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Abstract

In the job shop scheduling problem we are given m machines and n jobs; a job
consists of a sequence of operations, each of which must be processed on a specified
machine, and the aim is to complete all jobs as quickly as possible. This problem is
strongly N'P-hard even for very restrictive special cases. We give the first randomized
and deterministic polynomial-time algorithms that yield polylogarithmic approxima-
tions to the optimal length schedule. Specifically, if Cy,,, is the length of the optimal
schedule, and Mmmyay is the maximum number of operations in a job, we give a ran-

domized algorithm that produces a schedule of length O(El)zil%f)g”'fr—:‘:—ﬁycl’;ax), and a

deterministic algorithm that yields a schedule of length O(log?(m - Mmax) Chax)- Our
algorithms also work in the more general case where a job is given not a linear or-
dering of the machines on which it must be processed but an arbitrary partial order.
Comparable bounds can also be obtained when there are m' types of machines, and
each operation must be processed on one of the machines of a specified type.
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by the Cornell Computational Optimization Project, and by DARPA Contract N00014-89-J-1988. Joel Wein is
also supported by an ARO graduate fellowship.



1 Introduction

In the job shop scheduling problem we are given m machines and n jobs. A job consists of a
sequence of operations, each of which must be processed on a specified machine; there may be
more than one operation on a given machine. The operations of a job must be processed in the
order specified by the sequence, subject to the constraint that on each machine, at most one
job is scheduled at any point in time. We wish to produce a schedule of jobs on machines that
minimizes Crax, the time when all jobs have completed processing. This problem is strongly N'P-
hard; furthermore, except for the cases when there are two jobs or when there are two machines
and each job has at most two operations, essentially all special cases of this problem are A'"P-hard,
and typically strongly N'P-hard [5] [6]. For example, it is A"P-hard even if there are 3 machines,
3 jobs and each operation is of unit length; note that in this case we can think of the input length
as the maximum number of operations in a job, Mmax. In addition to these theoretical results,
the job shop problem is also one of the most notoriously difficult NP-hard optimization problems
in terms of practical computation, with even very small instances being difficult to solve exactly.
A classic single instance of this problem involving only 10 jobs, 10 machines and 100 operations
which was published in 1963, remained unsolved for 23 years despite repeated attempts to find
an optimal solution [6)].

In this paper we will focus on obtaining approximation algorithms for the job shop problem,
and will evaluate these algorithms in terms of their performance guarantee, or in other words, their
worst-case relative error. Let C%,, be the value of Crax in the optimal solution. If a polynomial-
time algorithm always delivers a solution of maximum completion time at most pC} x> then we
shall call it a p-approximation algorithm. The main result of this paper is the first randomized
polylogarithmic approximation algorithm for job shop scheduling.

Theorem 1.1 There exists a polynomial-time randomized algorithm for job shop scheduling, that,
with high probability, yields a schedule that is of length at most O(Fﬁ%;"—;%C;u).

We formally define the job shop problem as follows. We are given a set M={M,M,,...,Mn}
of machines, a set 7 = {Ji,...,Jn} of jobs, and a set O = {0l = 1,...,mj,j=1,...,n} of
operations. Thus m is the number of machines, n is the number of jobs, m; is the number of
operations of job J;, and mmax = max; m;. Oj is the ith operation of Jj; it requires processing
time on a given machine p;; € M for an uninterrupted period of a given length p;;. (In other
words, this is a non-preemptive model; if operations may be interrupted and resumed at a later
time, this is called a preemptive model.) Each machine can process at most one operation at a
time, and each job may be processed by at most one machine at a time. If the completion time
of operation O;; is denoted by Cjj, then the objective is to produce a schedule that minimizes
the maximum completion time, Cray = max; j Cij; the optimal value is denoted by CJ, .-

Note that there are two very easy lower bounds on the length of an optimum schedule.
Since each job must be processed, CJ,, must be at least the maximum total length of any job,
maxj; 3, pij, which we shall call the mazimum job length of the instance, Ilnax- Furthermore,
each machine must process all of its operations, and so Cj,,, must be at least maxs, 3, ;=k Pis>
which we will call the mazimum machine load of the instance, Ppax.

Our work is based on two very different approaches to the job shop problem. One approach
is a geometric approach to shop scheduling, while the other is a randomized approach that finds
its genesis in problems of packet routing. We briefly review both approaches here.

The best approximation algorithms to date for job shop scheduling have primarily appeared
in the Soviet literature and are based on a beautiful connection to geometric arguments. This



approach was independently discovered by Belov and Stolin [2] and Sevast’yanov [11] as well as
by Fiala [3]. This approach typically produces schedules for which the length can be bounded
by Pmax + 4(M, Mmax)Pmax, Where g(-,-) is a polynomial, and pmax = maxi; pij is the maximum
operation length. For the job shop problem, Sevast’yanov [12] gave a polynomial-time algorithm
that delivered a schedule of length at most Pyax + O(m3 ,xM?)Pmax- The bounds obtained in
this way do not give good worst-case relative error bounds, and even for the special case of the
flow shop problem, where each job has a single operation on each machine and for each job the
operations must be done in the same order, the best known algorithms delivered solutions of
length Q(mC.,)-

Tn a different vein, Leighton, Maggs and Rao [7] have proposed the following model for the
routing of packets in a network: find paths for the packets and then schedule the transmission
of the packets along these paths so that no two packets traverse the same edge simultaneously.
The primary objective is to minimize the time by which all packets have been delivered to their
destination.

It is easy to see that the problem considered by Leighton, Maggs and Rao is simply the job
shop scheduling problem with each processing time p;; = 1. They also added the restriction that
each path does not traverse any edge more than once, or in scheduling terminology, each job
has at most one operation on each machine. This restriction of the job shop problem remains
(strongly) N'P-hard. The main result of Leighton, Maggs and Rao was to show that for their
special case of the job shop problem, there always exists a schedule of length O(Pmax + Mmax)-
Unfortunately, this is not an algorithmic result, as it relies on a nonconstructive probabilistic
argument based on the Lovész Local Lemma. They also obtained a randomized algorithm that
delivers a schedule of length O(Pmax + IImaxlog ), with high probability. In this paper, we will
show how their techniques can be generalized to handle the general job shop problem, as well as
several related scheduling problems.

We also give a deterministic version of the job shop scheduling algorithm.

Theorem 1.2 There exists a deterministic polynomial-time algorithm for job shop scheduling which
finds a schedule of length O(log?(m - Mmax)Chhax)-

This is the first polylogarithmic performance guarantee for a deterministic polynomial-time
approximation algorithm for either job shop scheduling or for the special case of flow shop schedul-
ing. Note that if each job must be processed on each machine at most once, the myay factor can
be deleted for this, and all other performance guarantees in this paper. As a corollary, we also
obtain a deterministic version of the randomized algorithm of Leighton, Maggs and Rao. Our
results rely on results of Raghavan and Thompson [10] and Raghavan [8] to approximate certain
integer packing problems.

In contrast to this, the only “negative” result known for any shop scheduling problem is that
the existence of a fully polynomial approximation scheme would imply that P = NP, due to the
fact that these problems are strongly N P-hard.

Our techniques can also be made to apply to two important generalizations of the job shop
problem. The first is dag scheduling, where each job consists of a set of operations on different
machines which must be processed in an order consistent with a particular partial order. (For
job shop scheduling, this partial order is always a chain, while for flow shop the partial order
is the same chain for all jobs.) One can further generalize the problem to the situation where,
rather than having m different machines, there are m’ types of machines, and for each type,
there are a specified number of identical machines; each operation, rather than being assigned to
one machine, may be processed on any machine of the appropriate type. These problems have
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significant practical importance, since in real-world shops we would expect that a job need not
follow a strict total order and that the shop would have more than one copy of many of their
machines.

Finally, we give some extensions to these results, including RNC approximation algorithms
for all the scheduling models mentioned above, and a (2 + €)-approximation algorithm for job
shop scheduling with a fixed number of machines.

While all of the algorithms that we give are polynomial-time, they are all rather inefficient.
Most rely on the algorithms of Sevast’yanov; for example, his algorithm for job shop scheduling
takes O(m2m2,, n?) time. Furthermore, the deterministic versions rely on linear programming.
As a result, we will not refer explicitly to running times throughout the remainder of this paper.

2 The Basic Algorithm

In this section we extend the technique due to Leighton, Maggs and Rao [7] of assigning random
delays to jobs to the general case of non-preemptive job shop scheduling.

A valid schedule assigns at most one job to a particular machine at any time, and schedules
each job on at most one machine at any time. Our approach will be to first create a schedule
that obeys only the second constraint, and then build from this a schedule that satisfies both
constraints and is not much longer. The outline of the strategy follows:

1. Define the oblivious schedule, where each job starts running at time 0 and runs continuously
until all of its operations have been completed. This schedule is of length IImax, but there
may be times when more than one job is assigned to a particular machine.

2. Perturb this schedule by delaying the start of the first operation of each job by a random
integral amount chosen uniformly in [0, Ppax]. The resulting schedule, with high probability,

has no more than O(ﬁ'ﬂﬂ%ﬂ‘%) jobs assigned to any machine at any time.
* max

3. “Spread” this schedule so that at each point in time all operations currently being processed
have the same size, and then “flatten” this into a schedule that has at most one job per
machine at any time.

This strategy is very similar to the one used by Leighton, Maggs and Rao for the special case
of unit-length operations. Whereas Step 2 differs in only a few technical details, the essential
difficulty in obtaining the generalization is in Step 3. For the analysis of Step 2, we assume that
Pmax is bounded above by a polynomial in n and Mmay; in the next section we will show how to
remove this assumption. As is usually the case, we assume that n > m; analogous bounds can
be obtained when this is not true.

Lemma 2.1 Given a job shop instance in which pmax is bounded above by a polynomial in n and
Mmax, the strategy of delaying each job an initial integral amount chosen randomly and uniformly
from [0, Pmax] and then processing the jobs in sequence will yield a schedule that is of length at most
Prax _+ IIma.x and, witi'1 high. probability, has no more than O(%) jobs scheduled on any
machine during any unit of time.

Proof: Fix a time ¢t and a machine M;; consider p = Prob[at least 7 units of processing are
scheduled on machine ¢ at time t]. There are at most (P “;"‘) ways to choose T units of processing
from all those required on M;. The probability that a particular one of those 7 units is on



machine M; at time ¢ is at most ’P—' since there are Po.x different places it might be at time
t and at most one is on M;. If all 7 units are from different jobs then the probability that they
are all on M; at time ¢ is at most (P——)’ since the delays are chosen independently. Otherwise,

the probability that all 7 are there is 0, since it is impossible. Therefore p < (P m"‘)(m)’ <
(eBmax )7 (=)™ < (£)7

max

Ifr= kﬁ%ﬁb then p < (7 - Mmax)~*~1. To bound the probability that any machine

at any time has more than k OIOﬁ) ; ;":‘1"" jobs using it, multiply p by Imax + Pmax for the number

of time units in the schedule, and by m for the number of machines. Since we have assumed
that pmax is bounded by a polynomial in n and Mmpyax, Hmax + Poax is as well; choosing k large
enough yields that, with high probability, no more than log(n-mmax)  35hs are scheduled for any

loglog{n-mmax
machine during any unit of time. u

In the special case of unit-length operations treated by Leighton, Maggs and Rao, a schedule
S of length L that has at most ¢ jobs scheduled on any machine at any unit of time can trivially
be “flattened” into a valid schedule of length ¢- L by replacing one unit of §’s time with ¢ units of
time in which we run each of the jobs that was scheduled for that time unit. (See Figure 1. ) For
preemptive job shop scheduling, where the processing of an operation may be interrupted, each
unit of an operation can be treated as a unit-length operation and a schedule that has multiple
operations scheduled simultaneously on a machine can easily be flattened into a valid schedule.
This is not possible for non-preemptive job shop scheduling, and in fact it seems to be more
difficult to flatten the schedule in this case. We give an algorithm that takes a schedule of length
L with at most ¢ operations scheduled on one machine at any time and produces a schedule of
length O(Lclog pmax)-

Lemma 2.2 Given a schedule Sy of length L that has at most ¢ jobs scheduled on one machine
during any unit of time, there exists a polynomial-time algorithm that produces a valid schedule of
length O(Lclog pmax)-

Proof: To begin, we round up each processing time p,, to the next power of 2 and denote the
rounded times by p};; that is, Pij = = 2Mogpiil, Let p/,, = max;; pi;- From S, it is easy to
obtain a schedule § tha,t uses the modified p}; and is at most twice as long as Sp; furthermore,
an optimal schedule for the new problem is no more than twice as long as an optimal schedule
for the original problem.

A block is an interval of a schedule with the property that each operation which begins during
that interval is of length no more than that of the entire interval. (Note that this does not mean
that the operation finishes within the interval.) We can divide § into [—-—] consecutive blocks

of size pl, ... We will give a recursive algorithm that reschedules — “spreads” — each block of size
p (where p is a power of 2) into a sequence of schedule fragments of total length plogp, so that
the resulting schedule has the property that at any time all operations scheduled are of the same
length. This algorithm takes advantage of the fact that if an operation of length p is scheduled
to begin in a block of size p, that job is not scheduled on any other machine until after this block.
Therefore, that operation can be scheduled to start after all of the smaller operations in the block
finish.

To reschedule a block B of size pl,,,, we first construct the final fragment (which is of length
Plax), and then construct the preceding fragments by recursive calls of the algorithm. For each
operation of length p! .. that begins in B, reschedule that operation to start at the beginning of
the final fragment, and delete it from B. Now each operation that still starts in B is of length



at most p',,./2, so B can be subdivided into two blocks, By and Bz, each of size pl,,./2, and we
can recurse on each. See Figure 2.

The recurrence equation that describes the total length of the fragments produced from a
block of size T is f(T) = 2f(%) + T; f(1) = 1. Thus f(T) = ©(TlogT), and each block B in S
of size p',, is spread into a schedule of length pj,,, 10g pluax- By spreading the schedule &, we
produce a new schedule S’ that satisfies the following conditions:

1. At any time in &', all operations scheduled are of the same length; furthermore, two oper-
ations either start at the same time or do not overlap.

2. If S has at most ¢ jobs scheduled on one machine at any time, then this must hold for S’
as well.

3. 8’ schedules a job on at most one machine at any time.

4. S’ does not schedule the ith operation of job J; until the first ¢ — 1 are completed.

Condition 1 is satisfied by each pair of operations on the same machine by the definition of
spreading, and by each pair of operations on different machines because the division of time into
fragments is the same on all machines. To prove condition 2, note that operations of length T
that are scheduled at the same time on the same machine in the expanded schedule started in
the same block of size T on that machine. Since they all must have been scheduled during the
last unit of time of that block, there can be at most ¢ of them.

To prove condition 3, note that if a job is scheduled by S’ on two machines simultaneously
that means that it must have been scheduled by S to start two operations of length T" in the same
block of time T on two different machines. This means it was scheduled by & on two machines
during the last unit of time of that block, which violates the properties of 8.

Finally we verify condition 4 by first noting that if two operations of a job are in different
blocks of size pl,,, in & then they are certainly rescheduled in the correct order. Therefore it
suffices to focus on what happens within the schedule produced from one block. Within a block
an operation is only rescheduled to the final fragment when it is the last operation for that job
in that block. Therefore S’ does not schedule the ith operation of job J; until the first ¢ — 1 are
completed.

The schedule S’ can easily be flattened to a schedule that obeys the constraint of one job
per machine at any time, since ¢ operations of length T that start at the same time can just be
executed one after the other in total time ¢T'. Note that since what we are doing is effectively
synchronizing the entire schedule block by block, it is important when flattening the schedule to
make each machine wait enough time for all machines to process all operations of that fragment
length, even if some machines have no operations of that length in that fragment.

The schedule S’ was of length L log ply,,..; therefore the flattened schedule is of length Lclog Phoax:

]

3 Reducing the Problem

In the previous section we showed how to produce, with high probability, a schedule of length
0((Pmax+Hmax)i—l9ﬂ-“—"—"M)~log Pmax), under the assumption that pmax was bounded above by a

oglog{n-mmax)
polynomial in n and m. Since Ppax+IImax = O(max(Pmax, Mmax)) this schedule is within a factor
of O(Mﬂ“—‘ﬂ)—-bg Pmax) Of optimality. In this section, we will remove the assumption that

loglog(n-mmax)



Pmax is bounded above by a polynomial in 7 and myax by showing that we can reduce the general

problem to that special case while only sacrificing a constant factor in the approximation. This
yields an O(ﬁ%%)—approximation algorithm. Furthermore, n need not be polynomially
bounded in m and M.y, we will prove a stronger result and show that we can reduce the job
shop problem to the case where n is polynomially bounded in m and mmax, while changing the

performance guarantee by a constant.

3.1 Reducing pyax

First we will show that we can reduce the problem to one where pmax is bounded by a polynomial
in n and Mmax. Let w = |O| be the total number of required operations. Note that w =
O(7 - Mmax)- Round down each p;; to the nearest multiple of pmax Jw, denoted by pfj. Now there
are at most w distinct values of p; and they are all multiples of ppax/w. Therefore we can treat
the pfj as integers in {0, ...,w}; a schedule for this problem can be trivially rescaled to a schedule
S’ for the actual pgj. Let L denote the length of S’. We claim that S’ for this reduced problem
can be interpreted as a schedule for the original operations that will be of length at most L+ pmax-
When we adjust the p; up to the original p;j, we add an amount that is at most ppax/w to each
p;. Since the length of a schedule is determined by a critical path through the operations and
there are w operations, we add a total amount of at most pmax to the length of the schedule;
thus the new schedule is of length at most L + pmax < L + Cj,,. Therefore we have rounded
a general instance Z of the job shop problem to an instance 7' that can be treated as having
Pmax = O(1 - Mmay); further, a schedule for 7' yields a schedule for 7 that is no more than C7,,,
longer. Thus we have shown:

Lemma 3.1 There exists a polynomial-time algorithm which transforms any instance of the job
shop scheduling problem into one with pmax = O(n - Mmax) With the property that a schedule for
the modified instance of length kC*__ can be converted in polynomial time to an instance of length
(k + 1)Crax-

3.2 Reducing the Number of Jobs

To reduce an arbitrary instance of job shop scheduling to one with a number of jobs polynomial
in m and Mmuyay we divide the jobs into big and small jobs. We say that job J; is big if it has
an operation of length more than -277{-;”;9{‘——; otherwise we call the job small. For the instance

! and pl.. denote the maximum machine load and
operation length, respectively. Using the algorithm of [12] described in the introduction, we can,
in time polynomial in the input size, produce a schedule of length Py, + 2m?m3,, Py for this
instance. Since pl .. is at most -#;‘fnﬂg‘—-— and P._ < Pmpax, we get a schedule that is of length no
more than 2Py ,«. Thus, an algori'chr“r);L that produces a schedule for the long jobs that is within
a factor of k of optimal will yield a (k + 2)-approximation algorithm. Note that there can be at
most 2m®m3 ,_ long jobs, since otherwise there would be more than m Ppax units of processing to
be divided amongst m machines, which contradicts the definition of Ppax. Thus we have shown:

consisting of just the short jobs, let P

Lemma 8.2 There exists a polynomial-time algorithm which transforms any instance of the job shop
scheduling problem into one with O(m?-m3,,.) jobs with the property that a schedule for the modified

instance of length kC* .. can be converted in polynomial time to an instance of length (k + 2)Crrax-

From the results of the previous two sections we can conclude that:



Theorem 3.3 There exists a polynomial-time randomized algorithm for job shop scheduling, that,
with high probability, yields a schedule that is of length at most O(@——%%C;ax).

Proof: In Section 2 we showed how to produce a schedule of length 0((Pmax+Hmax)ralg%% 10g Piax)
under the assumption that pmax was bounded above by a polynomial in n and Mmpax. From
Lemmas 3.1 and 3.2 we know that we can reduce the problem to one where n and pmax are poly-
nomial in m and Mmmax, while adding only a constant to the factor of approximation. Since now
108 Prmax = O(log(m - Mmax)) and log n = O(log(m - Mmax)) our algorithm produces a schedule of

log®(m-mmax *
length O(I.ﬂ*’“—Loglog(memx)Cmax)‘ |

Note that when 7.y is bounded by a polynomial in m the bound only depends on m. In
particular, this implies the following corollary:

Corollary 3.4 There exists a polynomial-time randomized algorithm for flow shop scheduling, that,
with high probability, yields a schedule that is of length at most 0(&%%0;1“)-

Except for the use of Sevast’yanov’s algorithm, all of these techniques can be carried out in
RNC. We assign one processor to each operation. The rounding in the proof of Lemma 2.2 can
be done in N'C. We set the random delays and inform each processor about the delay of its job.
By summing the values of p;; for all of its job’s operations, each processor can calculate where its
operation is scheduled with the delays and then where it is scheduled in the recursively spread
out schedule. These sums can be calculated via parallel prefix operations. With simple NC
techniques we can assign to each operation a rank among all those operations that are scheduled
to start at the same time on its machine, and thus flatten the spread out schedule to a valid
schedule.

Corollary 3.5 There exists a RAC algorithm for job shop scheduling, that, with high probability,

. . 2
yields a schedule that is of length at most O(R%%gﬁgfj’;‘c;ax).

3.3 A Fixed Number of Machines

It is interesting to note that Sevast’yanov’s algorithm for the job shop problem can be viewed
as a (1 + m?*m3,,,)-approximation algorithm, so that when m and mpax are constant, this is
a O(1)-approximation algorithm; that is, it delivers a solution within a constant factor of the
optimum. The technique of partitioning the set of jobs by size can be applied to give much a
better performance guarantee in this case. Now call a job J; big if there is an operation Oj; with
Pij > €Prmax/(m? - m3,,,), where € is an arbitrary positive constant. Note that there are at most
—"f:—r;—‘f"“ big jobs, and since m, Mmax and € are fixed, this is a constant.

Now use Sevast’yanov’s algorithm to schedule all of the small jobs. The resulting schedule
will be of length at most (14 €)CJ,,,. There are only a constant (albeit a huge constant) number
of ways to schedule the big jobs. Therefore the best one can be selected in polynomial time and
executed after the schedule of the short jobs. The additional length of this part is no more than
Chax

Thus we have shown:

Theorem 3.6 For the job shop scheduling problem where both m and Mpax are fixed, there is a
polynomial-time algorithm that produces a schedule of length < (24 6)Chax-



3.4 Applications to More General Scheduling Problems

The fact that the quality of our approximations is based solely on the lower bounds Prmax and
Il makes it quite easy to extend our techniques to the more general problem of dag scheduling.
We define Pyax and Imax exactly the same way, and max(Ppax, Imax) Temains a lower bound for
the length of any schedule. We can convert this dag scheduling problem to a job shop problem by
selecting for each job an arbitrary total order that is consistent with its partial order. Pmax and
II,0x have the same values for both problems. Therefore, a schedule of length p- (Pmax+ Imax) for
this job shop instance is a schedule for the original dag scheduling instance of length O(pCr.0)-

A further generalization to which our techniques apply is where, rather than m different
machines, we have m' types of machines, and for each type we have a specified number of
identical machines of that type. Instead of requiring an operation to run on a particular machine,
an operation now only has to run on one of these identical copies. Ilynax remains a lower bound
on the length of any schedule for this problem. Ppax, Which was a lower bound for the job
shop problem must be replaced, since we do not have a specific assignment of operations to
machines, and the sum of the processing times of all operations assigned to a type is not a lower
bound. Let S;, i = 1,...m/, denote the sets of identical machines, and let P(S;) be the sum
of the lengths of the operations which run on S;. Our strategy is to convert this to a job shop
problem by assigning operations to specific machines in such a way that the maximum machine
load is within a constant factor of the fundamental lower bounds for this problem. To obtain a
lower bound on the maximum machine load, note that the best we could do would be to evenly
distribute the operations across machines in a set, thus

_ P(S;)
Pavg - IDSZ:'X lsgl

is certainly a lower bound on the maximum machine load. Furthermore, we can not split opera-
tions, SO Pmax is also a lower bound. We will now describe how to assign operations to machines
so that the maximum machine load of the resulting job shop scheduling problem is at most
2P,vg + Pmax- A schedule for the resulting job shop problem of length p - (Pmax + IImax) yields
a solution for the more general problem of length O(p - (Pmax + IImax))- This reduction to the
job shop problem is much simpler than the one used by Sevast’yanov in his algorithm for dag
scheduling with identical copies of machines.

For each operation O;; to be processed by a machine in Sk, if pijj > P(Sk)/|Skl, assign O;;
to one machine in Si. There are certainly enough machines in Si to do this and this contributes
at most pmax to the maximum machine load. Those operations not yet assigned are each of
length at most P(S:)/|Sk| and have total length < P(Sk). Therefore, these can be assigned
casily to the remaining machines so that less than 2P(Sy)/Sk processing units are assigned to
each machine. Combining these two bounds, we get an upper bound on the maximum machine
load of 2P,yg + Pmax Which is within a constant factor of the lower bound of max{Pavg, Pmax}-

Theorem 3.7 There exists a polynomial-time randomized algorithm for dag scheduling with iden-
tical copies of machines that, with high probability, yields a schedule that is of length at most

0( log? (m-mmax) C* )

loglog{m -mmax) —~ Mmax

Corollary 3.8 There exists an RA/C algorithm for dag scheduling with identical copies of machines

that, with high probability, yields a schedule that is of length at most O(II—OEELEM)—C* ).

oglog(n-mmax) ~ Max



4 A Deterministic Approximation Algorithm

In this section, we “derandomize” the results of the previous sections, i.e., we give a deterministic
polynomial-time algorithm which finds a schedule of length O(log?(m - Mimax)Crax)- Of all the
components of the algorithm of Theorem 3.3, the only step which is not already deterministic
is the step which chooses a random initial delay for each job and then proves that, with high
probability, no machine is assigned too many jobs at any one time. In particular, the reduction
to the special case in which 7 and pmax are bounded by a polynomial in m and Mmpayx is entirely
deterministic, and so we can focus on that case alone. We will give an algorithm which deter-
ministically assigns delays to each job so as to produce a schedule in which each machine has
O(log(m - Mumax)) jobs running at any one time. We then apply Lemma 2.2 to produce a schedule
of length O(log?(m - Mmax)Cihax)- Note that the O(log(m-mmax)) jobs per machine is not as good
as the probabilistic bound of O(w—i—gﬁi&j); we do not know how to achieve this determinis-
tically. However, by a proof nearly i(fentical to that of Lemma 2.1, we can show that in order to
achieve this weaker bound on the number of jobs per machine, we now only need to choose delays
in the range [0, Pmax/10g(m - Mmax)]. In fact, the reduced range of delays yields a schedule of
length O(Ilmayx log?(m - Mmax) + Pmax log(m - Mmax)) Which is within an O(log(m - Mmax)) factor
of optimal if Mmax = O(fzpematry)-

Our approach to solving this problem is to frame it as a vector selection problem and then
apply techniques developed by Raghavan and Thompson [9, 10] and Raghavan [8] which find
constant factor approximations to certain “packing” integer programs. The approach is to for-
mulate the problem as a {0,1}-integer program, solve the linear programming relaxation, and
then randomly round the solution to an integer solution.

For certain types of problems this yields provably good approximations with high probability
[9, 10]. Furthermore, for many of the problems for which there are approximations with high
probability, the algorithm can be derandomized. Raghavan [8] has shown how to do this for many
of these problems by essentially setting the random bits one at a time.

We now state the problem formally:

Problem 4.1 Deterministically assign delays in the range [0, Pmax/ 1og(m - Mmax)] so as to produce
a schedule with no more than O(log(m - Mmax)) jobs on any machine at any time

Lemma 4.2 Problem 4.1 can be solved in deterministic polynomial time.

Proof: Since we introduce delays in the range [0, Pmax/1og( - Mmax)], the resulting schedule
has length £ = .4 + l—og—(r—%"‘;—l’;ﬁ. We can represent the processing of a job j with a given initial
delay d by an (£ - m)-length {0, 1}-vector where each position corresponds to a machine at a
particular time. The position corresponding to machine 3/; and time ¢ is 1 if M; is processing
job J; at time ¢, and 0 otherwise. For each job J; and each possible delay d, there is a vector
V4 which corresponds to assigning delay d to J;.

Let ); be the set of vectors {V;1,. e vy Vidmax}> Where dpax = nax/10g(M - Mmayx), and let
V; (i) be the i* component of V. Given the set A = {A1,...,An} of sets of vectors, our
problem can be stated as the problem of choosing one vector from each A; (denoted V*), such
that || 30, VIl = O(log(m - Mmax)), i-e., at any time on any machine, the number of jobs
using that machine is O(log(m - Mmax))-

As in [8], we can reformulate this as a {0,1}-integer program. Let z;r be the indicator
variable used to indicate whether Vjj is selected from A;. Consider the integer program (IP)
that assigns {0, 1} values to the variables z;; to minimize W subject to the constraints:

9



dma.x

ij,k =1, j=1,..,m
k=1
n  dmax
Zij’ij,k(i) <W, i=1,...,£-m.
=1 k=1

Let Wopt be the optimum value of W, which is the maximum number of jobs that ever use
a machine at any given time. We already know, by Lemma 2.1, that Wopt = O(log(m - Mmax)),
so if we could solve this integer program optimally we would be done. However, the problem is
NP-hard. Instead, we rely on the following theorem which is immediate from the results in [8]
and [10].

Theorem 4.3 [8, 10] A feasible solution to (IP) with W = O(Wopr + log(m - Mmax)) can be
found in polynomial time.

We then apply Lemma 2.2 and obtain the following result:

Theorem 4.4 There exists a deterministic polynomial-time algorithm which finds a schedule of
length O(log?(m - Mumax) Crhax)-

5 Conclusions and Open Problems

We have given the first polynomial-time polylog-approximation algorithms for minimizing the
maximum completion time for the problems of job shop scheduling, flow shop scheduling, dag
scheduling and a generalization of dag scheduling in which there are groups of identical machines.

One particularly simple special case of dag scheduling can be obtained if the partial order
for each job is empty; in other words, each job consists of a number of operations which may
be performed in any order. This is called the open shop problem, and it is traditional in the
scheduling literature to focus on the case when each job is processed on each machine at most
once (since operations on the same machine can be coalesced).

A consequence of our results is the following observation about the structure of shop scheduling
problems. Assume we have a set of jobs which need to run on a set of machines. We know that any
schedule for the associated open shop problem must be of length Q(Pnax + Imax). Furthermore,
we know that no matter what type of partial ordering we impose on the operations of each job

we can produce a schedule of length O((Prax + Hmax)l%é%é%n—). Hence for any instance, the gap

between the best open shop schedule and the best dag schedule is at most 0(%2%% .

On the other hand, there does exist a schedule of length O(Ilmax + Prax) for the open shop
problem. Consider the simple greedy algorithm that, whenever a machine is idle, assigns to it
any job that has not yet been processed on that machine and is not currently being processed on
another machine. Annd Racsminy has observed that the greedy algorithm delivers a schedule
of length at most Pmax + (M — 1)Pmax [1]. We can adapt her proof to show that, in fact, the
greedy algorithm delivers a schedule that is of length less than Ppax + Imax < 2Chax- Consider
the machine M that finishes last in the greedy schedule; this machine is active sometimes, idle
sometimes, and finishes by completing some job J;. Since the schedule is greedy, whenever My is
idle, J; is being processed by some other machine, and so the idle time is at most MMy Pij <
I,,ax. Thus, machine My is processing for at most Prmax units of time and is idle for less than
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Moy units of time; hence Cmax < Pmax + Imax. Fiala [4] has also shown that if Ppax 2
(16mlog m + 21m)pmax, then Cf,, is just Pyax, and there is a polynomial-time algorithm to find
an optimal schedule.

We have seen that in two interesting special cases, job shop scheduling with unit-length
operations and open shop scheduling, there is a schedule of length O(Puax + Imax), and so the
major open question left unresolved by this paper is:

e Does there exist an O(Ppax + IImax) schedule for the general job or flow shop scheduling
problem? If so, when can it be found in polynomial time?

Beyond this, there are a number of interesting questions raised by this work, including

e Do there exist parallel algorithms that achieve the approximations of our sequential algo-
rithms? For the general job shop problem this seems hard, since we rely heavily on the
algorithm of Sevast’yanov. For open shop scheduling, however, a simple sequential algo-
rithm achieves a factor of 2, whereas the best A’C algorithm that we have achieves only an
O(log n)-approximation. As a consequence of the results above, all one would need to do
is to produce any greedy schedule.

e Are there simple variants of the greedy algorithm for open shop scheduling that achieve
better performance guarantees? For instance, how good is the algorithm that always se-
lects the job with the maximum total (remaining) processing time? Is there a polynomial
approximation scheme?

¢ Our algorithms, while polynomial-time algorithms, are inefficient. Are there significantly
more efficient algorithm which have the same performance guarantees?
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Figure 1: Flattening a schedule in the case with unit length operations.
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Figure 2: (a) The initial greedy schedule of length 8. pl ., = 4. (b) The first level of spreading.
All jobs of length 4 have been put in the final fragments. We must now recurse on B; and B,
with p! .. = 2. (c) The final schedule of length 8log 8 = 24.



