks and to determine the optimal number of PLS components.

Along with estimation of the conventional q2 parameter we introduced

several additional estimates to assess a model’s predictive ability. Thus, in

order to assess its ability to predict the affinity of novel receptors we repea-

tedly formed cross-validation groups by excluding one-fifth of the receptors

and used the models based on the remaining receptors to compute affinities

for the excluded ones, yielding q2rec. Similarly, to assess the capacity of the

model to predict the affinity of new ligands we repeatedly formed cross-

validation groups by excluding one-fifth of the ligands, yielding q2lig. Along

with these validations we also performed predictions for the 10 compounds

that had not been used in the model creation and thus could not have

influenced the scaling and complexity of the PLS model. (The predictive

ability for these compounds is here termed q2ext.) We also performed

validation by response permutation as described by Eriksson and

Johansson (1996). In short, models were re-calculated 100 times for ran-

domly re-ordered y-data and q2 values were plotted as a function of the

correlation coefficient between the original y and permuted y. The intercept

of the regression line (i.e. the correlation coefficient being zero) indicates

whether or not the original q2 value could have been obtained by pure

chance.

PLS modeling was performed using SIMCA-P 9.0 and Q2 (Multivariate

infometric analysis S.r.l., www.miasrl.com) software. (Q2 was used for

repeatedly performed cross-validations using randomly formed groups.)

2.8 Contribution of ligand properties for binding

affinity and selectivity

The contributions of the x-variables were assessed from the PLS regression

coefficients. Since the predictor variables are correlated to the y-data by

means of the PLS regression equation, the regression coefficients reveal the

significance of ligand and receptor properties for the interaction affinity.

Thus, the regression coefficient of a compound descriptor represents the

direction and magnitude that the underlying property influences the affinity

for ‘an average’ amine GPCR. Furthermore, the coefficients for the cross-

terms involving this descriptor summarize the importance of the underlying

property for the compound’s receptor selectivities.

Since the model included principal components rather than the original

GRIND descriptors, regression coefficients were multiplied by the loadings

of the original descriptor in each principal component, thereby allowing

interpretations of the particular ligand properties represented by each

GRIND. In this way, the regression coefficient of a GRIND descriptor

could be assessed according to the following equation:

coeffGRIND ¼
X21

a¼1

ðcoeffGRIND-PCa
� pGRIND‚aÞ‚ ð3Þ

where coeffGRIND-PC is the regression coefficients for GRIND-PCs, and

pGRIND,a the loading of a given GRIND descriptor in principal component

a. As coeffGRIND represents the change in the calculated average affinity of a

compound when the GRIND value increases by 1 SD, it will be further

referred to as DyGRIND. Moreover, the contribution of a GRIND descriptor to

the affinity for a particular receptor R could be assessed according to the

equation:

DyGRIND‚ R ¼
X21

a¼1

��
coeffGRIND-PCa

þ
X30

b¼1

ðcoeffCROSSa‚ b
� xZSCALE-PCb ;RÞ

�
� pGRIND‚a

�
‚ ð4Þ

where DyGRIND,R is the change in calculated affinity of a compound for

the particular receptor R when the GRIND value increases by 1 SD, and

xZSCALE-PCb,R
the score for receptor R in principal component b.

3 RESULTS AND DISCUSSION

3.1 Proteochemometrics modeling

Descriptors of ligands, receptors and their cross-terms were correl-

ated to ligand–receptor interaction affinity using PLS. Several mod-

els were created, using descriptors of compounds formed from

different combinations of TIP and MIFs (Table 1).

As shown in Table 1, all models based on descriptors derived

from different combinations of four TIP/MIFs (i.e. models 1–5)

were highly predictive, the q2s being in the range 0.75–0.77. How-

ever, the models differed in their ability to afford predictions for new

compounds, as assessed by the q2lig and q2ext parameters. Model 2

thus showed the lowest q2lig value, while model 1 showed the high-

est (0.51 versus 0.61). Model 2, which lacks the N1 field (i.e. the

field resulting from the H-bond donor probe) also showed a lower

Improved approach for proteochemometrics modeling
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q2ext value (0.57) compared with the four other models (0.62–0.67).

These results thus indicate that electron-attracting properties (i.e.

the location and strength of electronegative atoms and groups in the

compounds) are important for the receptor recognition.

By contrast, the q2lig values were only 0.51–0.55 for the models

including the O field (i.e. H-bond acceptor probe field) compared

with 0.61 for model 1 which did not use this MIF. These results

indicate that the differences in H-bond donating properties of the

compounds, such as presence and location of hydroxy groups, yield

mainly only chance correlations to the receptor affinity. (In inter-

preting this, one should keep in mind that all compounds contain an

amine group that presumably interact with the conserved aspartic

acid residue in TM3 of amine GPCRs. However, the aspartic acid

residues and amine groups are invariant in the dataset. Proteo-

chemometrics modeling can therefore not assess their importance.)

Inclusion or omission of the Cl field GRINDs only marginally

influenced the predictive ability of the model (c.f. models 1 and 6).

By contrast, removing any of the TIP, DRY or N1 fields

(models 7–9) significantly reduced the q2lig and q2ext values.

These latter three fields characterize the shape of the molecule,

the strength and location of hydrophobic and H-bond donor moieties

and seem to form a minimum set of MIFs required for modeling

amine GPCR interactions. The analysis thus showed that model 6

was the best. Accordingly model 6 was used in all subsequent

analysis, unless otherwise stated. (In the following sections this

model will be referred to as ‘the model’).

3.2 Assessment of predictive ability of the model

The predictive ability of a proteochemometric model can be evalu-

ated in different ways. The conventional q2 parameter characterizes

the predictions of combinations of ligands and receptors already

present in the dataset, but tested in other combinations. However,

one of the purposes of our study was to assess the capacity of pro-

teochemometrics to afford predictions for novel yet pharmacolo-

gically uncharacterized organic compounds. Therefore, along with

the conventional q2 parameter we estimated q2lig and q2ext, which

were found to be 0.59 and 0.67 for the model, respectively (Table 1).

The model was further subjected to repeatedly performed cross-

validation with two random groups (i.e. validation with half of all

observations excluded). This very harsh validation mode certified

model sturdiness, the q2 of 100 repeats being 0.68 with SD 0.02.

Thus, a whole half of all data points could be omitted without

endangering model validity. Finally, the predictive ability of the

model for new receptors was also assessed; the q2rec being 0.62

(thus revealing the potential use of proteochemometrics in find-

ing ligands for yet biologically/pharmacologically uncharacterized

GPCRs). Moreover, the model was also validated by response

permutations. The negative q2 intercepts (–0.34 using five cross-

validation groups and –0.48 using two groups) obtained from this

analysis show that randomized data produce non-predictive models.

Results of validations are graphically shown in Figure 1. Results

for cross-validation with five groups are shown in Figure 1A and

Figure 1B shows results for external predictions. As can be seen

from Fig. 1A, the predictive ability for compound–receptor com-

binations is very good, the average prediction error being <0.5 pKi

units. As seen from Fig. 1B, for only one test-set compound–

receptor interaction a misprediction by >2 pKi units occurred,

while for the remaining observations the average prediction error

was 0.55. The misprediction >2 pKi units occurred for roxindole for

the 5HT1A receptor. In fact this misprediction can be explained by

the absence of any compounds with high affinity for the 5HT1A

receptor in the work-set. Despite this the model still correctly pre-

dicted that roxindole has the highest affinity for the 5HT1A receptor

among all test-set compounds, thus showing that an experimentalist

would get proper guidance on the direction of the affinity also in

this case.

Another way of viewing the predictive ability of the model is to

set an arbitrary cutoff limit, such as a pKi > 8, which in a real setting

might be a selection criteria for a candidate compound. As is shown
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Fig. 1. Relation of predicted versus observed pKi values derived from the

PLS model. (A) shows predictions from conventional cross-validation using

five random groups (black symbols). (B) shows results from external valida-

tion, i.e. black symbols are the predictions of the 10 compounds that had not

been used during model creation (for details see text). Goodness-of-fit of the

model (gray symbols, calculated versus observed pKi values) is shown in both

(A) and (B).

Table 1. Results of PLS modeling using GRINDs from different

combinations of MIFs

No. MIFs used r2 q2 q2lig q2ext

1 DRY, N1, Cl, TIP 0.87 0.75 0.61 0.63

2 DRY, O, Cl, TIP 0.90 0.76 0.51 0.57

3 DRY, O, N1, TIP 0.90 0.76 0.55 0.66

4 DRY, O, N1, Cl 0.89 0.76 0.51 0.62

5 O, N1, Cl, TIP 0.90 0.77 0.52 0.65

6 DRY, N1, TIP 0.88 0.76 0.59 0.67

7 DRY, N1 0.86 0.71 0.55 0.61

8 DRY, TIP 0.88 0.73 0.59 0.58

9 N1, TIP 0.88 0.74 0.56 0.40
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in Figure 1B, on 20 occasions a pKi > 8 is predicted for test-set

compound–receptor combinations. Of these, 13 combinations have

indeed an experimentally determined pKi > 8, while for the

remaining 7 the measured pKi value was 6.95 or higher. Further-

more, the model predicts high affinity for a number of ligand–

receptor interactions for which measured data are not available

results. These indicate the potential use of the model in screening

of compound databases for high affinity binders to particular amine

GPCRs.

3.3 Interpretation of the model

Contribution of ligand properties for binding affinity and selectivity

was assessed by estimating the contributions of GRINDs according

to the DyGRIND and DyGRIND,R measures. A DyGRIND is a regression

coefficient of a GRIND descriptor and shows the descriptor’s

influence on the compounds’ overall (average) affinity for amine

GPCRs. A DyGRIND,R value can be considered as a regression coef-

ficient of a GRIND for a particular receptor. Comparing the latter

for different receptors thus allows one to assess the influence of

particular GRINDs for a compound’s selectivity for any receptor

pair. In Figure 2A are plotted DyGRIND values for DRY–DRY,

N1–N1, TIP–TIP auto-correlograms, and DRY–N1, DRY–TIP

and N1–TIP cross-correlograms. The GRINDs are for each correlo-

gram arranged in order of increasing distance between node pairs,

the vertical separators representing a distance range from 0 to

26.8 s. Similarly, in Figure 2B–F are given examples for DyGRIND,R

for particular receptors.

Inspecting Figure 2 reveals that DRY–DRY correlogram descrip-

tors (representing the ability of a molecule to form hydrophobic

interactions) are the most important for all receptors. On one hand

the positive DyGRIND and DyGRIND,R values for the DRY–DRY

descriptors at node distances from 0 up to 4 s indicate that the

presence of a hydrophobic group is in general of high importance for

ligand binding to the amine GPCRs. Moreover, the presence of an

additional DRY field at a distance 6–8 s from the first one gives a

further positive contribution to the binding. On the other hand,

DyGRIND values for DRY–DRY descriptors at distances between

8 and 20 s are close to zero, showing that distantly located hydro-

phobic groups have only minor impact on the average affinity of

the compounds for the amine receptors. However, such interactions

may still be important for the selectivity of the compounds for

particular receptors. For example, for the DRD2 receptor they

yield a positive influence on the affinity (Fig. 2C).

Positive values are also given to DyGRINDs of DRY–N1 cross-

correlogram descriptors; the optimal distance between hydrophobic

and H-bond acceptor MIFs being 6–10 s. Moreover, inspection of

Figure 2B–F reveals that DRY–N1 descriptors have highly positive

DyGRIND,R values for 5HT2A and DRD2 receptors (at distances up

to 14 s), whereas these descriptors contribute only marginally for

other receptors. Thus, the mutual location of hydrophobic and

H-bond acceptor moieties not only determines the average affinity

of compounds for amine GPCRs but also is important for receptor

subtype selectivity.

By contrast, most N1–N1 descriptors show slightly negative

DyGRIND values. Thus, the mutual location of several H-bond

acceptor groups appears to have low contribution to the ligands’

average affinity. However, as revealed in Figure 2B–F N1–N1

descriptors show very negative DyGRIND,R values for particular

receptors at several distance ranges, such as for the 5HT2A and

ACM1. Negative DyGRIND and DyGRIND,R values are also given to

N1–TIP cross-correlogram descriptors at distances from 4 to 16 s

(an exception is the ACM1 receptor), whereas at larger distances

DyGRIND,R values for 5HT2A and DRD2 obtain positive values.

Negative values are also assigned to short distances (up to 4 s)

of the DRY–TIP cross-correlogram descriptors, suggesting that

very protruded hydrophobic moieties do not contribute favorably

to the binding of ligands to the amine GPCRs. Comparisons of all

three correlograms including the TIP field reveal the importance of

the overall shape of a molecule for receptor selectivity. Thus, inter-

actions over large distance ranges yield positive coefficients for

5HT2A and DRD2 (and somewhat lower for ADA1A) but not

for HRH1 and ACM1.

In a further analysis we linked the patterns of Figure 2 to the

MIFs of particular compounds showing HRH1 or DRD2 selectivity.
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Fig. 2. Contribution of GRIND descriptors for explaining the binding affinity

of organic compounds for amine GPCRs. (A) shows the PLS regression

coefficients of GRINDs computed according to Equation (3). (B–F) show

regression coefficients of GRINDs for 5HT2A, DRD2, HRH1, ACM1 and

ADA1A receptors, respectively, computed according to Equation (4). Incre-

ments on theY-axes indicate the change of affinity in pKi units when a GRIND

value is increased by 1 SD. The interval between the vertical separators

represents the distance range 0–26.8 s for each particular GRIND (see text

for further details).
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We selected these two receptors as a demonstration case because

their affinity profiles are distinct. In particular, clozapine, chlorpro-

mazine, olanzapine and several other compounds show significantly

higher affinity for HRH1, while haloperidol, aripiprazole, risperi-

done, fluphenazine and some other compounds prefer DRD2.

Inspection of the DyGRIND,R values for these two receptors

(Fig. 2C and D) reveals several patterns. Firstly, the DRY–DRY

correlograms reveal that hydrophobic interactions influence ligand

affinity for DRD2 and HH1R differently. For distances between

DRY nodes of up to 8 s the DyGRIND,HH1Rs show larger positive

values than the DyGRIND,DRD2s, while at distances >8 s the DyGRIND,

HRH1s, but not the DyGRIND, DRD2s, are negative. The presence of

one, or two closely located, strong hydrophobic groups is thus

needed to render a compound HRH1 selective, while several dis-

tantly located hydrophobic moieties are needed to create a DRD2

selective one. Secondly, the TIP–TIP correlograms reveal that the

overall shape of the molecule is important for selectivity. Thirdly, it

can be seen from the DRY–N1 and N1–TIP correlograms that a

strong N1 field situated at certain distances from the DRY and TIP

nodes may improve the affinity for the DRD2 with-out affecting the

affinity for the HRH1.

The patterns of the foregoing paragraph are further visualized

in Figure 3 by showing the MIFs around some HRH1/DRD2 and

DRD2/HRH1 selective compounds. Compounds are there arranged

in the order of their relative preference for the two receptors, with

the MIFs represented as follows: DRY in beige, N1 in red and TIP in

green. Inspections of Figure 3 reveal that distantly located DRY

fields are present only for the two most DR2D selective compounds,

namely haloperidol and risperidone. For haloperidol these fields,

which appertain to the chlorophenyl and fluorophenyl moieties of

the compound, are much weaker than the fields for the HRH1

selective compounds (clozapine, olanzapine and chlorpromazine).

Moreover, also for the two remaining DRD2 selective compounds

(fluphenazine and risperidone), the DRY field descriptors computed

at distances from 3 to 6 s show lower values than for any of the

three HRH1 selective compounds.

Comparisons of structures also reveal systematic changes in

the overall shape of the molecules, which are altered from rounded

for the more HRH1 selective ones to elongated for the DRD2

selective ones.

Finally, inspection of the relative location of the N1 and TIP fields

shows that only for the DRD2 selective compounds the N1-TIP

nodes exist with locations of >16 s from each other. Over shorter

distances the values for the GRINDs overlap for both the HRH1 and

DRD2 selective compounds.

4 DISCUSSION

In proteochemometrics the strength of ligand–protein interactions

is correlated to chemical descriptions and cross-description (‘cross-

terms’) of the interacting moieties. Cross-terms would not be

needed if the ligands interacted with the invariant parts of the

proteins only (e.g. with the 16 entirely conserved amino acids of

the amine GPCRs transmembrane regions). However, differences in

the binding affinity profiles of the ligand series arise since recog-

nition is governed by complementary properties of receptors and

ligands. Supplementing the descriptions by cross-terms is then used

to reveal how ligand and receptor property combinations affect

the interaction strengths.
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7.3 9.0 -1.7
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Fig. 3. Graphical representation of MIFs for some HRH1/DRD2 and some

DRD2/HRH1 selective compounds. Shown are (from top to bottom) cloza-

pine, olanzapine, chlorpromazine, fluphenazine, risperidone and haloperidol.

The DRY MIFs are represented by beige, N1 by red and TIP by green.

Indicated are also the pKi values for each respective structure’s binding

to the HRH1 and DRD2 receptors calculated from the proteochemometric

model. The computed HRH1/DRD2 selectivity (D¼ pKiHRH1� pKiDRD2) of

the compounds is also indicated.
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Cross-terms may be obtained by multiplication of each ligand

descriptor with each receptor descriptor. Correlation by PLS allows

one to use a multitude of descriptors while tolerating their mutual

colinearity. However, computing cross-terms directly from the

descriptors of the current dataset would have resulted in almost

300 000 new variables, which would make further analysis highly

resource consuming and, in fact, to our knowledge impossible with

currently available academic or commercial software. We elected

therefore to use PCA preprocessing, which allows one to keep the

number of variables lower than the number of objects in a dataset,

without compromising the information content of it.

We here applied PCA separately to ligand and receptor descrip-

tors, which was followed by computations of cross-terms between

ligand and receptor PCs. In fact, preliminary modeling using smal-

ler subsets of descriptors revealed that the scores and calculated/

predicted Y values of PLS models resulting from this type of pre-

processing were identical to those of the models based on original

descriptors and cross-terms thereof. However, differences would

appear if one scaled the PCs relatively to each other, scaled cross-

terms relatively to each other or used higher order cross-terms. Such

procedures would give a risk for chance-correlations and sub-

sequent deteriorations of models and were therefore avoided.

In earlier proteochemometrics studies the astronomic number of

cross-terms was avoided by using simple descriptors (e.g. a limited

number of binary descriptors), which is possible in simplified cases

(i.e. for simple datasets). However, conventional QSAR has proven

that the use of numerous descriptors is required for a thorough

representation of the structures/properties of organic compounds.

This is mandatory when using, e.g. GRID, CoMFA and GRIND.

A proper description of complex biological macromolecules is

obviously not an easier task and would require numerous structural

descriptors or a large number of descriptors derived from sequence

monomers (Kastenholz et al., 2000; Lapinsh et al., 2002a).

In our present study we aimed at representing compounds and

receptors with descriptors that relate to major determinants for

receptor–ligand interactions. The structures of organic compounds

were characterized by GRIND descriptors. These describe the abil-

ity of compounds to interact with different MIF probes mutually

located at varying distance ranges. An advantage of using GRIND

descriptors is that they do not require the molecules to be spatially

aligned with each other when creating a data matrix from series of

compounds. In order to overcome some earlier shortages of the

GRIND descriptors a recently developed molecular shape field

(TIP) was used along with the MIFs (see Fontaine et al., 2004).

The usefulness of the new molecular shape descriptors was indeed

confirmed since the TIP–DRY and N1–TIP correlograms were

among the most important for explaining ligand–receptor inter-

actions. However, creation of several models based on different

combinations of MIFs showed that not all MIFs were relevant,

thus allowing us to find molecular interactions of importance for

organic amine GPCR interaction affinity.

3D structures of compounds were created by the Corina unit and

the geometry was optimized by the cosmic utility of the Tsar 3.3

software package. The conversion and optimization process was

very fast, taking only a few seconds per molecule. This contrasted

to our previous approach (Lapinsh et al., 2002b) where large con-

formational ensembles of each molecule were obtained by a time-

consuming simulated annealing procedure. Accordingly the current

approach could potentially be used to apply on large combinatorial

libraries or to screen large compound databases. Moreover, Corina

seems to provide some advantage since in our previous study the

hydrophobic moieties tended to bunch together in the 3D structures

for flexible molecules, while Corina creates extended low energy

conformations that are close to the X-ray determined structures (c.f.

also Sadowski and Gasteiger, 1994). In fact, for the present dataset

simulated annealing produced inferior models compared with

Corina generated structures (Lapinsh, M. and Wikberg, J.E.S.,

unpublished data). However, further studies on the dependence

of proteochemometrics modeling to the approach for 3D modeling

of compounds using broader datasets are warranted, to allow gen-

eralizations and to pinpoint the best method to be used for particular

datasets.

The GPCRs in the present study were encoded by three z-scales of

the amino acids of the transmembrane regions of the receptors.

These z-scales represent the major differences in physicochemical

properties of amino acids and would be the ones that primarily

determine the ligand interactions with the receptors. Thus, overall

using the present approaches for ligand and protein descriptions our

technology affords predictive models without the need for ligand

docking and accurate protein 3D structures.

The present dataset included 31 receptor subtypes representing

five amine GPCR families. An advantage of the present data matrix

was that it had quite few missing values. Otherwise affinities for

weak binders are often omitted in scientific reports. For sake of

mathematical modeling ‘positive’ and ‘negative’ interaction data

are equally important. Thus, also for this reason the present model

was improved compared with the earlier model where the interac-

tion matrix contained about 30 percent values missing in a system-

atic fashion (Lapinsh et al., 2002b).

The validity of our model was assessed not only by the conven-

tional q2 estimate, generally used in QSAR, but also by predicting

affinity for ligands and receptors entirely excluded from the model.

The high values of the q2lig, q2rec and q2ext estimates obtained

herein indicate clearly the validity of our present modeling

approach.

A clear advantage of the present modeling approach compared

with the earlier one is that it gives fully interpretable models. In the

previous study only a rough summary of the importance of different

types of MIFs was possible to obtain (Lapinsh et al., 2002b), while

the current approach allows unambiguous assessment of the import-

ance of each descriptor for the interaction affinities. We here used

this feature to assess the contribution of each GRIND for the com-

pounds’ overall affinity for the amine GPCRs, as well as for receptor

subtype selectivity. Such analysis of a proteochemometric model

may provide an experimentalist with suggestions how to modify a

compound chemically in order to improve its selectivity and to

afford a new compound with a desirable affinity profile.

In conclusion we have here shown how proteochemometrics can

be adapted for the analysis of large-scale datasets yielding models

which are straightforward to interpret in a chemical sense.
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