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Abstract. Given a collection S of subsets of some setU, andM ⊂ U, the set cover problem
is to find the smallest subcollection C ⊂ S that coversM, that is,M ⊆⋃

(C), where
⋃
(C)

denotes
⋃

Y∈C Y . We assume of course that S covers M. While the general problem is
NP-hard to solve, even approximately, here we consider some geometric special cases,
where usually U = Rd . Combining previously known techniques [4], [5], we show that
polynomial-time approximation algorithms with provable performance exist, under a certain
general condition: that for a random subset R ⊂ S and nondecreasing function f (·), there
is a decomposition of the complement U\⋃(R) into an expected at most f (|R|) regions,
each region of a particular simple form. Under this condition, a cover of size O( f (|C |))
can be found in polynomial time. Using this result, and combinatorial geometry results
implying bounding functions f (c) that are nearly linear, we obtain o(log c) approximation
algorithms for covering by fat triangles, by pseudo-disks, by a family of fat objects, and
others. Similarly, constant-factor approximations follow for similar-sized fat triangles and
fat objects, and for fat wedges. With more work, we obtain constant-factor approximation
algorithms for covering by unit cubes in R3, and for guarding an x-monotone polygonal
chain.

1. Introduction

Given a collection S of subsets of some set U, and M ⊂ U, the set cover problem is to
find the smallest subcollection C ⊂ S that covers M, that is, M ⊆ ⋃

(C). We assume

∗ A preliminary version of this paper appeared in the Proceedings of the Annual Symposium on Computa-
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that S coversM. In the geometric setting, almost alwaysU = Rd . For example,M could
be a finite set of points, and S a given finite set of balls. The family S can be specified
implicitly; an example is when S is the set of all unit balls. Another interesting example
is when M is the set of points in a simple polygon in R2, and S is the set of visibility
regions of the vertices of the polygon.

The general set cover problem is hard to solve, even approximately, and the simple
greedy algorithm has performance very close to best possible for a polynomial-time
algorithm, assuming a certain widely believed complexity theoretic assumption [17],
[25]. Even in the geometric setting, most versions of the problem are believed to be NP-
hard, and indeed NP-hardness has been shown for several versions [30], [29]. (In some
cases, hardness of approximation has been shown as well [2].) The focus of current work
is therefore on obtaining approximation algorithms that run in polynomial time. Often one
obtains a polynomial-time algorithm guaranteeing a logarithmic factor approximation
by reducing the geometric set cover problem to the combinatorial set cover problem [6],
[20], [24].

In many cases the approximation factor can be made O(log c), where c is the size of
the optimal solution. Such a result was achieved for the case of polytope approximation
in general dimension [8], by applying the iterative reweighting approach [23], [35], [9] to
an associated set cover problem. (The reduction of polytope approximation to set cover
was observed by Mitchell and Suri [31].)

Brönnimann and Goodrich [4] showed that a very similar algorithm applies in the
general setting of set systems with finite VC dimension. A key observation of theirs
was a connection with ε-nets. Consider the subset Uε ⊂ U, comprising those points
of U contained not just in one set in S, but in at least ε|S| of them. An ε-net of S
is a cover for such heavily covered points. (Thus, the set cover problem is to find the
smallest possible (1/|S|)-net for M = U.) Suppose that the family S has a (1/r)-
net of size g(r), for every r with 1 ≤ r ≤ |S|.1 The algorithm of Brönnimann and
Goodrich guarantees an approximation factor of O(g(c)/c), where c is the size |C | of
the optimal solution. For many cases where g(r) = O(r log r) [7], [18], their algorithm
gives an O(log c) approximation. Moreover, if g(r) = O(r), such as when S is a
family of disks in R2 or halfspaces in R3 [28], [26], they obtain an O(1) approximation
algorithm.

There have been a few other interesting instances where the O(log c) factor has
been improved upon. Some recent ones include an O(

√
log n) approximation factor

for covering an isothetic n-vertex polygon (with holes) using a minimum number of
rectangles contained in the polygon [22], and an O(1) approximation algorithm for
guarding an x-monotone polygonal chain [1].

Hochbaum and Maass [19] consider the problem of covering a set of points in the
plane with the smallest number of unit disks. For this and some related problems, they
present algorithms, that for any ε > 0, run in polynomial time and return a (1 + ε)-
approximation. Since any unit disk may be chosen in the cover, the problem has a different
flavor from that of covering the points using the minimum number of disks chosen from
a set of specified unit disks.

1 In fact, the requirement is somewhat stronger—that such ε-nets exist and can be computed efficiently in
a weighted setting [4].
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1.1. Our Results

We extend results giving small ε-nets for halfspaces [26] to a more general setting [11],
[5], making a connection between the combinatorial complexity of the union of a set of
objects and size of a net for the set of objects. Suppose that S is a set of objects, say trian-
gles in the plane for concreteness. Suppose that there is a bound f ( j) ≥ j on the combi-
natorial complexity of the boundary of the union of any j objects from S. (More precisely,
we need the number of simple regions in a canonical decomposition of the exterior of the
union of the j objects to be at most f ( j), and f ( j) is a nondecreasing function of j .) As
demonstrated in Theorem 2.2, there is a (1/r)-net of size O( f (r)), for every r ≤ |S|. This
is easily shown by applying a “repair” or “alteration” technique, where a random sample
is used to divide the problem into roughly small subproblems, followed by a “repair” step
in each subproblem. The approach is very similar to that of Chazelle and Friedman [5].

As noted, this implies a polynomial-time algorithm that guarantees an O( f (c)/c)
approximation factor for covering a setM of points using objects from S, where c is the
size of the optimal cover [4, Theorem 3.2]. (Note that the result is only interesting for
f (r) = o(r log|S|); otherwise the greedy algorithm could be used.)

We give several applications of this result. If S is a set of fat triangles in the plane,
then the combinatorial complexity of the union of any j elements of S is O( j log log j)
[27], and thus we obtain (1/r)-nets of size O(r log log r) for fat triangles. This implies,
as stated in Theorem 3.1, a polynomial-time algorithm for the corresponding set cover
problem, for which an approximation factor of O(log log c) is guaranteed. If the triangles
in S have roughly the same diameter, then the union of any j elements from S has a
combinatorial complexity of O( j) [27], and we obtain (1/r)-nets of size O(r) and an al-
gorithm for the corresponding set cover problem that guarantees an O(1) approximation.
There are other applications in this vein.

Such cover problems are related to wireless network planning, where the sets in
S correspond to antenna coverage areas. Prior work has sometimes approximated the
coverage areas as circular disks [12], but often such an idealized model would be far
from ideal. Thus the results for more general “fat” objects reported here are relevant.

Another problem that can be viewed as a special case of wireless network planning is
that of guarding a one-dimensional terrain. Here, the problem is to guard the region above
an x-monotone polygonal chain using the minimum number of point guards, who are
constrained to be on the chain. The problem was recently studied by Ben-Moshe et al. [1]
who presented a fairly sophisticated polynomial-time algorithm that guarantees an O(1)
approximation. We show that a different polynomial-time constant-factor approximation
algorithm can be derived quite naturally from our paradigm. The approximation result
is Theorem 3.5, and applies a generalization of the “Order Claim” of [1] to show, in
Lemma 3.4, that an associated sequence is Davenport–Schinzel.

We next consider the case where S is a set of axis-parallel unit cubes inR3. Boissonnat
et al. [3] have shown that the combinatorial complexity of the union of j such cubes is
O( j). Such a bound is however not readily available for a canonical decomposition of the
exterior of the union. We nevertheless exploit the fact that all the cubes have roughly the
same size to obtain a (1/r)-net of size O(r) and, as stated in Theorem 3.7, a polynomial
algorithm for the corresponding set cover problem that guarantees an approximation
factor of O(1).



46 K. L. Clarkson and K. Varadarajan

2. General Results

2.1. Small ε-Nets from Small 0-Region Sets

In a geometric setting, the set cover and ε-net problems often have the helpful prop-
erty that the complement of the union of a subcollection of objects can be decomposed
canonically into locally defined pieces called regions. This “object/region” framework
was introduced in [11] and [10] and is similar to the “starter/stopper” framework of Mul-
muley [32]. For completeness and clarity, we present the framework in a self-contained
manner.

Let S be a collection of n subsets of a universeU. The elements of S are called objects,
and S is the input of a geometric set cover problem. LetF be a set of subsets ofU, which
we call regions. In construction problems [11], the desired computation is usually to find
all the regions which are defined by S, and which have an empty intersection with S.
(The precise meaning of “defined” will be made clear shortly.) In geometric set cover
problems, the complement of the union of S can usually be decomposed into a union of
regions defined by S. Moreover, each of these regions is defined by a constant number b
of objects. These notions can be formalized as follows [11]: for some integer b, let S(b)

be the collection of subsets of S with at most b elements. Let δ be a relation between
F and S(b). We say that a region y in F is defined by By ∈ S(b) if FδBy . We assume
that each element of S(b) defines O(1) elements of F . The set of regions defined by S is
denoted by

F(S) = {y ∈ F | yδBy, By ∈ S(b)}.
A region y ∈ F(S) may have a non-empty intersection with some object s ∈ S,

in which case we say that s meets or conflicts with y. The regions in F(S) that are in
conflict with no object in S are called 0-regions of S, and their set is denoted by F0(S).
As in [11], we assume that regions do not conflict with objects that define them, that
is, if yδBy , then y ∩⋃

(By) = ∅. We are also interested in regions in F(S) that meet
objects in S. We say that a region in F(S) is a j -region if it meets j objects in S; the set
of j-regions of S is denoted by Fj (S).

For instance, U could be R2 and S is a set of triangles, or discs, in R2. The regions
F(S) would be (generalized) trapezoids with vertical sides and lower and upper sides
that are either segments or circular arcs, those that occur in the trapezoidal decomposition
(or vertical visibility map) of the arrangement of S′, denoted by T (S′), where S′ is any
subset of S. Each region y ∈ F is in the trapezoidal map T (X) of a subset X ⊂ S of at
most four objects [11], and so b = 4. For y ∈ F and X ∈ S(4), we set yδX if (1) y is one
of the trapezoids in T (X) and y is contained in the complement of

⋃
(X), and (2) for

no proper subset X ′ ⊂ X is y a trapezoid in T (X ′) and contained in the complement of⋃
(X ′). Hence a region y is in F(S) if and only if for some subset X ∈ S(4) it is defined

as the closed trapezoid of T (X) that is contained in the complement of
⋃
(X), minus

the boundary points that belong to X . It is a j-region if it has a nonempty intersection
with j objects in S. In particular, the regions in F0(S) are the regions in F(S) which are
entirely contained in the complement of the union of S.

As in [11], we can also define F(R) for a subset R ⊂ S as the set of regions y such
that yδBy for some By ∈ R(b), and F0(R) and Fj (R) similarly. Note that y ∈ F0(R)
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if and only if By ∈ R and no s ∈ R conflicts with y. Even though a region may be in
F0(R), it may be in Fj (S), that is, a 0-region with respect to R might be a j-region with
respect to S for some j > 0. Our assumption that each element of S(b) defines O(1)
regions implies that |F(R)| = O(|R|b).

Given a configuration system, that is, a combination of U, objects S, regions F ,
parameter b, and relation δ, we can express the regions F(R) for each R ⊆ S and the
notion of conflict. As stated, 0-regions of a set R must not intersect with objects in R. For
geometric set cover problems, it is also crucial to assume that any point inU not covered
in R is in some 0-region of R. That is, we must have U\⋃(R) = ⋃

(F0(R)). We say
that a configuration system that has this property is complete. For instance, for a set S
of triangles in R2, the semiclosed trapezoids in F0(S) do cover the entire complement
of

⋃
(S).

It sometimes happens that for some y ∈ F(S), there is more than one minimal By

that defines y. To reduce problems with such degenerate situations, one may consider the
regions not only as subsets of U, but as pairs (y, By) where By defines y. The definition
of conflict is then extended by saying that that an object s ∈ S meets or conflicts with
(y, By) not only if s∩ y is nonempty, but also if s takes precedence over a member of By ,
for tie-breaking or other reasons specific to an application. The setsF0(R) andFj (R)will
be generalized to comprise such pairs, and a pair (y, By) ∈ F0(R) if and only if By ⊆ R
and no s ∈ R conflicts with (y, By) in this broader way. Even with this generalization,
however, a complete configuration system still ensures U\⋃(R) = ⋃

(F0(R)) for any
R ⊆ S, where here

⋃
(F0(R)) is defined as

⋃
(y,By)∈F0(R)

y. We may confuse (y, By)

with y at times, but the situation should be clear in context.
The completeness property is the ingredient that enables the link between ε-nets

and the object-region framework. Several properties of the geometric set cover problem
follow from that framework. A basic property within the framework is the following
version of ε-nets, proven in the objects/regions framework [7], and also in the framework
of bounded VC dimension [18].

Lemma 2.1 (Large ε-Nets). For a given complete configuration system, there is a con-
stant K such that, for a random subset R ⊂ S of size Kr log r , with probability at least
1 − 1/r , every 0-region of R is a (≤n/r)-region with respect to S, that is, a j-region
with respect to S for some j ≤ n/r .

Since our assumption here is that a point not covered by R is in some 0-region of
R, it follows that R satisfying the condition of the lemma is an ε-net, for ε = 1/r and
|R| ≤ Kr log r . Call an ε-net under such conditions a large ε-net. (See Section 1 for the
definition of an ε-net.)

Proof. See [7]; also, since the regions here have finite VC-dimension, the similar re-
sults of [18] apply. The proof is simply the union bound, applied to every (y, By); the
probability is small that a particular j-region of S, with j ≥ n/r , is a 0-region of R, and
there are O(nb) j-regions.

We observe that Lemma 2.1 generalizes to yield a large ε-net for any subset
S′ ⊆ S.
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Using the existence of large ε-nets and the objects/regions framework, we can de-
scribe the following scheme for small ε-nets. As mentioned, these results are very similar
to those of Chazelle and Friedman [5]. To simplify some expressions, we assume that
|F0(R)| ≥ R for each R ⊆ S.

Theorem 2.2. For a given complete configuration system, let f̂ (r) := E |F0(R)|, and
f (r) := maxr ′<r f̂ (r ′), where R ⊂ S is a random subset of size r . Then given r ≥ 2b,
there is a (1/r)-net of size O( f (r)).

Proof. The construction is as follows. Pick a random subset R′ ⊂ S of size r . For each
y ∈ F0(R′), suppose there are j objects in S that meet y; denote their set by Sy , and let
j ′ = (r/n) j . If j ′ < 1, let Ry := ∅; otherwise, let Ry be a large (1/j ′)-net for Sy . Such
an Ry will have size at most K j ′ log j ′. Then R := R′ ∪ (⋃y∈F0(R)

Ry) is a (1/r)-net
for S, by construction. Indeed, any point p not covered by R is not covered by R′ either,
and so belongs to some 0-region y ∈ F0(R′) since the configuration system is complete.
Any object s that contains p must meet y, and so belong to Sy . However, p also cannot
be covered by Ry by construction of R, and by the (1/j ′)-net property of Ry , there can
be at most ( j ′n/r)/j ′ = n/r objects containing p.

The expected size of R is at most r +∑
y∈F0(R′) K j ′ log j ′, and the latter term can

be bounded using Theorem 3.6 of [11] with c = 2. For the work of W (
( j

2

)
) of that

theorem, with j = j ′n/r , to be at least K j ′ log j ′, it suffices to take W (x) to be
4K (r/n)

√
x log(x(r2/n2)). Theorem 3.6 of [11] then implies that

E[|R|]− r ≤ E
∑

y∈F0(R′)

K j ′ log j ′ ≤ E
∑

y∈F0(R′)

W

((
j

2

))

≤ O

(
W

(
n2

(r − b)2
K2,b

))
f̂ (r),

with b constant. The term K2,b = E[|F2(R′)|]/E[|F0(R′)|] of the theorem is no more
than K ′ f̂ (αr)/ f̂ (r), for a constant K ′ and a value α ≤ 1, by virtue of Theorem 3.2 of

[11]. Hence the expected size of R is r + O(
√

f̂ (αr) f̂ (r)) = O( f (r)).

Computation of ε-Nets. We note that the proof of Theorem 2.2 suggests a natural
randomized algorithm to compute a net. In order to bound the running time of such
an algorithm in our general framework, however, we state some assumptions about
the primitives that are available to us. These assumptions hold for all the applications
in this paper. To simplify some of the expressions below, we assume that |F0(R)| ≤
O(|R| log|R|). In any case, it is only when this assumption holds that our approach
gives improved bounds for geometric set cover. We assume that for any R ⊆ S, we
can compute the set F0(R) of 0-regions in O(|R|2 log|R|) primitive steps. The running
time of a primitive step depends on the application—usually, it is O(1), but in some
applications it is larger. We also assume that given a region y ∈ F(S) and an object
s ∈ S, we can tell in one primitive step if s meets y.
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Lemma 2.3. For any S′ ⊆ S and 1 ≤ r ≤ |S′|, we can compute in O(|S′|r log2 r)
expected primitive steps a subset R ⊆ S′ of size at most Kr log r such that every 0-region
of R is a (≤ |S′|/r)-region with respect to S′.

Proof. We use the natural algorithm corresponding to Lemma 2.1. We pick a random
subset R ⊆ S′ of size Kr log r in O(r log r) time. We computeF0(R) in O(r2 log3 r) =
O(|S′|r log2 r) primitive steps. For each y ∈ F0(R), we compute S′y in O(|S′|) primitive
steps, where S′y is the set of regions in S′ that meet y. If |S′y | ≤ |S′|/r for each y ∈ F0(R),
we stop. Otherwise, we repeat these steps with a new random sample.

It is clear that when the algorithm terminates, it does so with an R as required by the
lemma. Each iteration of the algorithm takes O(|S′|r log2 r) primitive steps. By Lemma
2.1, the expected number of iterations is 1+ O(1/r).

We are now ready to derive the algorithmic equivalent of Theorem 2.2.

Theorem 2.4. For a given complete configuration system, and 1 ≤ r ≤ n, we can
compute a (1/r)-net of size O( f (r)) for S in O(nr log r) primitive steps.

Proof. Following the proof and notation of Theorem 2.2, we pick a random sample
R′ ⊆ S of size r in O(r) time. We compute F0(R′) in O(r2 log r) primitive steps.
For each y ∈ F0(R′) we compute the set Sy using O(n) primitive steps. This gives
a total of O(nr log r) primitive steps over all the 0-regions. Using Lemma 2.3, we
compute a large (1/j ′)-net for each Sy in expected O((n/r) j ′2 log2 j ′) primitive steps.
The expected number of steps over all y ∈ F0(R′) is (n/r)

∑
y∈F0(R′) j ′2 log2 j ′. Arguing

as in Theorem 2.2 (with c = 3), we can bound this by O(nf (r)/r) = O(n log r).
We now check if |R| is within twice the bound on E[|R|] that is guaranteed by the

proof of Theorem 2.2. By Markov’s inequality, the probability of this is at least 1/2. If
|R| is too high, we repeat the entire process; otherwise we terminate with R.

Since the probability of termination is at least 1/2 in each iteration, the expected
number of iterations is O(1). The expected number of steps in each iteration is bounded
by O(nr log r).

We will need a version of this theorem that applies to the weighted setting. Suppose
that each object s ∈ S has an integer weight ws ≥ 1, and let W =∑

s∈S ws . An ε-net in
this context is a subset R ⊆ S that covers every point p ∈ U that is covered by a subset of
S whose total weight is at least εW . To generalize Theorem 2.4 to this context, we may
simply make ws “copies” of each object s ∈ S, and extend the conflict relation with tie-
breaking to allow at most one copy to contribute to the definition of a region. Applying
Theorem 2.4 to the resulting configuration system gives a (1/r)-net of size O( f (r)). We
will only need to consider the case where each ws ≤ n4. With some care, the expected
number of primitive steps of the generalized algorithm still remains O(nr log r). (We do
not actually make many copies of each object in the computation, but just keep track of
the weights.)
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2.2. Small Covers from Small ε-Nets

We return to the geometric set cover problem where we want to cover a target setM ⊆ U
using subsets of objects from S. We need access to a subroutine, called a verifier, that
given a potential cover R ⊆ S, tells us whether R covers M; if R does not cover M, it
returns an uncovered point p ∈M along with the objects in S that contain p.

Theorem 2.5. For a given complete configuration system, with f (r) as in the last
theorem, suppose there is a cover C ⊂ S of size c for subset M ⊂ U . Then a cover of
M of size O( f (4c)) can be found in expected O(nc2 log n log c) primitive steps plus the
time needed for O(c log n) calls to the verifier that provide the verifier with potential
covers of size O(c log c).

(Note that for particular instances a stronger time bound can be obtained.)

Proof. Brönnimann and Goodrich [4, Theorem 3.2] show that a cover of size O( f (4c))
can be found by O(c log n) calls to a procedure that computes a (1/r)-net of S of size
O( f (r)) for r ≤ 4c (the weight ws of each s ∈ S in each of these calls is an integer
between 1 and n4), and O(c log n) calls to a verifier (each call to the verifier gives it a
potential cover of size at most O( f (c)) = O(c log c)). The theorem follows by using
the algorithm of Theorem 2.4, generalized to the weighted setting, for computing the
(1/r)-net.

In the algorithm given by Brönnimann and Goodrich, ε-nets are found many times,
for slightly different sets of weights. If we only desire polynomial running time, an
alternative approach is to solve the linear programming relaxation, and find a single
ε-net, as discussed by Even et al. [16].

3. Applications

3.1. Covering by Fat Triangles or Regions

Our first applications of the general results follow fairly directly from existing combi-
natorial bounds and the low complexity of trapezoidal decompositions in the plane.

Theorem 3.1. There is a randomized O((n + m)c2 log n log c)-time algorithm that,
given a setM of m points in R2, and a set S of n fat triangles that coverM, computes a
subset S′ ⊆ S of O(c log log c) triangles that coverM, where c is the size of the smallest
subset of S that covers M. If in addition the diameter of the triangles in S are in the
range [1, α], where α ≥ 1 is a constant, we can in fact compute a cover of size O(c).

Proof. (Sketch) It is long known that the union of r fat triangles has combinatorial
complexity O(r log log r). (See [27], which also gives a definition of fatness.) The same
bound applies to the canonical trapezoidal decomposition of the complement of their
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union [32]. We can then apply Theorem 2.2 with these trapezoids as the regions, and
obtain a (1/r)-net of size O( f (r)) = O(r log log r). For the primitives needed for the
computation in Theorem 2.4, we note that the union of r fat triangles can be computed
in O(r log r log log r) time [27, Theorem 5.1]. The same time bound holds for the trape-
zoidal decomposition of the exterior of the union [32]. Furthermore, given a trapezoidal
region and a triangle, we can determine if they conflict in O(1) time. We may therefore
assume that each primitive step takes one unit of time. As for the verifier needed by
Theorem 2.5, we check if M is covered by R ⊆ S in O(m|R|) by checking each point
in M against each triangle in R; if we find that some p ∈ M is not covered, we return
the list of all triangles in S that contain p in additional O(n) time. The verifier therefore
runs in O(m|R| + n) time. The running time claimed in the theorem now follows from
Theorem 2.5.

Similar remarks apply for fat triangles of approximately the same size, relying on the
sharper bounds known for the complexity of their union [27].

Theorem 3.2. There is a randomized O((n + m)c2 log n log c)-time algorithm that,
given a setM of m points in R2 and a set S of n (α, β)-fat objects of approximately the
same size that covers M, computes a subset S′ ⊆ S of size O(λs+2(c)) that covers M,
where c is the size of the smallest subset of S that covers M. Here s is the maximum
number of intersections between the boundaries of two objects in S.

The quantity λs+2(n), related to the complexity of Davenport–Schinzel sequences
[34], is a very-nearly linear function of n.

Proof (Sketch). We use a result of Efrat [14] that the combinatorial complexity of the
boundary of the union of k such fat objects is O(λs+2(k)), and proceed as in the case of
triangles. We assume that each primitive step takes constant time, and that we can check
whether an object contains a point in constant time.

We note also the following (using the brief unpublished summary of Sharir [33]).
Here a Jordan region is a planar region bounded by a closed Jordan curve.

• Pseudo-disks. Pseudo-disks are Jordan regions where each pair of bounding Jordan
curves intersects at most twice. The union of r such regions has no more than 6r−12
such intersection points on its boundary [21], and therefore its trapezoidization has
O(r) complexity, implying a constant-factor approximation algorithm.
• Jordan curves. A union complexity of O(nα(n)) is known for a collection of

regions that are each the intersection of a Jordan region with the nonnegative y
halfplane, with also each pair of bounding curves intersecting at most three times,
and not counting intersections on the x-axis [13]. This implies an O(α(c))-factor
approximation algorithm.
• Fat wedges. An arrangement of r fat wedges has O(r) complexity [15], and so a

constant-factor approximation algorithm.
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3.2. Guarding a Monotone Polygonal Chain

Let P be an x-monotone polygonal chain in R2 with m vertices. Let G := {g1, . . . , gn}
be a set of points, which we call guards, on P . Say that a guard g lying on polygonal
chain P sees a point p if the line segment gp does not intersect the region in R2 that is
strictly below P .

Consider the setMP of points in R2 that are on or above P . For g ∈ G, let Vis(g) :=
{p ∈ R2 | g sees p}, the visibility polygon of g, be the set of all points seen by
g. The problem of guarding P is that of covering the set MP by a small subset of
S := {Vis(g) | g ∈ G}. (We assume that S itself coversMP .) For S′ ⊆ S, the complement
of the region covered by S′ is the area between P and the lower envelope of the visibility
polygons in S′. Each point on the x-axis has some corresponding point on the lower
envelope with the same x-coordinate, perhaps at infinity. It will be helpful, for showing
the existence of a low-complexity, locally defined description of the lower envelope, to
consider visibility from the left or right separately. It will also be helpful to break ties
among the guards determining the lower envelope at a given x coordinate.

Complexity of the Lower Envelope. Say that g sees p from the left if g sees p and
x(g) ≤ x(p), where x(p) is the x-coordinate of point p; define visibility from the right
analogously. For g ∈ G, let Lvis(g) := {p ∈ R2 | g sees p from the left}, the set of
points that g sees from the left. Let SL := {Lvis(g) | g ∈ G}.

Fix some subsetH ⊆ G. For guard g ∈ H and point p say that g owns p from the left
(relative toH) if g sees p from the left, and is the leftmost guard inH that sees p. For the
next few paragraphs, the “from the left” condition is assumed and not stated explicitly.

In other words, the space above P is partitioned by ownership, each point with its
owner. Referring to Fig. 1, the ownership regions of the guards in H = {a, b, c, d, e}
are shown, omitting some of unbounded regions owned by a and d.

If g ∈ H owns point p, and also p is the lowest point at x-coordinate x(p) owned by
any guard inH, say that g owns x(p) at p. If some x-coordinate x is owned by no point
inH, say that x has the owner NULL.

Figure 1 also shows the ownership diagram of a set of guards H ⊆ G, with respect
to P . (This is for ownership from the left, but similar definitions and claims apply for
ownership from the right.) The (left) ownership diagram is the partition of the x axis
obtained from the connected components of each equivalence class of the relation “x

Fig. 1. Ownership regions.
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Fig. 2. Example for Lemma 3.3.

and x ′ have the same owner.” Such components are intervals (or single points), and so
this diagram is a sequence of intervals, each with one owner. Call the corresponding
sequence of owners, but excluding NULL, the ownership sequence for H. A key claim
for a bound on the length of this sequence is the following, a slight generalization of
Lemma 2.1 of [1].

Lemma 3.3. Suppose a, b ∈ H ⊂ G and x, x ′ ∈ R have x(a) < x(b) < x < x ′.
Suppose also a owns x (relative toH) at a point p, and p′ = (x ′, y′) is seen by b. Then
p′ is seen by a also.

Proof. (See Fig. 2. Note that in the figure, a owns x(p) at p, even though p is not on
P .) Since a owns x at p, a sees p, and so P is not above line segment ap. Since b is on P
and between a and p, b in particular is not above ap. Similarly, P is not above segment
bp′. Also p is not above bp′: if p were above bp′, it would be seen by b, and since P
is not above bp′, b would also see some point below p, but with the same x coordinate,
contradicting the assumption that a owns x at p. So b and P are not above ap, and p
and P are not above bp′. Therefore a sees p′, as claimed.

Lemma 3.4. An ownership sequence for any setH of r guards is an (r, 2)Davenport–
Schinzel sequence, and therefore has length at most 2r − 1. It follows that the number
of ownership intervals is no more than 2r .

Proof. An (r, 2) Davenport–Schinzel sequence [34] is a sequence of r symbols with
no successive entries identical, and with no subsequence of the form a · · · b · · · a · · · b.
Consider a, b ∈ H, and first suppose that x(a) < x(b), as in the previous theorem. It
may be that a owns intervals before b (with a smaller x coordinate than x(b)), and it may
be that b owns some intervals to its right, but if a owns some x-coordinate at point p,
strictly to the right of b, then from the previous lemma, any point p′ with x(p′) > x(p)
seen by b is also seen by a. Since x(a) < x(b), such a coordinate would be owned by a
if either a or b owns it, and so could not be owned by b. Therefore, there is no ownership
sequence of the form a · · · b · · · a · · · b. A similar argument works if x(b) < x(a), and
thus the first claim of the lemma follows. The length bound for such sequences is long
known [34]. The final claim follows because there is at most one interval with owner
NULL; this is the interval to the left of all the guards inH.
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Guarding in the Objects/Regions Framework. We employ Theorem 2.4 to compute
a (1/r)-net for the set SL of size O(r). (Recall that such a net is a subset S′ ⊂ SL

such that any point belonging to more than |SL |/r sets from SL also belongs to some
set in S′.) In order to apply the theorem, we indicate explicitly how the configurations
and conflicts are defined. There is a configuration corresponding to every interval in
the ownership diagram for subsets of G of size at most 3. Consider an interval I in
the ownership diagram of {a, b, c} ⊂ G, and suppose b owns each x ∈ I , a owns the
interval immediately to the left of I , and c owns the interval immediately to the right of
I .2 The set {a, b, c} defines this configuration. (The region of this configuration is the
set {(x, y) | x ∈ I, (x, y) �∈ Lvis(b)}.) A guard d ∈ G\{a, b, c} can conflict with this
configuration in two ways:

1. Relative to the set {a, b, c, d}, d rather than b owns some point x ′ ∈ I . This of
course happens if d sees some point with x-coordinate x ′ that lies below the point
p at which b owns x ′ with respect to {a, b, c}. Note that this also happens if d sees
p and x(d) < x(b).

2. Relative to the set {a, b, c, d}, b continues to own all points in I but the interval
immediately to the left of I is owned by d and not a. Because of the way we break
ties in defining ownership, this is not a pathological situation at all. A conflict
also occurs if d owns the interval immediately to the right of I in the ownership
diagram of {a, b, c, d}.

With these definitions, observe that the size of F0(H), for any subset H ⊂ G, is
exactly equal to the number of intervals in the ownership diagram ofH, which is O(|H|)
by Lemma 3.4. We can therefore use Theorem 2.2 to obtain a (1/r)-net for SL of size
O( f (r)) = O(r). For the computation in Theorem 2.4, we first consider the complexity
of computing the 0-regions for a setH of r guards. Clearly, it is enough to compute the
ownership diagram ofH. This can be done using a standard divide-and-conquer [34]—
we partitionH into two sets of roughly equal size, and recursively compute the respective
ownership diagrams. In the merge step we overlay the two diagrams to obtain a parti-
tion of the x-axis into O(|H|) intervals. Within each such interval, we have to resolve
ownership between two guards. This is easily seen to require O(m) time per interval,
since the visibility polygon of any guard consists of O(m) edges. The running time of
the overall algorithm is therefore O(mr). To determine whether a guard conflicts with a
configuration, it is sufficient to compute the ownership diagram of at most four guards,
which takes O(m) time. We can therefore assume that each primitive step takes O(m)
time. Theorem 2.4 then gives us an algorithm to compute a (1/r)-net of size O(r) in
O(nmr log r) time.

We define SR in a manner symmetric to SL , and note that the union of a (1/2r)-net
for SL and a (1/2r)-net for SR is a (1/r)-net for S. For the verifier in Theorem 2.5, we
have to determine if a set H of r guards sees MP . For this, we compute the ownership
diagram of S′L = {Lvis(h) | h ∈ H} (resp. S′R) in O(mr) time as described above. We
then compute a set I (resp. I ′) of O(mr) intervals on the x-axis that correspond to those
portions of P that are not in

⋃
(S′L) (resp.

⋃
(S′R)). We then check if

⋃
(I) ∩⋃

(I ′) is

2 If a itself owns the interval immediately to the right of I , then such a configuration would be considered
to be defined by the subset {a, b}.
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empty in O(mr) time. If it is empty, thenH seesMP . Otherwise, we have a point p on
P that is not seen by H. We can then generate the list of guards in G that do not see p
in O(nm) time. The running time of the verifier is O(nm + mr).

Applying Theorem 2.5, we obtain:

Theorem 3.5. Let P be an x-monotone polygonal chain in R2 with m vertices. Let
G := {g1, . . . , gn} ⊂ R2 be guards on P , such that MP is seen by G. Then a subset
C ⊂ G that also sees MP , of size within O(1) of optimal, can be found in randomized
O(nmc2 log n log c) time.

3.3. Covering with Cubes

We now consider the set cover problem whereM is a set of m points in R3 and S is a set
of n axis-parallel unit cubes in R3 that cover M. We first show that for any 1 ≤ r ≤ n,
there is a (1/r)-net for S of size O(r), by applying Theorem 2.2. That is, there is a subset
T ⊆ S with |T | = O(r) such that any point that is contained in at least n/r cubes from
S is also contained in some cube from T . We also present a randomized polynomial-time
algorithm to compute such a (1/r)-net, by applying Theorem 2.4.

Let G be the vertices of a grid in R3 of side 1
2 . That is,

G := {(i/2, j/2, k/2) | i, j, k, are integers}.
We “assign” each cube C ∈ S to some point in G that lies in the interior of C . (Note

that there is always at least one such point.) Let S[p] ⊆ S denote the set of cubes assigned
to the point p ∈ G. For each p ∈ G such that |S[p]| ≥ n/αr , where α > 0 is a suitably
large constant, we compute a (n/αr |S[p]|)-net T [p] for S[p] of size O(|S[p]|αr/n)
using the procedure described below. Let

T :=
⋃

p∈G;|S[p]|≥n/αr

T [p].

Clearly,

|T | ≤
∑
p∈G

O

( |S[p]|αr

n

)
= O(αr).

We argue that T is a (1/r)-net for S. Let q ∈ R3 be any point that is covered by at least
n/r cubes from S. Consider the cube E of side length 2 that is centered at q. Each cube
in S that contains q is contained in E , so it must have been assigned to one of the at most
α points in G ∩ E . It follows that there is a point p ∈ G ∩ E such that S[p] has at least
n/αr cubes that contain q . Thus T [p], and hence T , will have a cube that contains q.

A Net for a Cluster. We now consider the computation of a (1/r)-net, for any 1 ≤ r ≤
|S[p]|, for a “cluster” S[p]. The special property of S[p] is that there is a point, namely
p, that lies in the interior of all the cubes in S[p]. For any nonempty subset S′ ⊆ S[p], we
define a canonical trapezoidization of the boundary of the union of the cubes in S′. This
is obtained by taking, for each face of each cube in S′, a canonical trapezoidization of
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the (isothetic polygon corresponding to the) portion of the face that lies on the boundary
of the union of S′. Let �(S′) denote the canonical set of trapezoids thus obtained.

Proposition 3.6. For any subset S′ ⊆ S[p], |�(S′)| = O(|S′|).

Proof. Boissonnat et al. [3] show that the combinatorial complexity of the boundary
of the union of cubes in S′ is O(|S′|). The proposition follows because �(S′) is linearly
bounded by the combinatorial complexity of the boundary of the union of S′.

We define the “region” µτ corresponding to the trapezoid τ ∈ �(S′) to be the set of
all points q ∈ R3 for which τ intersects the segment qp in the relative interior of the
segment. It is easy to see, using the fact that p lies in the interior of all the cubes in S[p],
that the regions {µτ | τ ∈ �(S′)} partition the exterior of the union of the cubes in S′.
The sets that define and conflict with a region µτ are defined in the standard way: a cube
C ∈ S[p] will conflict with µτ if C contains a point in µτ . Since |F0(S′)| = O(|S′|),
we can apply Theorem 2.2 to obtain a (1/r)-net for S[p] of size O( f (r)) = O(r). For
the primitives needed for the computation in Theorem 2.4, we first note that the union
of a set S′ ⊆ S[p] of r cubes can be computed in O(r2 log r) time: we compute the
complement of

⋃
(S′) within each face of each cube in S′ in O(r log r) time using a

divide-and-conquer algorithm similar to the one used for the union of fat triangles [27,
Theorem 5.1]. Having computed

⋃
(S′), we can compute �(S′) in O(r log r) time. We

thus obtain F0(S′) = {µτ | τ ∈ �(S′)} in O(r2 log r) time. Clearly, we can check if a
0-region intersects a cube in O(1) time. We may therefore assume that each primitive
step takes one unit of time. Putting everything together, and applying Theorem 2.4, we
see that a (1/r)-net for S of size O(r) can be computed in O(nr log r) time.

As for the verifier needed by Theorem 2.5, we check if M is covered by R ⊆ S in
O(m|R|) by checking each point in M against each cube in R; if we find that some
p ∈ M is not covered, we return the list of all cubes in S that contain p in additional
O(n) time. The verifier therefore runs in O(m|R| + n) time. Applying Theorem 2.5, we
obtain:

Theorem 3.7. There is a randomized O((n + m)c2 log n log c)-time algorithm that,
given a set M ⊆ R3 of m points and a set S of n axis-parallel unit cubes in R3 that
cover M, computes a subset T ⊆ S of O(c) cubes that cover M, where c is the size of
the smallest subset of cubes from S that coversM.

We remark that the problem of covering a given set of points by the smallest number
of axis-parallel unit cubes, where we are allowed to pick any axis-parallel unit cube in
our cover, admits a polynomial-time approximation scheme [19].

4. Conclusion

We have presented a method for obtaining polynomial-time algorithms with improved
approximation guarantees for a variety of geometric set cover problems. We have also
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demonstrated that the running times of the algorithms are quite reasonable, that is,
bounded by polynomials of low degree. However, we did not attempt to obtain the best
possible running times. In fact, the running times for most of the applications considered
here can probably be improved by a factor of c (the size of the optimal cover) using
existing techniques: the application of randomized incremental construction should allow
such an improvement for the construction of small ε-nets, and the use of preprocessing
for point location would allow similar improvement for the verifier of a cover.

It is worth exploring other versions of the geometric set cover problem where better
approximation guarantees can be obtained via improved bounds on ε-nets. Our work
also highlights the need for a deeper understanding of the connection between bounds
on the union and the size of ε-nets.

We close with a natural open problem, which is to obtain polynomial-time approxi-
mation algorithms with a sublogarithmic guarantee for the geometric set cover problem
whereM is a set of m points in R3, and S is a set of n unit balls whose union coversM.
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6. V. Chvátal. A greedy heuristic for the set-covering problem. Math. Oper. Res., 4:233–235, 1979.
7. K. L. Clarkson. New applications of random sampling in computational geometry. Discrete Comput.

Geom., 2:195–222, 1987.
8. K. L. Clarkson. Algorithms for polytope covering and approximation. In Proc. 3rd Workshop on Algorithms

and Data Structures, pages 246–252. Volume 709 of Lecture Notes in Computer Science. Springer-Verlag,
Berlin, 1993.

9. K. L. Clarkson. Las Vegas algorithms for linear and integer programming when the dimension is small.
J. ACM, 42(2):488–499, 1995.

10. K. L. Clarkson, K. Mehlhorn, and R. Seidel. Four results on randomized incremental constructions.
Comput. Geom. Theory Applic., 3:185–121, 1993.

11. K. L. Clarkson and P. Shor. Applications of random sampling in computational geometry, II. Discrete
Comput. Geom., 4:387–421, 1989.
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