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Abstract We study the k-level uncapacitated facility location problem (k-level UFL)

in which clients need to be connected with paths crossing open facilities of k types

(levels). In this paper we first propose an approximation algorithm that for any con-

stant k, in polynomial time, delivers solutions of cost at most αk times OPT , where

αk is an increasing function of k, with limk→∞ αk = 3. Our algorithm rounds a frac-

tional solution to an extended LP formulation of the problem. The rounding builds

upon the technique of iteratively rounding fractional solutions on trees (Garg, Kon-

jevod, and Ravi SODA’98) originally used for the group Steiner tree problem. We

improve the approximation ratio for k-level UFL for all k ≥ 3, in particular we

obtain the ratio equal 2.02, 2.14, and 2.24 for k = 3, 4, and 5. Second, we give a

simple interpretation of the randomization process (Li ICALP’2011) for 1-level UFL

in terms of solving an auxiliary (factor revealing) LP. Armed with this simple view

point, we exercise the randomization on our algorithm for the k-level UFL. We fur-

ther improve the approximation ratio for all k ≥ 3, obtaining 1.97, 2.09, and 2.19

for k = 3, 4, and 5. Third, we extend our algorithm to the k-level UFL with penal-

ties (k-level UFLWP), in which the setting is the same as k-level UFL except that the

planner has the option to pay a penalty instead of connecting chosen clients.

Preliminary version of the presented results appeared in [7] and [6].
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1 Introduction

In the uncapacitated facility location (UFL) problem the goal is to open facilities in

a subset of given locations and connect each client to an open facility so as to min-

imize the sum of opening costs and connection costs. In the penalty avoiding (prize

collecting) variant of the problem, a fixed penalty can be paid instead of connecting

a client.

In the k-level facility location problem (k-level UFL) we have a set C of clients

and a set F =
⋃k

l=1 Fl of facilities (locations to potentially open a facility). Facil-

ities are of k different types (levels), e.g., for k = 3 one may think of these

facilities as shops, warehouses and factories. Each set Fl contains facilities on

level l. Each facility i has cost of opening it fi and for each i, j ∈ C ∪ F

there is distance ci,j ≥ 0 which satisfies the triangle inequality. The task is to

connect each client to an open facility at each level, i.e., for each client j it

needs to be connected with a path (j, i1, i2, · · · , ik−1, ik), where il is an open

facility at level l. We aim at minimizing the total cost of opening facilities (at

all levels) plus the total connection cost, i.e., the sum of the lengths of clients

paths.

In the k-level uncapacitated facility location problem with penalties (k-level

UFLWP), the setting is the same as k-level UFL except that each client j can either

be connected to a path, or be rejected in which case the penalty pj must be paid (pj

can be considered as the loss of profit). The goal is to minimize the sum of the total

cost of opening facilities (at all levels), the total connection cost and the total penalty

cost. In the uniform version of the problem all penalties are the same, i.e., for any

two clients j1, j2 ∈ C we have pj1
= pj2

.

1.1 Related Work and our Contribution

The studied k-level UFL, generalizes the standard 1-level UFL, for which Guha and

Khuller [13] showed a 1.463-hardness of approximation. The hardness for multilevel

variant was recently improved by Krishnaswamy and Sviridenko [15] who showed

1.539-hardness for two levels (k = 2) and 1.61-hardness for general k. This demon-

strates that multilevel facility location is strictly harder to approximate than the single

level variant for which Li [16] presented the current best known 1.488-approximation

algorithm by using a non-trivial randomization of a certain scaling parameter in

the LP-rounding algorithm by Chudak and Shmoys combined with a primal-dual

algorithm of Jain et al.

The first constant factor approximation algorithm for k = 2 is due to Shmoys,

Tardos, and Aardal [18], who gave a 3.16-approximation algorithm. For general k,

the first constant factor approximation algorithm was the 3-approximation algorithm

by Aardal, Chudak, and Shmoys [1].

As it was naturally expected that the problem is easier for smaller number of levels,

Ageev, Ye, and Zhang [2] gave an algorithm which reduces an instance of the k-level
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problem into a pair of instances of the (k − 1)-level problem and of the single level

problem. By this reduction they obtained 2.43–apx. for k = 2 and 2.85–apx. for

k = 3. This was later improved by Zhang [22], who got 1.77–apx for k = 2, 2.53–

apx 1 for k = 3, and 2.81-apx for k = 4. Byrka and Aardal [5] then improved the

approximation ratio for k = 3 to 2.492.

1-level UFL with penalties was first introduced by Charikar et al. [9], who gave

a 3-approximation algorithm based on a primal-dual method. Later, Jain et al. [14]

indicated that their greedy algorithm for UFL could be adapted to UFLWP with the

approximation ratio 2. Xu and Xu [20, 21] proposed a 2.736-approximation algo-

rithm based on LP-rounding and a combinatorial 1.853-approximation algorithm by

combining local search with primal-dual. Later, Geunes et al. [12] presented an algo-

rithmic framework which can extend any LP-based α-approximation algorithm for

UFL to get an (1 − e−1/α)−1-approximation algorithm for UFL with penalties. As a

result, they gave a 2.056-approximation algorithm for this problem. Recently, Li et

al. [17] extended the LP-rounding algorithm by Byrka and Aardal [5] and the analysis

by Li [16] to UFLWP to give the currently best 1.5148-approximation algorithm.

For multi-level UFLWP, Bumb [4] gave a 6-approximation algorithm by extending

the primal-dual algorithm for multi-level UFL. Asadi et al. [3] presented an LP-

rounding based 4-approximation algorithm by converting the LP-based algorithm for

UFLWP by Xu and Xu [20] to k-level.

Zhang [22] predicted the existence of an algorithm for k-level UFL that for any

fixed k has approximation ratio strictly smaller than 3. In this paper we give such

an algorithm, which is a natural generalization of LP-rounding algorithms for 1-level

UFL. We further improve the ratios by extending the randomization process proposed

by Li [16] for 1-level UFL to k-level UFL. Our new LP-rounding algorithm improves

the currently best known approximation ratio for k-level UFL for any k > 2. The

ratios we obtain for k ≤ 10 are summarized in the following table.

In addition, we show that our algorithm can be naturally generalized to get an

improved approximation algorithm for k-level UFLWP.

1.2 The Main Idea Behind our Algorithm

The 3-approximation algorithm of Aardal, Chudak, and Shmoys, rounds a fractional

solution to the standard path LP-relaxation of the studied problem by clustering

clients around so-called cluster centers. Each cluster center gets a direct connection,

while all the other clients only get a 3-hop connection via their centers. In the single

level UFL problem, Chudak and Shmoys observed that by randomly opening facil-

ities one may obtain an improved algorithm using the fact that for each client, with

at least some fixed probability, he gets an open facility within a 1-hop path distance.

While in the single level problem independently sampling facilities to open is suf-

ficient, the multilevel variant requires coordinating the process of opening facilities

across levels.

1This approximation ratio deviates slightly from the value 2.51 given in the paper. The original argument

contained a minor calculation error.
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The key idea behind our solution relies on an observation that the optimal integral

solution has a form of a forest, while the fractional solution to the standard LP-

relaxation may not have this structure. We start by modifying the instance and hence

the LP, so that we enforce the forest structure also for the fractional solution of the

relaxation. Having the hierarchical structure of the trees, we then use the technique

of Garg, Konjevod, and Ravi [11], to first round the top of the tree, and then only

consider the descendant edges if the parent edge is selected. This approach naturally

leads to sampling trees (not opening lower level facilities if their parent facilities

are closed), but to eventually apply the technique to a location problem, we need to

make it compatible with clustering. To this end we must ensure that all cluster centers

get a direct 1-hop path service. This we obtain by a specific modification of the

rounding algorithm, which ensures opening exactly one direct path for each cluster

center, while preserving the necessary randomness for all the other clients. It is only

possible because cluster centers do not share top level facilities, and in rounding a

single tree we only care about at most one cluster center. In Section 3.2 we propose

a token-passing based rounding procedure which has exactly the desired properties.

The key idea behind importing the randomization process to k-level UFL relies

on an observation that algorithms whose performance can be analysed with a linear

function of certain instance parameters, like the Chudak and Shmoys algorithm [10]

for UFL, can be easily combined and analysed with a natural factor revealing LP.

This simplifies the argument of Shi Li [16] for his 1.488-approximation algorithm

for UFL as an explicit distribution for the parameters obtained by a linear program is

not necessary in our factor revealing LP. With this tool one can easily randomize the

scaling factor in LP-rounding algorithms for various variants of the UFL problem.

2 Extended LP Formulation for k-level UFL

To describe our new LP we first describe a process of splitting vertices of the input

graph into a number of (polynomially many for fixed k) copies of each potential

facility location.

Graph modification Our idea is to have a graph in which each facility t on level j

may only be connected to a single facility on level j + 1. Since we do not know a

priori to which facility on level j + 1 facility t is connected in the optimal solution,

we will introduce multiple copies of t , one for each possible parent on level j + 1.

To be more precise, we let F ′ denote the original set of facilities, and we construct

the new set of facilities denoted by F . Nothing will change for facilities in set F ′
k ,

so Fk = F ′
k . For each facility t ∈ F ′

k−1 we have |Fk| facilities each connected with

different facility in set Fk . So the cardinality of the set Fk−1 is equal to |Fk| · |F
′
k−1|.

In general: for each i = 1, 2, . . . , k − 1 set Fi has |Fi+1| copies of each element

in set F ′
i and each copy is connected with a different element in the set Fi+1, so

|Fi | = |Fi+1| · |F ′
i |. Observe that so created copies of facilities at level l are in

one to one correspondence with paths (il, il+1, . . . , ik) on original facilities on levels

l, l + 1, . . . , k. We will use such paths on the original facilities as names for the

facilities in the extended instance.
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The distance between any two copies i1, i2 of element i is equal to zero and the

cost of opening facility i1 and i2 is the same and equal to fi . If i′1 is a copy of i1 and

i′2 is a copy of i2 then ci′1i
′
2

= ci1i2 . Distance between copy of facility i and client c is

equal to cci . Set C of clients will stay unchanged (Fig. 1).

Connection and Service Cost PC is the set of paths (in the above described graph),

which start in some client and end in a facility at level k. Pj is the set of facilities at

level j in the extended instance, or alternatively the set of paths on original facilities

which start in a facility at level j and end in a facility at level k. Now we define

the cost of path p denoted by cp. For p = (c, i1, i2, · · · ik) ∈ PC we have cp =

cc,i1 + ci1,i2 + . . . + cik−1,ik and for p = (ij , ij+1, · · · ik) ∈ Pj we have cp = fij . So

if p ∈ PC then cp is a service cost (i.e., the length of path p), and if p ∈ Pj then cp

is the cost of opening the first facility on this path. P = PC ∪
⋃k

j=1 Pj .

2.1 The LP

min
∑

p∈P

xpcp (1)

∑

p∈PC :j∈p

xp ≥ 1 ∀j∈C (2)

x(il+1,il+2,...ik) − x(il ,il+1,...ik) ≥ 0 ∀p=(il ,il+1,...ik)∈Pl ,l<k (3)

xq −
∑

p=(j,...il ,il+1...ik)∈PC

xp ≥ 0 ∀j∈C∀q=(il ,il+1,...ik)∈P \PC
(4)

xp ≥ 0 ∀p∈P (5)

The natural interpretation of the above LP is as follows. Inequality (1) states that

each client is assigned to at least one path. Inequality (2) encodes that opening of

a lower level facility implies opening of its unique higher level facility. The most

complicated inequality (3) for a client j ∈ C and a facility il ∈ Fl , imposes that the

opening of il must be at least the total usage of it by client j .

Fig. 1 Figure presets graph before (left part) and after (right part) modification. As you can see the set

of vertices in the highest level does not change
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Let p ⊐ q denote that p is suffix of q. The dual program to the above LP is:

max
∑

j∈C

vj (6)

vj −
∑

q∈P1:q⊐p

yp −
∑

q∈P \PC :q⊐p

wj,q ≤ cp ∀j∀p∈PC
(7)

∑

q∈Pk−1:p⊐q

yq +
∑

j∈C

wj,p ≤ cp ∀p∈Pk
(8)

∑

q∈Pl−1:p⊐q

yp −
∑

q∈Pl+1:q⊐p

yp +
∑

j∈C

wj,p ≤ cp ∀l∈{1,...,k−1}∀p∈Pl
(9)

vj , yp, wj,q ≥ 0 ∀j,p,q (10)

Lemma 1 Let x and (v, y, w) be optimal solutions to the above primal and dual

linear programs, respectively. For any p ∈ PC , if xp > 0, then cp ≤ vj , where j is

the client connected by the path cp.

Proof Using (7) we can write the following complementary slackness condition:

xp (cp − vj +
∑

q∈P1:q⊐p

yp +
∑

q∈P \PC :q⊐p

wj,q) = 0 ∀j∈C ∀p∈PC :j∈p

We are interested in p for which xp > 0, so

cp +
∑

q∈P1:q⊐p

yp +
∑

q∈P \PC :q⊐p

wj,q = vj

From (10) we know that each variable in the dual program is non-negative, so we

obtain that xp > 0 implies cp ≤ vj .

Let x∗ be an optimal fractional solution to LP (1)–(5). Let P j = {p ∈ PC |j ∈

p ∧ x∗
p > 0} denote the set of paths beginning in client j , which are in the support of

solution x∗. Define dav(j) = C∗
j =

∑

p∈P j cpx∗
p, dmax(j) = maxp∈P j :x∗

p>0 cp ≤

vj , and F ∗
j = v∗

j − C∗
j . Naturally, F ∗ =

∑

j∈C F ∗
j and C∗ =

∑

j∈C C∗
j .

3 Algorithm and Analysis for k-level UFL

The approximation algorithm A(γ ) presented below is parameterized by γ . It has the

following major steps:

1. formulate and solve the extended LP (1)–(5);

2. scale up facility opening by γ ≥ 1 (optional, only to improve the approximation

ratio)

3. cluster clients;
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4. round facility opening (tree by tree);

5. connect each client j with a closest open connection path p ∈ P j .

It starts by solving the above described extended LP which, by contrast to the

LP used in [1], enforces the fractional solution to have a forest like structure. Step

3. can be interpreted as an adaptation of (by now standard) LP-rounding techniques

used for (single level) facility location. Step 4. is an almost direct application of

a method from [11]. The final connection Step 5. is straightforward, the algorithm

simply connects each client via a shortest path of open facilities.

For the clarity of presentation we first only describe the algorithm without scaling

which achieves a slightly weaker approximation ratio. We will now present Steps 3.

and 4. in more detail.

3.1 Clustering

Like in LP-rounding algorithms for UFL, we will partition clients into disjoint clus-

ters and for each cluster center select a single client which will be called the center

of this cluster.

Please recall that the solution x∗ we obtain by solving LP (1)-(5) gives us (possibly

fractional) weights on paths. Paths p ∈ PC we interpret as connections from clients

to open facilities, while other (shorter) paths from P \ PC encode the (fractional)

opening of facilities, which have a structure of a forest (i.e., every facility from a

lower level is assigned only to a single facility at a higher level).

Observe that if two client paths p1, p2 ∈ PC share at least one facility, then they

must also end in the same facility at the highest k-th level. For a client j and a k-th

level facility i we will say j is fractionally connected to i in x∗ if and only if there

exists a path p ∈ PC of the form (j, . . . , i) with xp > 0. Two clients are called

neighbors if they are fractionally connected to the same k-th level facility.

The clustering is done as follows. Consider all clients to be initially unclustered.

While there remains at least one unclustered client do the following:

– select an unclustered client j that minimizes dav(j) + dmax(j),

– create a new cluster containing j and all its yet unclustered neighbors,

– call j the center of the new cluster;

The procedure is known (see e.g., [10]) to provide good clustering, i.e., no two

cluster centers are neighbors and the distance from each client to his cluster center is

bounded.

3.2 Randomized Facility Opening

We will now give details on how the algorithm decides which facilities to open.

Recall that the facility opening part of the fractional solution can be interpreted as a

set of trees rooted in top level facilities and having leafs in level-1 facilities.

We will start by describing how a single tree is rounded. For the clarity of presen-

tation we will change the notation and denote the set of vertices (facilities) of such

tree by V , and we will use xv to denote the fractional opening of v ∈ V in the initial
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fractional solution x∗. We will also use yv to denote how much a cluster center uses

v. Please note, that for each of the trees of the fractional solution there is at most one

cluster center client j using this tree. If the tree we are currently rounding is not used

by any cluster center, then we set all yv = 0. If cluster center j uses the tree, then

for each facility v in the tree, we set yv =
∑

p∈P j :v∈p xp, i.e., yv is the sum over the

connection paths p of j crossing v of the extent the fractional solution uses this path.

Let p(v) denote the parent node of v for all (not-root) nodes, and let C(v) denote

the set of children nodes of v for all nodes except on the lowest level. Observe, that

x and y satisfy:

1. if v is not a leaf, then yv =
∑

u∈C(v) yu;

2. if v is not the root node, then xv ≤ xp(v);

3. for all v ∈ V we have xv ≥ yv .

The following randomized procedure will be used to round both the fractional x

into an integral x̂ and the fractional y into an integral ŷ. The procedure will visit each

node of the tree at most once. For certain nodes it will be run in a’ with a token’ mode

and for some others it will be run’ without a token’. It will be initiated in the root

node and will recursively execute itself on a subset of lower level nodes. Initially x̂v

and ŷv are set to 0 for all nodes v, and unless indicated otherwise a node does not

have a token.
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Now we briefly describe what the algorithm does. Suppose that we are in node

v which is not a leaf. If v has a token then we set x̂v = ŷv = 1, choose one son

(each son i has probability
yi

yu
) and give him a token. Make recursive call on each

son. If v doesn’t have a token then with probability
xv−yv

xpred−yv
(xpred is 1 if v is a root

or xp(v) otherwise) set x̂v = 1 and make recursive call on each son. If v is a leaf we

don’t choose a son to give him the token and don’t make a recursive call on sons. We

execute the above procedure on the root of the tree, possibly assigning the token to

the root node just before the execution. Observe, that an execution of the procedure

ROUND(v) on a root of the tree brings the token to a single leaf of the tree if and

only if it starts with the token at the root node. In case of the token, the ŷv variables

will record the path of the token, and hence will form a single path from the root to

a leaf.

Consider a procedure that first with probability yr gives the token to the root r of

the tree and then executes ROUND(r). We will argue that this procedure preserves

marginals when used to round x into x̂ and y into ŷ.

Lemma 2 E[ŷv] = yv for all v ∈ V .

Proof By induction on the distance of v from the root r . E[ŷr ] is just the probability

that we started with a token in r , hence it is yr . For a non-root node v, by inductive

assumption, his parent node u = p(v) has E[ŷu] = yu. The probability of ŷv = 1

can be written as:

Pr[ŷv = 1] = Pr[ŷv = 1|ŷu = 1] · Pr[ŷu = 1] + Pr[ŷv = 1|ŷu = 0] · Pr[ŷu = 0]

=
yv

yu

· yu + 0 = yv.

Lemma 3 E[x̂v] = xv for all v ∈ V .

Proof By Lemma 2 is is now sufficient to show, that E[x̂v − ŷv] = xv − yv for all

v ∈ V . Observe that x̂v − ŷv is always either 0 or 1, hence E[x̂v − ŷv] = Pr[x̂v =

1, ŷv = 0].

The proof is again by induction on the distance of v from the root node r . Clearly,

E[x̂r − ŷr ] = Pr[x̂r = 1, ŷr = 0] = Pr[x̂r = 1|ŷr = 0] · Pr[ŷr = 0] =
xr−yr

1−yr
· (1 − yr) = xr − yr .

For a non-root node v, by inductive assumption, his parent node u = p(v) has

E[x̂u] = xu. Note that ŷv = 1 implies x̂u = 1. Hence, by Lemma 2, Pr[x̂u = 1, ŷv =

0] = xu − yv . The probability of x̂v = 1 and ŷv = 0 can be written as:

Pr[x̂v = 1, ŷv = 0] = Pr[x̂v = 1, x̂u = 1, ŷv = 0]

= Pr[x̂v = 1|x̂u = 1, ŷv = 0] · Pr[x̂u = 1, ŷv = 0]

=
xv − yv

xu − yv

· (xu − yv) = xv − yv.
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To round the entire fractional solution we run the above described single tree

rounding procedure as follows:

1. For each cluster center j , put a single token on the root node of one of the trees he

is using in the fractional solution. Every single tree is selected with probability

equal the fractional connection of j to this tree.

2. Execute the ROUND(.) procedure on the root of each tree.

By the construction of the rounding procedure, every single cluster center, since he

had placed his token on a tree, will have one of his paths open so that he can directly

connect via this path. Moreover, by Lemma 2 the probability of opening a particular

connection path p ∈ P j for him (as indicated by variables ŷ) is exactly equal the

weight xp the fractional solution assigns to this path. Hence, his expected connection

cost is exactly his fractional cost.

To bound the expected connection cost of the other (non-center) clients is slightly

more involved and will be discussed in the following section.

3.3 Analysis

Let us first comment on the running time of the algorithm. The algorithm first solves

a linear program of size O(nk), where n is the maximal number of facilities on

a single level. For fixed k it is of polynomial size, hence may be directly solved

by the ellipsoid algorithm. The rounding of facility openings is by traversing trees

whose total size is again bounded by O(nk). Finally each client can try each of

his at most O(nk) possible connecting paths and see which of them is the closest

open one.

Every client j will find an open connecting path to connect with, since he is a

part of a cluster, and the client j ′ who is the center of this cluster certainly has a

good open connecting path. Client j may simply use (the facility part of) the path of

cluster center j ′, which by the triangle inequality will cost him at most the distance

cj,j ′ more than it costs j ′.

In fact a slightly stronger bound on the expected length of the connection path of

j is easy to derive. We use the following bound, which is analogous to the Chudak

ans Shmoys [10] argument for UFL.

Lemma 4 For a non central client j ∈ C, if all paths from P j are closed, then the

expected connection cost of client j is

E[Cj ] ≤ 2dmax(j) + dav(j).

Again like in the work of Chudak ans Shmoys [10], the crux of our improvement

lies in the fact that with a certain probability the quite expensive 3-hop path guar-

anteed by the above lemma will not be necessary, because j will happen to have a

shorter direct connection. The main part of the analysis which will now follow is to

evaluate the probability of this lucky event.

We will use the following technical lemma.
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Lemma 5 For c, d > 0,
∑

i xi = c where ∀i 1 ≥ xi ≥ 0, we have

n
∏

i=1

(1 − xi + xid) ≤

(

1 −
c

n
+

cd

n

)n

.

Proof We will show that
∏n

i=1(1 − xi + xid) ≤ (1 − c
n

+ cd
n

)n by induction.

Basis: Show that the statement holds for n = 1.

This is trivial as x1 = c
n

when n = 1.

Inductive step: Show that if ∀l<n,
∏l

i=1(1 − xi + xid) ≤
(

1 − c
l
+ cd

l

)l
, then

∏n
i=1(1 − xi + xid) ≤

(

1 − c
n

+ cd
n

)n
.

For each sequence
∏n

i=1(1−xi +xid), suppose that there exists a subset L ⊂ X =

{x1, x2, · · · , xn} with l elements (l ≤ n−1) , and exists xi ∈ L with xi 
= c′/l, where

c′ =
∑

xi∈L xi . We can replace subsequence
∏

xi∈L(1−xi +xid) with (1− c′

l
+ c′d

l
)l

by our assumption as l < n. The remaining sequence (1−xi +xid), forall xi ∈ X−L

will not change. So, the value of the whole sequence will be equal to or bigger than

before.

We repeatedly replace the subsequence with the above properties until each ele-

ment in X is equal to c
n

. In the final situation there is no subsequence whose value can

be increased. So, the value of the sequence is maximum. Therefore, the inequality
∏n

i=1(1 − xi + xid) ≤
(

1 − c
n

+ cd
n

)n
holds.

Suppose a (non-center) client is connected with a flow of value z to a tree in the

fractional solution. Suppose further that this flow saturates all the fractional openings

on this tree, then the following function fk(z) gives a lower bound on the probability

that at least one path of this tree will be open as a result of the rounding routine.

Function fk(z) is defined recursively. For k = 1 it is just equal to fractional opening,

i.e., f1(z) = z. For k ≥ 2 it is fk(z) = z · minz(1 −
∏n

i=1(1 − fk−1(
zi

z
))).2 It is

a product of the probability of opening the root node, and the (recursively bounded)

probability that at least one of the subtrees has an open path, conditioned on the root

being open.

The following lemma displays the structure of fk(.).

Lemma 6 Inequality fk(x) ≥ x · (1 − c) implies fk+1(x) ≥ x · (1 − ec−1).

Proof Note that f1(x) ≥ x and f2(x) ≥ x(1 − 1
e
). Now we show induction step.

Suppose that fk(x) ≥ x · (1 − c) then fk+1(x) = x · (1 − maxx

∏n
i=1(1 −fk(

xi

x
))) ≥

x · (1 − maxx

∏n
i=1(1 − xi

x
+ xi

x
· c)) = x(1 − (1 − 1

n
+ c

n
)n) �→ x(1 − ec−1). Last

equality follows from Lemma 5 applied to vector x defined as xi = xi

x
.

Since a single client j may potentially not fully use the opening (capacity) of the

tree he is using, a more direct and accurate estimate of his probability of getting a

2For notational convenience we use maxx (minx ) to denote maxx1+...+xn=x,xi>0 (minx1+...+xn=x,xi>0).



30 Theory Comput Syst (2016) 58:19–44

path is the following function fk(x, z) which depends on both the opening of the root

node x and the fractional usage of the tree by j given as z.

fk(x, z) =

⎧

⎨

⎩

x when k = 1,

x · minx,z

(

1 −

(

n
∏

i=1

(

1 − fk−1

(

xi

x
,

zi

x

))

))

otherwise.

Fortunately enough, we may inductively prove the following lemma, which states

that the worst case for our analysis is when the tree capacity is saturated by the

connectivity flow of a client.

Lemma 7 If 1 ≥ x ≥ z ≥ 0, then fk(x, z) ≥ fk(z).

To prove Lemma 7, we show the following result first.

Lemma 8 Suppose 1 ≥ a > 0, 1 ≥ x > 0, c > 0 and
∑

i xi = c. Then

maxx

∏n
i=1(1 − axi) =

∏n
i=1(1 − a c

n
). That is,

∏n
i=1(1 − axi) reaches its biggest

value when ∀i, xi = c
n

.

Proof Basis: For n = 1 we have xi = c, so the equality holds.

Inductive step: Show that if ∀l<n, maxx

∏l
i=1(1 − axi) =

∏l
i=1(1 − a c′

l
) where

c′ =
∑l

i=1 xi , then maxx

∏n
i=1(1 − axi) =

∏n
i=1(1 − a c

n
) where c =

∑n
i=1 xi .

Suppose that
∏n

i=1(1 − axi) gets its biggest value at (β1, β2, · · · , βn). If there

exists a subset L ⊂ {1, 2, · · · , n} with l elements (l ≤ n − 1) , and exists i ∈ L with

βi 
= c′/l (where c′ =
∑

i∈L βi), then we can replace subsequence
∏

i∈L(1 − axi)

with (1 − a c′

l
)l by our assumption as l < n. The remaining sequence (1 − axi) forall

i /∈ L will not change. So, the value of the whole sequence remains the same.

We repeatedly replace the subsequence with the above properties until each

element xi is equal to c
n

. So the statement holds.

Proof of Lemma 7 At first we recall the definitions of the studied functions

fk(x, z) =

⎧

⎨

⎩

x when k = 1

x · minx,z

(

1 −

(

n
∏

i=1

(

1 − fk−1

(

xi

x
,

zi

x

))

))

otherwise

fk(z) =

⎧

⎨

⎩

z when k = 1

z · minz

(

1 −

(

n
∏

i=1

(

1 − fk−1

(

zi

z

))

))

otherwise

We will prove the lemma by induction on k. Note that for k = 1 we have fk(x, z) =

x ≥ z = fk(z). Our assumption is that inequality holds for each l < k and our thesis

is that it holds for k. By the inductive assumption it is sufficient to prove:

x ·

(

1 − maxz

n
∏

i=1

(

1 − fk−1

(zi

x

))

)

≥ z ·

(

1 − maxz

n
∏

i=1

(

1 − fk−1

(

zi

z

))

)

Note that for some α ∈ [0, 1] we have z = x ·α. Using the fact that ∀kfk(x) = ckx

(it is because value of minz 1 − (
∏n

i=1(1 − fk−1(
zi

z
))) does not depend on the value
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of z - we use only zi

z
which is the same for each value of z) we can write following

inequality

z

α

(

1 − maxz

n
∏

i=1

(

1 −
ck−1αzi

z

)

)

≥ z

(

1 − maxz

n
∏

i=1

(

1 −
ck−1zi

z

)

)

Lemma (8) impose that above inequality is equivalent with

1

α

(

1 −
(

1 −
ck−1α

n

)n)

≥
(

1 −
(

1 −
ck−1

n

)n)

Note that in the limit with n going to infinity we have

g(α) =
1

α
(1 − e−ck−1α) ≥ (1 − e−ck−1)

For α = 1 we have equality and for α ∈ [0, 1) we have that g′(α) ≤ 0. Function g is

decreasing with increasing α, so inequality holds.

Consider now a single client j who is fractionally connected to a number of trees

with a total weight of his connection paths equal γ (you may think he sends a total

flow of value γ through these trees, from leaves to roots). Now, to bound the prob-

ability of at least one of these paths getting opened by the rounding procedure, we

introduce function Fk(γ ) defined as follows. Fk(γ ) = 1 − maxγ

∏n
i=1(1 − fk(xi)).

This function is one minus the biggest chance that no tree gives route from root to

leaf, using the previously defined fk(.) function to express the success probability on

a single tree.

Now we can give an analogue of Lemma 6 but for Fk(γ ).

Lemma 9 Inequality Fk(γ ) ≥ 1 − e(c−1)γ implies Fk+1(γ ) ≥ 1 − e(ec−1−1)γ .

Proof Suppose that fk(x) ≥ x(1 − c). Note that Fk(γ ) = 1 − maxγ

∏n
i=1(1 −

fk(xi)) ≥ 1 − maxγ

∏n
i=1(1 − xi + xic)) = 1 − (1 −

γ
n

+
γ
n
c)n �→ 1 − e(c−1)γ .

(Last equality base on Lemma 5). Key observation is that in the last equality there

is no constraint on the positive constant c - we can replace it with any other positive

constant and the equality will still be true. Using Lemma 6 we know that fk+1(x) ≥

x(1 − ec−1). The only difference in the way we evaluate Fk+1(γ ) is the replacement

of constant c by other constant ec−1, so the equality for Fk(γ ) implies the equality

for Fk+1(γ ), and hence the lemma holds.

We are now ready to combine our arguments into a bound on the expected total

cost of the algorithm.

Theorem 1 Expected total cost of the algorithm is at most (3 − 2Fk(1))OPT .

Proof Note first that by Lemma 3, the probability of opening of each single facility

equals its fractional opening, and hence the expected facility opening cost is exactly

the fractional opening cost F ∗.
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Consider client j ∈ C which is a cluster center. He randomly chooses one of

the paths from set P j . Expected connection cost for client j is E[Cj ] = dav(j) =
∑

p∈P j cpxp = C∗
j . Suppose now j ∈ C is not a cluster center. As discussed above,

the chance that at least one path from P j is open is not less than Fk(1). Suppose that

at least one path from P j is open. Each path from this set has proportional probability

to become open, so the expected length of the chosen path is equal to dav(j). If there

is no open path in set P j , client j will use a path p′ ∈ P j ′
which was chosen by his

cluster center j ′ ∈ C, but j has to pay extra for the distance to the center j ′. In this

case, by Lemma 4 we have E[Cj ] ≤ 2dmax(j) + dav(j).

The total cost of the algorithm can be bounded by the following expression:

F ∗ +
∑

j∈D

(Fk(1)C∗
j + (1 − Fk(1))(2dmax(j) + dav(j))) ≤

F ∗ +
∑

j∈D

(Fk(1)C∗
j + (1 − Fk(1))(2(C∗

j + F ∗
j ) + C∗

j )) =

(3 − 2Fk(1))(F ∗ + C∗)

Note that Fk(1) > 0 for each k, so expected total cost of algorithm is strictly less

than three times the optimum cost.

4 How to Apply Scaling – General Idea

By means of scaling up facility opening variables before rounding, just like in the

case of 1-level UFL, we gain on the connectivity cost in two ways. First of all, the

probability for j of connecting to one of his fractional facilities via a shorter 1-hop

path increases, decreasing the usage of the longer backup paths. The second effect is

that, in the process of clustering, clients may ignore the furthest of their fractionally

used facilities. It has the effect of filtering the solution and reducing the lengths of the

3-hop connections. In fact, if the scaling factor is sufficient, which is the case for our

application, we eventually do not need the dual program to upper bound the length

of a fractional connection with a dual variable. All this is well studied for UFL (see,

e.g., [8]), but would require a few pages to present in full detail.

All we need in order to use the techniques from UFL is to give bounds on the

probability of opening a connection to specific groups of facilities as a function of

the scaling parameter γ . So the probability of connecting j to one of his close facil-

ities (total opening equal 1 after scaling) will be at least Fk(1). The probability of

connecting j to either a close or a distant facility (total opening equal γ after scaling)

will be at least Fk(γ ). The probability of using the backup 3-hop path via the cluster

center will be at most 1 − Fk(γ ). To obtain the approximation ratios claimed in the

table in Section 1.1, it remains to plug in these numbers to the analysis in [8], and

for each value of k find the optimal value for the scaling parameter γ . A complete

description of the algorithm for k-level UFL using randomized scaling will be given

in Section 1.1. Before we dive into the full detail picture, we first discuss the simpler

case of UFL in the following Section.
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5 Randomized Scaling for UFL - an Overview

Consider the following standard LP relaxation of UFL.

min
∑

i∈F

∑

j∈C

cijxij +
∑

i∈F

yifi (11)

∑

i∈F

xij = 1 ∀j∈C (12)

yi − xij ≥ 0 ∀i∈F,j∈C (13)

xij , yi ≥ 0 ∀i∈F,j∈C (14)

Chudak and Shmoys [10] gave a randomized rounding algorithm for UFL based

on this relaxation. Later Byrka and Aardal [5] considered a variant of this algorithm

where the facility opening variables were initially scaled up by a factor of γ . They

showed that for γ ≥ γ0 ≈ 1.67 the algorithm returns a solution with cost at most

γ times the fractional facility opening cost plus 1 + 2e−γ times the fractional con-

nection cost. This algorithm, when combined with the (1.11, 1.78)-approximation

algorithm of Jain, Mahdian and Saberi [14] (JMS algorithm for short), is easily a

1.5-approximation algorithm for UFL. More recently, Li [16] showed that by ran-

domly choosing the scaling parameter γ from an certain probability distribution

one obtains an improved 1.488-approximation algorithm. A natural question is what

improvement this technique gives in the k-level variant.

In what follows we present our simple interpretation and sketch the analysis of

the randomization by Li. We argue that a certain factor revealing LP provides a valid

upper bound on the obtained approximation ratio. The appropriate probability dis-

tribution for the scaling parameter (engineered and discussed in detail in [16]) may

in fact be directly read from the dual of our LP. While we do not claim to get any

deeper understanding of the randomization process itself, the simpler formalism we

propose is important for us to apply randomization to a more complicated algorithm

for k-level UFL, which we describe next.

5.1 Notation

Let Fj denote the set of facilities with which client j ∈ C is fractionally connected,

i.e., facilities i with x∗
ij > 0 in the optimal LP solution (x∗, y∗). Since for uncapac-

itated facility location problems one can split facilities before rounding, to simplify

the presentation, we will assume that Fj contains lots of facilities with very small

fractional opening y∗
i . This will enable splitting Fj into subsets of desired total

fractional opening.

Definition 1 (definition 15 from [16]) Given an UFL instance and its optimal frac-

tional solution (x∗, y∗), the characteristic function hj : [0, 1] �−→ R of a client

j ∈ C is the following. Let i1, i2, · · · , im denote the facilities in Fj , in a non-

decreasing order of distances to j. Then hj (p) = d(it , j), where t is the minimum

number such that
∑t

s=1 y∗
is

≥ p. Furthermore, define h(p) =
∑

j∈C hj (p) as the

characteristic function for the entire fractional solution.
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Definition 2 Volume of a set F ′ ⊆ F , denoted by vol(F ′) is the sum of facility

openings in this set, i.e., vol(F ′) =
∑

i∈F ′ y∗
i .

For l = 1, 2, . . . , n − 1 define γl = 1 + 2 · n−l
n

, which will form the support for

the probability distribution of the scaling parameter γ . Suppose that all facilities are

sorted in an order of non-decreasing distances from a client j ∈ C. Scale up all y∗

variables by γl and divide the set of facilities Fj into two disjoint subsets: the close

facilities of client j, F
Cl

j , such that vol(F
Cl

j ) = 1; and the distant facilities F
Dl

j =

Fj \ F
Cl

j . Note that vol(F
Dl

j ) = γl − 1. Observe that 1
γk

< 1
γl

⇒ F
Ck

j ⊂ F
Cl

j and

F
Cl

j \ F
Ck

j 
= ∅. We now split Fj into disjoint subsets F
l
j . Define F

C0

j = ∅ and

F
l
j = F

Cl

j \ F
Cl−1

j , where l = 1, 2 . . . , n. The average distance from j to facilities

in F
l
j is cl(j) =

∫ 1/γl

1/γl−1
hj (p) dp for l > 1 and

∫ 1/γ1

0 hj (p) dp for l = 1. Note that

cl(j) ≤ cl+1(j) and Dl
max(j) ≤ cl+1(j), where Dl

max(j) = maxi∈F l
j
cij .

Since the studied algorithm with the scaling parameter γ = γk opens each facility

i with probability γk ·y∗
i , and there is no positive correlation between facility opening

in different locations, the probability that at least one facility is open from the set F
l
j

is at least 1 − e
−γk ·vol(F l

j )
.

Crucial to the analysis is the length of a connection via the cluster center j ′ for

client j when no facility in Fj is open. Consider the algorithm with a fixed scaling

factor γ = γk , an arbitrary client j and its cluster center j ′. Li gave the following

upper bound on the expected distance from j to an open facility around its cluster

center j ′.

Lemma 10 (Lemma 14 from [16]) If no facility in Fj is opened, the expected dis-

tance to the open facility around j ′ is at most γkDav(j) + (3 − γk)D
k
max(j), where

Dav(j) =
∑

i∈Fj
cijx

∗
ij .

Corollary 1 If γ = γk , then the expected connection cost of client j is at most

E[Cj ] ≤

n
∑

l=1

cl(j) · pl + e−γk · (γkDav(j) + (3 − γk)D
k
max(j))

where pl is the probability of the following event: no facility is opened in distance at

most Dl−1
max(j) and at least one facility is opened in F

l
j .

Corollary 2 If γ = γk , then the expected connection cost of client j is at most

E[Cj ] ≤ c1(j)

(

1 − e
−

γk
γ1

)

+

n
∑

l=2

cl(j) ·

(

e
−

γk
γl−1 − e

−
γk
γl

)

+ e−γk · (γkDav(j) + (3 − γk)D
k
max(j)).

Proof pl is the probability of the following event: no facility is opened within dis-

tance at most Dl−1
max(j) and at least one facility is opened in F

l
j . We will show that we
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can get an upper bound for E[Cj ] with setting p1 = 1−e
−

γk
γ1 and pl = e

−
γk

γl−1 −e
−

γk
γl

for all l > 1.

The probability of the following event (denoted by El) is at least 1−e
−

γk
γl : at least

one facility is opened in distance at most Dl
max(j) [10]. Similarly, the probability of

the following event is at least 1 − e
−

γk
γl−1 : at least one facility is opened in distance at

most Dl−1
max(j).

Recall that we have cl(j) ≤ cl+1(j) and cn(j) ≤ γkDav(j) + (3 − γk)D
k
max(j)

(otherwise, we never use this 3-hop).

To get maxp{
∑n

l=1 cl(j) · pl + e−γk · (γkDav(j) + (3 − γk)D
k
max(j))}, we want

to make the probability of using 3-hop biggest first. Then, we set the probability of

event En as 1 − e
−

γk
γn = 1 − eγk , which means the probability of using 3-hop is

biggest. Next step, we make pn biggest by setting the probability of event En−1 as

1 − e
−

γk
γn−1 . So, we have pn = 1 − e

−
γk
γn − (1 − e

−
γk

γn−1 ) = e
−

γk
γn−1 − e

−
γk
γn . By

induction, we get that the worst case is as follows: pl = e
−

γk
γl−1 − e

−
γk
γl for all l > 1

and p1 = 1 − e
−

γk
γ1 .

5.2 Factor Revealing LP

Consider running once the JMS algorithm and the Chudak and Shmoys algorithm

multiple times, one for each choice of the value for the scaling parameter γ = γl =

1 + 2 · n−l
n

, l = 1, 2, . . . , n− 1. Observe that the following LP captures the expected

approximation factor of the best among the obtained solutions, where pi
1 = 1− e

−
γi
γ1

and pi
l = e

−
γi

γl−1 −e
−

γi
γl for all l > 1. The objective of the following LP is to construct

the worst case configuration of distances cl .

max T (15)

γif +

n
∑

l=1

cl · pi
l + e−γi (γic + (3 − γi)ci+1) ≥ T ∀i<n (16)

1.11f + 1.78c ≥ T (17)

1

γ1
· c1 +

n
∑

i=2

(
1

γi

−
1

γi−1
) · ci = c (18)

0 ≤ ci ≤ ci+1 ≤ 1 ∀i<n (19)

f + c = 1 (20)

f, c ≥ 0 (21)

The variables of this program encode certain measurements of the function h(p)

defined for an optimal fractional solution. Intuitively, these are average distances

between a client and a group of facilities, summed up for all the clients. The program

models the freedom of the adversary in selecting cost profile h(p) to maximize the

cost of the best of the considered algorithms. Variables f and c model the facility
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opening and client connection cost in the fractional solution. Inequality (16) corre-

spond to LP-rounding algorithms with different choices of the scaling parameter γ .

Note that Dav(j) = c and Di
max(j) ≤ ci+1 hold for each client. This fact, together

with Corollary 1, justifies inequality (16). Inequality (17) corresponds to the JMS

algorithm [14], and equality (18) encodes the total connection cost (Fig. 2).

Interestingly, the choice of the best algorithm here is not better in expectation than

a certain random choice between the algorithms. To see this, consider the dual of the

above LP. In the dual, the variables corresponding to the primal constraints (16) and

(17) simply encode the probability of choosing a particular algorithm. Our compu-

tational experiments with the above LP confirmed the correctness of the analysis of

Li [16]. Additionally, from the primal program with distances we obtained the worst

case profile h(p) for the state of the art collection of algorithms considered (see

Figs. 3, 4 and 5 respectively for a plot of this tight profile and the distributions of the

scaling factor for k-level UFL on different number of levels) .

6 Randomized Scaling for k-level UFL

To obtain an improved approximation ratio we run algorithm A(γ ) for several values

of γ and select the cheapest solution. The factor revealing LP in Section 5.2 gives an

upper bound on the approximation ratio. Since the number of levels has influence on

connection probabilities, the values of pi
l need to be defined more carefully than for

UFL. In particular, for l = 1 we now have pi
1 = Fk(

γi

γ1
) and pi

l = Fk(
γi

γl
) − Fk(

γi

γl−1
)

for l > 1.

The Table 1 summarizes the obtained ratios for a single algorithm (run with the

best choice of γ for particular k) and for a group of algorithms.

Fig. 2 Worst case profiles of h(p) (i.e., distances to facilities) for k = 1 obtained from solution of the

LP in Section 5.2. X-axis is the volume of a considered set and y-axis represents distance to the farthest

facility in this set. Values of function h(p) are in one-to-one correspondence with values of ci in LP from

Section 5.2
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Fig. 3 Worst case profiles of h(p) (i.e., distances to facilities) for k = 1, 2, 3, 4 obtained from solution of

the LP in Section 6 (without JMS algorithm). X-axis is the volume of a considered set and y-axis represents

the distance to the farthest facility in that set. Values of function h(p) are in one-to-one correspondence

with values of ci in LP from Section 6

7 k-Level UFL with Penalties

We now consider the variant of the problem where the planner may decide to pay a

penalty (per client) instead of connecting a certain group of clients. First we give a

simple argument that the problem with uniform penalties (the penalty for not con-

necting j is the same for all j ∈ C) reduces to the problem without penalties. Next

we give an algorithm for the general penalty case and show that our bound on the

connection plus penalty cost of a client only gets better if the algorithm decides to pay

Fig. 4 Probabilities of using a particular γ in a randomized alg. (from the dual LP) for k = 1, 2, 3, 4
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Fig. 5 Probabilities of using a particular γ in a randomized alg. (from the dual LP) for k = 1, 2, 3, 4.

Close-up on small probabilities

the penalty, effectively showing that the same approximation as for the non-penalty

case is possible.

7.1 k-level UFL with Uniform Penalties reduced to k-level UFL

The difficulty of k-level UFLWP lies in the extra choice of each client, that is, the

penalty. We will explain how to overcome the penalties by converting the instance of

k-level UFLWP to an appropriate instance of k-level UFL. We first consider the easy

case of uniform penalties.

Lemma 11 There is an approximation preserving reduction from k-level UFL with

uniform penalties to k-level UFL.

Proof We can encode the penalty of client j ∈ C as a group of collocated facilities

(one from each level) at distance pj to client j , and with opening cost zero. The

distance from client j to the penalty-facilities of client j ′ is equal to cj,j ′ + pj ′ .

Note that pj ′ = pj . We can run any approximation algorithm for k-level UFL on the

modified instance. If in the obtained solution client j is connected with a penalty-

facility of client j ′, we can switch j to its penalty-facility without increasing the cost

Table 1 Comparison of ratios

k 1 2 3 4 5 6 7 8 9 10

previous best 1.49 1.77 2.50 2.81 3 3 3 3 3 3

our alg. (no scaling) 1.74 2.07 2.26 2.38 2.47 2.53 2.59 2.63 2.66 2.69

our alg. (with scaling) 1.58 1.85 2.02 2.14 2.24 2.31 2.37 2.42 2.46 2.50

our alg. (with randomization) 1.52 1.79 1.97 2.09 2.19 2.27 2.33 2.39 2.43 2.47
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of the solution. We obtain a solution where clients either connect to normal facilities

or to their dedicated penalty-facilities. The latter event we interpret (in the solution

to the original instance) as a situation where the client pays penalty.

Lemma 11 implies that for k-level uncapacitated facility location with uniform

penalties we have the following approximation ratios. Algorithms for k = 1 and 2

are described in [16] and [22], for k > 2 are described in this article.

k 1 2 3 4 5 6 7 8 9 10

ratio 1.488 1.77 1.97 2.09 2.19 2.27 2.33 2.39 2.43 2.47

Note that the reduction above does not work for the non-uniform case, because

then the distance from client j to the penalty-facility of client j ′ could be smaller

than pj . Nevertheless we will show that LP-rounding algorithms in this paper can be

easily extended to the non-uniform penalty variant.

7.2 Algorithm for k-level UFLWP (nonuniform penalties)

We use the same notations in Section 2 to model k-level UFLWP.

min
∑

p∈P

xpcp +
∑

j∈C

gjpj (22)

∑

p∈PC :j∈p

xp + gj ≥ 1 ∀j∈C (23)

x(it+1,it+2,...ik) − x(it ,it+1,...ik) ≥ 0 ∀p=(it ,it+1,...ik)∈Pt ,t<k (24)

xq −
∑

p=(j,...it ,it+1...ik)∈PC

xp ≥ 0 ∀j∈C, ∀q=(it ,it+1,...ik)∈P \PC
(25)

xp ≥ 0 ∀p∈P (26)

gj ≥ 0 ∀j∈C (27)

Inequality (23) states that each client is assigned to at least one path or is rejected.

Let (x∗, g∗) be an optimal solution to the above LP. Consider the following LP-

rounding algorithm A2 parameterized by γl .

1. formulate and solve the extended LP (22)–(27) to get an optimal solution

(x∗, g∗);

2. scale up facility opening and client rejecting variables by γl , then recompute

values of x∗
p for p ∈ PC to obtain a minimum cost solution (x̄, ḡ);

3. divide clients into two groups Cγl
= {j ∈ C|γl ·(1−g∗

j ) ≥ 1} and C̄γl
= C\Cγl

;

4. cluster clients in Cγl
;
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5. round facility opening (tree by tree);

6. connect each client j with a closest open connection path unless rejecting it is a

cheaper option.

Our final algorithm is as follows: run algorithm A(γl) for each l = 1, 2 . . . , n − 1

and select a solution with the smallest cost.

Clustering is based on rules described in [10] and is described in Section 3.1.

Rounding on a tree is described in Section 3.2. From now on we are considering only

scaled up instance (x̄, ḡ).

7.3 Analysis

The high level idea is that we can consider the instance of k-level UFLWP as a corre-

sponding instance of k-level UFL by showing that the worst case approximation ratio

is for clients in set Cγ and we can treat the penalty of client j ∈ Cγ as a “penalty-

facility” in our analysis. That is, we can overcome penalties by solving an equivalent

k-level UFL without penalties. Then, for k-level UFLWP, we can get the same ratios

as for k-level UFL, shown in Table 1.
Complete Solution and “one-level” Description It is standard in uncapacitated loca-

tion problems to split facilities to obtain a so called complete solution, where no

facility is used less than it is open by a client (see [19] for details). For our algorithm,

to keep the forest structure of the fractional solution, we must slice the whole trees

instead of splitting individual facilities to obtain the following.

Lemma 12 Each solution of our linear program for k-level UFLWP can be

transformed to an equivalent complete solution.

Proof We should give two copies T ′ and T ′′ of tree T (instead of it) if there is some

client j ∈ C with a positive flow xjp to one of the paths p in the tree T which is

smaller than the path opening xp. Let the opening of such“problematic” path be equal

to flow xjp in tree T ′. In tree T ′′ it has value equal to the opening in T decreased

by xjp. In general each facility in tree T ′
(

T ′′
)

has the same opening as in T times
xjp

xp

(

xp−xjp

xp

)

. Note that the value of flow from client j (and other clients which are

connected with both trees now) should be the same as before adding trees T ′ and T ′′

instead of T . All clients “recompute” their connection values. We sort all paths in

increasing connection cost for client j and connect with them (in that order) as strong

as it is possible until client j has flow equal to one or it is cheaper to pay penalty

instead of connecting with any open path. The important fact is that the expected

connection and penalty cost of each client remain the same after above operations.

In the process of coping and replacing trees we add at most |C| new trees. Because

each client has at most one “problematic” (not saturating) path.

For the clarity of the following analysis we will use a “one-level” description of

the instance and fractional solution despite its k-level structure. Because the number

of levels will have influence only on the probabilities of opening particular paths in

our algorithm.
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Consider set Sj of paths which start in client j and end in the root of a single

tree T . Instead of thinking about all paths from set Sj separately we can now treat

them as one path pT whose fractional opening is xpT
=

∑

p∈Sj
x̄p and (expected)

cost is cpT
=

∑

p∈Sj
cp x̄p

xpT
. Observe that our distance function cpT

satisfy the triangle

inequality. From now on we will think only about clients and facilities (on level k)

and (unique) paths between them. Accordingly, we will now encode the fractional

solution as (x̄, ȳ, ḡ), to denote the fractional connectivity, opening and penalty

components.

Penalty discussion

Lemma 13 The worst case approximation ratio is for clients from set Cγ .

Proof For the clarity of description, we sort facilities i1, i2, . . . in non-decreasing

distances from client j . Let m be the number of facilities with positive flow from

client j in scaled up solution (x̄, ȳ, ḡ). We have two sets of clients Cγ and C̄γ . For

the first case j ∈ Cγ , we can upper bound its expected connection and penalty cost

as follows

E[Cj + Pj ] ≤

m
∑

r=1

(

Fk

(

r
∑

i=1

ȳi

)

− Fk

(

r−1
∑

i=1

ȳi

))

cj,ir

+
(

1 − Fk

(

γ
(

1 − g∗
j

))) (

γg∗
j pj +

(

max{0, 1 − γg∗
j }

)

×
(

γ
(

1 − g∗
j

)

Dav(j) +
(

3 − γ
(

1 − g∗
j

))

DC
max(j)

))

≤

m
∑

r=1

(

Fk

(

r
∑

i=1

ȳi

)

− Fk

(

r−1
∑

i=1

ȳi

))

cj,ir

+
(

1 − Fk

(

γ
(

1 − g∗
j

)))

max{1, γg∗
j }

×
(

γ
(

1 − g∗
j

)

Dav(j) +
(

3 − γ
(

1 − g∗
j

))

DC
max(j)

)

.

The first inequality upper bounds E[Cj + Pj ] in a similar way as Corollary 1,

but in situation when no facility is open in Fj we need to consider rejecting j or

connection with open facility via cluster center. The second inequality holds because

pj ≤ γ
(

1 − g∗
j

)

Dav(j)+
(

3 − γ
(

1 − g∗
j

))

DC
max(j). Otherwise, j could connect

with facility in that distance instead of using penalty.

For the second case we have that j ∈ C̄γ . The expected connection and penalty

cost of client j can be upper bounded as follows

E[Cj+Pj ] ≤

m
∑

r=1

(

Fk

(

r
∑

i=1

ȳi

)

− Fk

(

r−1
∑

i=1

ȳi

))

cj,ir +
(

1 − Fk

(

γ
(

1 − g∗
j

)))

pj ,

since in situation when no facility is open in Fj we only need to consider rejecting j .
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Note that each client j ∈ C̄γ can treat its penalty as a close (and distant)

facility, so we can say that pj = DC
max(j) = DD

av(j). Moreover, DC
max(j) ≤

γ
(

1 − g∗
j

)

Dav(j)+
(

3 − γ
(

1 − g∗
j

))

DC
max(j) as 0 < γ

(

1 − g∗
j

)

< 1 according

to the definition of C̄γ .

Therefore, we have that the worst case approximation ratio is for clients from set

Cγ .

Lemma 14 For clients j ∈ Cγ we can treat its penalty as a facility.

Proof If j is a cluster center, j will have at least one (real) facility open in its set of

close facilities. Thus, its connection and penalty cost are independent of the value of

g∗
j . If j is not a cluster center and we pretend its penalty as a facility, no other client j ′

will consider to use this fake facility. Because j ′ only looks at facilities fractionally

serving him, and the facilities which serve the center of the cluster containing j ′.
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Appendix A Analysis of Single Algorithm for k-level UFLWP

Now we can upper bound the expected connection and penalty cost of single algo-

rithm. As it was proved in Lemma 13 the worst case scenario is for client j ∈ Cγ

which is not a cluster center, so to upper bound the expected connection and penalty

cost we can concentrate on clients from Cγ . Moreover from Lemma 14 we can

suppose that g∗
j = 0.

Lemma 15 The expected connection and penalty cost could be bounded in following

way E[C + P ] ≤ max

{

3 − 2 · Fk(γ ),
2−Fk(γ )−Fk(1)

1− 1
γ

}

· (C∗ + P ∗).

Proof The value of pc = Fk(1) is a chance that at least one facility will be open in

the set of close facilities. pd = Fk(γ ) − Fk(1) expresses the chance that at least one

distant facility of the considered client is open, but all close facilities are closed. The

remaining ps = 1 − pc − pd is the probability of connecting the considered client

to the open facility by its cluster center. The cost of this connection is bounded in
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Lemma 10. Suppose j ′ ∈ C is the cluster center of j ∈ C.

E[Cj + Pj ] ≤ pc · DC
av(j) + pd · DD

av(j) + ps · (γDav(j) + (3 − γ )Dmax(j))

≤ (pc + ps) · DC
av(j) + (pd + 2ps) · DD

av

= (pc + ps) · (1 − ρj ) · Dav(j) + (pd + 2ps) ·

(

1 +
ρj

γ − 1

)

· Dav(j)

= max

{

1 + 2 · ps,
1 + ps − pc

1 − 1
γ

}

· Dav(j)

= max

{

3 − 2 · Fk(γ ),
2 − Fk(γ ) − Fk(1)

1 − 1
γ

}

· Dav(j)

You can find the justification for above inequalities in [8]. Summing over all clients

we get the lemma.
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