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Abstract

The problem of finding minimum weight spanning

subgraphs with a given connectivity requirement

is considered. The problem is NP-hard when the

connectivity requirement is greater than one. Poly-

nomial time approximation algorithms for various

weighted and unweighed connectivity problems

are given.

The following results are presented:

1.

2.

3.

For the unweighed k-edge-connectivity prob-

lem an approximation algorithm that achieves

a performance ratio of 1.85 is described. This

is the first polynomial-time algorithm that

achieves a constant less than 2, for all k.

For the weighted k-vertex-connectivity prob-

lem, a constant factor approximation algo-

rithm is given assuming that the edge-weights

satisfy the triangle inequality. This is the first

constant factor approximation algorithm for

this problem.

For the case of biconnectivity, with no as-

sumptions about the weights of the edges, an

algorithm that achieves a factor asymptoti-

cally approaching 2 is described. This matches

the previous best bound for the corresponding

edge connectivity problem.
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1 Introduction

Connectivity is fundamental to the study of graphs

and graph algorithms. Recently, many approxima-

tion algorithms for finding subgrabphs that meet

given connectivity requirements have been devel-

oped [1, 11, 14, 15, 20, 23, 24]. These results pro-

vide practical approximation algorithms for NP-

hard network design problems. via an increased un-

derstanding of connectivity properties.

In this paper we focus on uniform k-connectivity

problems. The term connectivity refers to both

edge and vertex connectivities, unless specified.

The input is an integer k, a k-connected graph

G = (V, E) and a weight function w on the edges

of G. The goal is to find a minimum-weight k-

connected subgraph of G. The problem is known

to be NP-hard [12] even when the weights are all

identical (i.e., the unweighed case). We present

improved approximation algorithms for unweighed

and weighted connectivity problems.

The practical motivation to study this prob-

lem is the following. Let G derlOte all feasible

links of a proposed communications network. An

edge e = (a, b) denotes the feasibility of adding

a link from site a to site b, and its weight, w(e),

represents the cost of constructing it. A mini-

mum spanning tree in G is the smallest connected

subgraph, i.e., the cheapest netwc~rk that will al-

low the sites to communicate. Such a network is

highly susceptible to failures, since it cannot sur-

vive the failure of even a single link or site. For

more reliable communication, one desires spanning

subgraphs of higher connectivities. A network of

edge-connectivity (vertex-connectivity) k continues

to allow communication between functioning sites

even after as many as k – 1 links (sites) have failed.

The problem of finding low-cost fault-tolerant net-

works naturally leads to the minimum-weight k-

connected spanning subgraph problem. Further

applications and the importance of this problem
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are discussed by Grotschel, Monma and Steer [16].

1.1 Our results

Unweighed Connectivity Results:

For this problem the previous best approxima-

tion factor was 2. This follows from the following

two facts. Any minimal k-connected subgraph con-

tains at most k(n – k) edges [2]. In any k-connected

graph, the degree of each vertex is at least k, thus

implying a lower bound of kn/2 on the number

of edges in any optimal solution. Efficient algo-

rithms for finding k-connected subgraphs with at

most k (n – 1) edges were given by Nagamochi and

Ibaraki [21] and Cheriyan, Kao and Thurimella [3].

We observe that such approximation algorithms

do not exploit any structural properties of an opti-

mal solution, other than the trivial lower bound on

the degree of each vertex. Since these algorithms

provide an absolute upper bound on the number

of edges, there is no way to improve their approxi-

mation factors. Any algorithm which obtains a so-

lution that is provably better than 2 must exploit

the structure of the problem and prove better lower

bounds on an optimal solution. Previously, algo-

rithms that obtained factors less than 2 were known

only for the case k = 2; Khuller and Vishkin [20]

gave an approximation algorithm that achieved a

factor of 1.5 for the edge-connectivity case, and

1.66 for the vertex connectivity case. The vertex

connectivity bound was subsequently improved to

1.5 by Garg, Santosh and Singla [13]. By com-

bining the biconnectivity algorithm [20], and the

sparse certificate algorithm [3] one can easily ob-

tain a factor of 2 – l/k for the k-edge-connectivity

problem, but this approaches 2 as k increases. Re-

cently, Karger [17] has given an algorithm with a

factor of 1 + 0(/-) using randomized round-

ing of the fractional solution obtained from the cor-

responding linear program, together with the idea

of finding maximal forests. This algorithm is useful

when k >> log n.

In this paper we provide the first approximation

algorithm which breaks the barrier of 2 for the un-

weighed k-edge-connectivity problem (for all k).

We give an algorithm and a lower bounding method

that yields an approximation ratio of about 1.85

for the k-edge-connectivity problem. At a high

level, the structure of our algorithm is based on

the method of [3], but it uses depth first search

to obtain a better solution in each phase. Our

algorithm is quite straight-forward, but proving a

performance ratio of less than 2 for the algorithm

requires a subtle analysis of the structure of any

optimal solution.

Weighted Connectivity Results:

Here each edge of the input graph G has a non-

negative weight. For the k-edge-connected sub-

graph problem, an approximation factor of 2 was

achieved by Khuller and Vishkin [20]. Approxi-

mation algorithms with constant performance ra-

tios (for all k) are not known for the k-vertex-

connected subgraph problem. The best known al-

gorithm to find a k-vertex-connected subgraph is

due to Ravi and Williamson [23] that achieves a

factor of 2H(k), where H(k) is the kth Harmonic

number (H(k) = 1 + ~.. . + ~).

Fredrickson and JiiJ& [8] considered the problem

of computing a minimum-weight biconnected span-

ning subgraph. They gave an approximation algo-

rithm for a more general graph augmentation prob-

lem and used it to obtain a 3-approximation algo-

rithm for the biconnectivity problem. For k = 2,

Ravi and Williamson’s algorithm also achieves a

ratio of 3. In this paper, we present an approxi-

mation algorithm for the minimum-weight bicon-

nected subgraph problem with a performance ratio

of 2 + I/n.

Not much more is known about the k-vertex-

connectivity problem for the special case when the

weights satisfy the triangle inequality. For k = 2,

it is easy to show that the TSP algorithm of “dou-

bling” the minimum spanning tree has a perfor-

mance guarantee of 2. Fredrickson and JAJi [9]

proved that Christofides’ algorithm [4] (for the TSP

problem) has a performance guarantee of 1.5 for the

minimum-weight biconnectivity problem as well.

The analysis for the biconnectivity algorithm is

more complicated since the relationship between

the weight of a minimum-weight matching and the

weight of an optimal biconnected subgraph is not

obvious.

In this paper we give an algorithm for the k-

vertex-connectivity problem when the edges satisfy

the triangle inequality. The performance guarantee

is at

all k

n

most 2 + 2(k – 1)/n, which is less t-ban 4 for

and asymptotically tends to 2 for fixed k.
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2 Preliminaries

A graph is said to be k-vertex-connected (or simply

k-connected) if the deletion of at most k – 1 vertices

does not disconnect the remaining vertices of the

graph. Analogously, a graph is k-edge-connected if

the deletion of at most k – 1 edges does not dis-

connect the graph. A set of paths between vertices

u and v is said to be openly dis~oant if they do

not share any internal vertices. This definition is

extended to the case when u is replaced by a set

of vertices as follows: a set of k paths between u

and a set of vertices R with [RI = k is openly dis-

joint if the paths are all vertex-disjoint (except for

sharing the end-point u), and each of the paths

starts at u and ends at a distinct vertex of R. If

u E R then we find k – 1 openly disjoint paths

from u to the vertices in R – u. We say u and v

are k-edge-connected, if there exist k edge-disjoint

paths between them. The same definition can be

extended to vertex connectivity by replacing “edge-

disjoint” with “openly disjoint.” Note that k-edge-

connectivity can be viewed as a binary relation be-

tween vertices. It is a transitive relation because, if

a graph G contains k edge-disjoint paths between

u and v, and k edge-disjoint paths between v and

w, then it implies that G has k edge-disjoint paths

between u and w. (Observe that the same property

does not hold for vertex-disjoint paths.)

3 Unweighed Case

In the edge connectivity version of the connectiv-

ity problem, the input is an integer k and an undi-

rected graph G = (V, E) with edge connectivity

at least k. The problem is to compute a k-edge-

connected spanning subgraph of G using the mini-

mum number of edges. Since the degree of any ver-

tex must be at least k in a k-connected graph, any

solution to the above problem must have at least

~kn/2~ edges. Any minimally k-edge-connected

graph has at most k(n – k) edges [2], and this pro-

vides a 2-approximation algorithm. Khuller and

Vishkin [20] provided the first approximation algo-

rithm for k = 2 with a performance ratio less than

2. Their algorithm is based on depth-first search

and has a performance guarantee of 3/2. A simple

generalization of their algorithm has a performance

guarantee of 2 – I/k for all k. In this section we

provide the first algorithm for unweighed k-edge-

connectivity with an approximation factor strictly

less than 2 for all values of k. The structure of our

algorithm is similar to the one used by Cheriyan,

Kao and Thurimella [3], where the connectivity of

the solution is increased in stages. The main idea

behind the algorithm for finding a sparse k-edge-

connected subgraph is to repeatedly find and delete

a maximal spanning forest from the graph G. After

this is repeated k times, the deleted edges form a

k-edge-connected spanning subgraph of G [3, 21].

3.1 The algorithm

We first describe our algorithm for even values of

k. The algorithm works in phases. It starts with

an empty subgraph S. In each phase the edge con-

nectivity of S is increased by 2. In k/2 phases the

connectivity of S is k and the algorithm outputs S.

We now describe the procedure that we use to

augment the connectivity of S by ‘i! in any phase.

At the beginning of phase i, S is 2i – 2 connected.

At the end of phase i, it will be 2i connected. We

first add a depth-first maximal spanning forest F,

of G – S to S. This increases the connectivity of

S to 2i – 1. Note that each tree of Fi is implicitly

rooted. Since we added a depth-first forest to S,

all remaining edges of G – S are back edges with

respect to F,. We then scan the edges of the depth-

first forest .Fi in post-order. Each time we find an

edge (u, v) e F, such that u and w cabn be separated

by the removal of 2i – 1 edges in S (recall that S in-

cludes F,), we add to S a highest-go’ing back edge e

from G – S which also crosses (u, v). Assume that u

is the parent of v in Fz. This back edge e goes from

some descendant of v (could be v itself) to a vertex

with the lowest dfs number, when t’here is a choice

of edges. It is easy to identify such an edge during

the execution of depth-first-search (similar infor-

mation is maintained during the computation of

biconnected components in a graph [5]). This step

ensures that u and v are 2i-edge-connected in S.

Therefore after all edges of Fi have been scanned,

S is 2i-edge-connected. We will show that the al-

gorithm outputs a subgraph S whose cardinality is

at most a factor (3 + In 2)/2 = 1.85 more than the

cardinality of an optimal solution.

If k is odd, we can use the above procedure to



first find a (k – I)-edge-connected subgraph S of G

and then finally augment S to k-connectivity by the

addition of any maximal spanning forest of G – S.

3.2 Proof of correctness

We first show that the addition of a maximal span-

ning forest at the beginning of each phase of the

algorithm increases the connectivity by 1. We

then show that adding back edges as we do in

our algorithm increases the connectivity by 1 more.

The following lemma is easily established from the

sparse certificate proofs of [3, 21, 22]. We provide

its proof for the sake of completeness.

Lemma 3.1 Let G = (V, E) be a graph which is

at least A-edge-connected. Let S be a (A – l)-edge-

connected spanning subgraph of G, and let F be a

maximal spanning forest in G – S. Then S U F is

A-edge-connected.

Proof: Suppose there exist vertices u and v which

are not A-edge-connected in S U F. We are given

the fact that S is (A – 1)-edge-connected and there-

fore any set of edges separating u and v must have

at least A – 1 edges. Let C be a set of J – 1 edges

separating u and v in S u F. Clearly C ~ S be-

cause otherwise C n S would be a set of edges with

size strictly smaller than A – 1, separating u and

v in S. Also G is A-edge-connected and therefore

there is some edge {x, y} in G – S which crosses

C. Therefore z and y are in the same connected

component of G – S and hence in the same tree of

F. At least one edge in the path from z to y in

this tree must cross the cut C. This implies that

C cannot be a separating set in S U F, which is a

contradiction. ❑

Lemma 3.2 Let G = (V, E) be a graph which is

at least A-edge-connected. Let S be a (A – 2)-

edge-connected spanning subgraph of G that is aug-

mented to (A — 1)-edge- connectzvzty by the addition

of a maximal spanning forest F. Then any cut C

with A – 1 edges that separates S U F must separate

some two vertices x and y that are in the same tree

of F.

Proof: Suppose there exists a cut C with A – 1

edges that separates S U F, but does not separate

any vertices within the same tree, i.e., vertices of

each tree of F are in the same component when the

edges of C are deleted from S U F. Since F is a

maximal spanning forest, the components of G – S

and F are the same. Therefore C is a separator for

G, which is a contradiction because ICl = A – 1 but

G is A-edge-connected. ❑

Lemma 3.3 Let G = (V, E) be a graph which is

at least A-edge-connected. Let S be a (A – 2)-

edge-connected spanning subgraph of G that is aug-

mented to (A – 1)-edge-connectivity by the addition

of a maximal spanning forest F. If S U F is aug-

mented with an edge set B from E – {S U F} such

that each pair of adjacent vertices m F cannot be

separated by A–1 edges in SUFUB. Then SUFUB

is >-edge-connected.

Proof: Consider any tree T in F. Any pair of adja-

cent vertices in T are A-edge-connected in SUFUB.

Since edge connectivity is transitive, all vertices

of T are in the same A-connected component of

S U F U B, i. e., no two vertices of T may be sep-

arated by the removal of fewer than A edges. By

Lemma 3.2, any A – 1 edge-separator of S U F must

separate two vertices in the same tree of F. But

we have shown that vertices within the same tree

of F cannot be separated by the removal of J – 1

edges and therefore S U F U 1? is A-edge-connected.

❑

Theorem 3.4 The algorithm outlined earlier cor-

rectly outputs a k-edge-connected spanning sub-

graph of G.

Proof: The proof proceeds by induction on the

number of phases of the algorithm. The induc-

tion hypothesis is that when the algorithm com-

pletes phase i, S is 2i-edge-connected. Suppose

the algorithm is entering phase i of the algorithm.

By the induction hypothesis, S is 22 – 2-edge-

connected (which is trivially true for the base case,

i = 1). The algorithm first adds a depth-first max-

imal spanning forest Fi to S. By Lemma 3.1 this

augments the connectivity of S to 2i – 1. The al-

gorithm then ensures that all adjacent vertices of

Fi are 2i-connected by adding back edges crossing

the corresponding cuts, where necessary. Therefore

by Lemma 3.2, S becomes 2i-edge-connected, thus

proving the induction step. Since the algorithm
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runs in k/2 phases, the solution S that it outputs

is k-edge-connected. If k is odd, after [k/2j phases,

a maximal spanning forest of G – S is added to S

thus making it k-edge-connected. ❑

3.3 Performance analysis

We now analyze that the performance guarantee of

the algorithm. Consider phase z of the algorithm.

It adds a depth-first maximal spanning forest F,

and then a set of back edges l?i to S. Let ~; = Il?i I

and bi = Ilili 1. Let OPT(G) be an optimal k-edge-

connected spanning subgraph of G. The following

is a trivial lower bound on OTT(G).

Lemma 3.5 ICWT(G)I ~ [kn/21.

We now prove the following lower bound on the

cardinality of the optimal solution which lets us

obtain a better factor than 2 for our algorithm.

Lemma 3.6 IO?ZT(G)[ > (k – 22+ 2)bi.

Proof: Consider phase i of the algorithm. Let e =

(x, y) be a tree edge in Fi, where z is the parent of

y. We first observe that whenever we add an edge

in Bi to cross a cut corresponding to e, then the

connectivity of x and y at the beginning of phase i

is exactly 2i – 2 (at that point S does not contain

F,). Otherwise using a proof analogous to that of

Lemma 3.1, it can be shown that the connectivity

between x and y is at least 2i after the addition of

Fi to S.

Consider a cut C with 2i – 1 edges in S U Fi

separating z and y. Let the removal of C from

S U Fi break G into two components X and ~ with

x e X and y E ~. Observe that only one edge of

F; can cross this cut — this is because S is 2i – 2

connected, and if two or more edges of Fi cross this

cut, the size of this cut would be at least 22. In fact,

the edge in l-?zcrossing C is exactly the edge (z, y).

Let P= be the set of edges in G – S that cross C.

In other words, P. is the set of edges in G – S that

connect vertices in X to vertices in T.

We first observe some simple properties about

P,. In the following discussion, we consider a ver-

tex to be both a descendant of itself and an ances-

tor of itself.

Lemma 3,7 The set P. consists oj all the edges of

G – S that connect descendants of y to ancestors

Ofx.

.Frooi: We know that z G X and 3/ 6 ~. If some

descendant z of y (in Fz), belongs to X then there

are at least two edges of F, in cut C (one is the edge

(x, y) and the other is some edge on the path from

y to z). Thus all descendants of y are in ~. Simi-

larly all vertices in the tree of y in F, that are not

descendants of y must be in X. Also, the vertices of

any other tree T in F% are entirely contained in ei-

ther X or in ~. Therefore ~ is exactly the vertices

of the sub-tree rooted at y together with the ver-

tices of some of the other depth first spanning trees

of Fi. All edges in G – S from ~ to X are exactly

the back edges, and the single tree edge (x, y) out

of the sub-tree rooted at y and these edges clearly

go to (not necessarily proper) ancestors of x. ❑

By the definition of P., every k-edge-connected

spanning subgraph, and in particular OPT(G),

must have at least k – (2i – 2) edges from Pe. We

will show that our selection of back edges to add to

Bi using the highest-going back-edge rule ensures

that the sets P. for all e ~ B, are all disjoint (i.e.,

form a l-packing of cuts). Once we show the dis-

jointness of the cuts corresponding to Bi, we com-

plete the proof of Lemma 3.6, because OPT(G)

must contain at least k – (2i – 2) edges from each

of these cuts.

We now prove that the cuts are disjoint, Con-

sider two back edges / and t’ in B2 that were

added when the algorithm examined the tree edges

e = (u, v) and e’ = (x, y) respectively. Suppose e

is processed before e’. Recall that the algorithm

processes the edges of F, in post-order. Since Fi is

a depth-first spanning forest, G – {S U F,} con-

tains only back edges and therefore, P. (1 Pi is

empty if the tree edges are located such that none

is an ancestor of the other. Suppose that tree-edge

e’ = (z, y) lies on the path from v to the root of

v’s tree in F,. If (x, y) is on the path from v to

the root of v’s tree (see Fig. 1), then we note that 1

does not reach higher than y in the tree. Otherwise,

the edge t will be sufficient to ensure that vertices

x and y cannot be separated by 2i – 1 edges, be-

cause there are 2 paths between z and y in I?z U {/}

and at least 2i — 2 in S. Since 1 was chosen as an

edge which goes highest in the tree, there can be
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no edges that cross (u, v) which also cross (x, y).

In other words, in this case also P. n Pi is empty.

This proves Lemma 3.6.

TRoot

.“

(!
x

l’ Y

.

Figure

Theorem 3.8

1: Structure of back edges.

The performance guarantee

❑

of the

edge-connectivity algorithm outlined earlter as at

most (3 + ln2)/2 <1.85.

Proof: We prove the result for even k (the proof

for odd k requires minor changes, and is omitted).

The algorithm adds ji + bi edges during each phase.

Since F, and Bi are forests, f, < n and bi < n. We

combine the lower bounds from Lemmas 3.5 and 3.6

to obtain the performance ratio of the algorithm as

follows.

X:<(.tz+ h) < 3kn/4 + &fll bi

IOP7(G)I – maxi{ kn/2, (k – 22 + Z) b;}

in 2
< ;+—

2<
1.85.

❑

Remark: For small values of k this actually yields

better factors. For example, the ratio is 1.66 for

k = 3, 1.75 for k = 4, and 1.733 for k = 5.

3.4 Running time

Let S,-l be the partial solution S at the begin-
ning of phase i. In phase z of the algorithm, the

most time consuming step is when we test if the

connectivity between pairs of vertices in the cur-

rent solution S is at least 22. This is equivalent to

testing (2i – 1 )-connectivity between the vertices in

Si_l. This test can be efficiently implemented as

follows. First run the algorithm of Karzanov and

Timofeev [18] for finding all (2i – 2)-edge-cuts in

Sz–l. The algorithm runs in O(in2 ) time. Subse-

quently, for any two given vertices v and w, we can

decide whether there exists a cut of (2i – 2) edges

in Si _ 1 that separates v and w in constant time.

Also, if a back edge is added to S from a vertex

u to its ancestor a, it implies that none of edges

on the path from u to a in F induce a cut smaller

than 2i. Therefore, whenever the algorithm adds

a back edge (u, a) to S, the algorithm omits the

connectivity test for edges on this path.

There are k/2 phases in the algorithm and each

phase runs in 0(kn2 ) time. Therefore the algo-

rithm runs in 0(k2n2) time.

4 Weighted Case

Recently, Ravi and Williamson [23] gave an algo-

rithm that finds an approximation to a minimum-

weight k-vertex-connected subgraph. Their algo-

rithm works for all k, and its performance ratio is

3 for the biconnectivity problem (k = 2). Their

algorithm uses techniques of linear programming

and it constructs the solution in stages, augment-

ing the connectivity by 1 in each stage. The per-

formance guarantee for general k is 211(k), where

H(k) = ~~=1 l/i is the kth Harmonic number.

On a related problem in directed graphs, Frank

and Tardos [7] extended a technique discovered by

Edmonds [6] and showed that the following prob-

lem can be solved in polynomial time. The input

is a directed graph D with nonnegative weights on

the edges, a root vertex r and an integer A. The

problem is to find a minimum-weight directed sub-

graph H of D, such that for each vertex v there

are A openly disjoint paths from r to v in the sub-

graph H. Gabow [10] introduced techniques for

representing crossing set families based on separa-

tors, and showed that this representation scheme
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can be used to speed up several algorithms. His

algorithm for solving the above problem of Frank

and Tardos runs in 0( A2n2m) time. where D has

n vertices and m edges,

4.1 Basic technique

We give an algorithm for undirected graphs that

uses the algorithm of Frank and Tardos [7] as a

subroutine. The algorithm finds an approximately

minimum-weight subgraph that has A openly dis-

joint paths to a set of “root” vertices. This algo-

rithm is used by all our vertex connectivity algo-

rithms.

The input is an integer A, a A-vertex-connected

undirected graph G = (V, E), a nonnegative weight

function w defined on the edges, and a set R

of A vertices. The output is an approximately

minimum-weight subgraph of G in which there are

~ openly disjoint paths from any vertex v to R,

Observe that v could be in R, in which case we

find A – 1 paths from v to the remaining vertices

in R.

The algorithm UNDIRECTED-FT(G, A, R,) is as

follows. First create the directed version D of G

in the most natural way: for each undirected edge

in G create anti-parallel directed edges in D, each

having the same weight as the corresponding undi-

rected edge. Augment D by adding a new vertex

T and add A new directed edges of weight O from

r to each vertex in R. Use the algorithm of Frank

and Tardos on this graph with r as the root and

find a minimum weight subgraph H with J openly

disjoint paths between r and any vertex of D. Let

S C E be those edges in G such that at least one

of its copies is in H. Since S was obtained from H,

for any vertex v in G, there are ~ openly disjoint

paths between v and R in S.

Proposition 4.1 There are A openly disjoint

paths in S between any vertex in G – R and R.

There are A – 1 openly disjoint paths in S between

any vertex v E R and R – {v}.

Lemma 4.2 The weight of S M at most twice

the weight of a minimum-weight A-vertex-connected

spannzng subgraph of G.

Proof: Let T be a minimum-weight A-vertex-

connected spanning subgraph of G. We observe

that the directed version of T obtained as above

by taking two anti-parallel directed edges instead

of each undirected edge of T (with the same weight)

is a subgraph of D, and along with the zero-weight

edges from r to the vertices of R has A openly dis-

joint paths from r to each vertex of G. Since the

algorithm of Frank and Tardos returns a minimum-

weight solution, the weight of the solution that it

returns, w(S), can be no heavier than 2w(T). ❑

We can also prove the following interesting theo-

rem that S is at least [~/21-vertex-connected. No

assumptions about triangle inequality are required

for this theorem. In other words, one can obtain a

subgraph with half the required connectivity, pay-

ing at most twice the optimal cost (of twice the

connectivity). A similar result (witlh a slightly bet-

ter approximation ratio) can be derived from the

work of Ravi and Williamson [23] b,y running their

algorithm for A/2 phases.

Theorem 4.3 The vertex connectivity of S is at

least ~A/21.

Proof: We give a proof by contradiction. As-

sume that the graph contains a vertex cut C with

ICI < [A/21, i. e., the removal of C breaks G into

components Cl, Cz, . . . . CL, where 4 ~ 2. Let Ci be

a component such that IC, (l RI < [A/2]; clearly,

such a component must exist. If Cz contains a ver-

tex v @ R, then there are at most [;{/2] + [A/21 – 1

paths from v to vertices in R (the paths either must

go to the vertices in Ci n R or must go through the

vertices in C). Clearly, this is a contradiction to

the assumption that there were ~ openly disjoint

paths from v to R. If Ci fl R = Ci,, then there are

at most \Cz I – 1 + [A/21 – } paths from vertices

in R to any vertex in Ci. Since Ci ~ lA/2j, we

conclude that there are at most [A/2j + [A/21 – 2

pat hs from R to any vertex in C;. This is a con-

tradiction to the assumption that there are A – 1

openly disjoint paths from a vertex v c R to the

remaining vertices in R, ❑

4.2 Weighted biconnectivit,y

We now describe a 2-approximation algorithm for

weighted biconnectivity (k = 2).

Let e = (z, y) be a minimum-weight edge in

G. Set R = {z, y} and call the procedure
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UNDIRECTED-FT(G, 2, l?). This returns a sub-

graph S of G. The biconnectivity algorithm now

returns S U {e} as the solution. Since S was ob-

tained by calling UNDIRECTED-FT, by Proposi-

tion 4.1, for any vertex v in G – {z, g}, there are

two openly disjoint paths starting at v, one ending

at x and the other ending at y.

Lemma 4.4 The graph S U {e} is biconnected.

Proof: We give a proof by contradiction. Suppose

S U {e} contains a cut vertex a. Let the dele-

tion of a from S break the graph into components

cl, ..., C’e.Since x and y are adjacent they will be

in a u C’z (for some i). Consider a vertex v = C’j for

some j # i. There cannot be two openly disjoint

paths from v to x and y respectively, since both

paths must go through a. But by Proposition 4.1

such paths must exist, which is a contradiction. ❑

Theorem 4.5 The total weight of S U {e} is at

most 2 + l/n times a minimum-weight biconnected

spanntng subgraph of G.

Proof: Let OPT(G) be a minimum-weight bicon-

nected spanning subgraph of G. Since any bi-

connected graph on n vertices contains at least n

edges, a minimum weight edge of G is at most

w(OPT(G))/n. By Lemma 4.2, the weight of S

is at most 2zo(O%KT(G)). •1

4.3 Weighted k-vertex-connectivity

In this section we consider the weighted k-vertex-

connectivity problem, when the edge weights sat-

isfy triangle inequality. We describe an algorithm

that finds a k-vertex-connected subgraph whose

weight is within a factor 2 + 2(k – 1)/n of a

minimum-weight k-vertex-connected subgraph in

G. Previously, an algorithm achieving a factor of

1.5 for the case k = 2 was given by Fredrickson

and JAJ4 [9].

Many algorithms for graphs satisfying triangle

inequality are based on simple ideas for shortcut-

ting. For example, taking two copies of a mini-

mum spanning tree and then shortcutting it suit-

ably yields a 2-approximation for 2-connectivity.

One may wonder whether such a simple algorithm

exists for the k-connectivity problem under trian-

gle inequality. We first observe that the following

straightforward algorithm does not yield a good ap-

proximation ratio. Take a TSP tour obtained as

described above. Connect each vertex of the tour

to the k/2 vertices that come before (and after) it

on the tour. Such a graph is indeed k-connected,

but there are instances in which its weight is Q(k2 )

times the weight of a minimum spanning tree and

the performance ratio of the algorithm is Q(k).

Our algorithm first finds a subset R of k ver-

tices, such that the complete graph induced on R

is relatively “light”. It then calls UNDIRECTED-

FT(G, k, R) to obtain a subgraph S of G. The

algorithm returns S U KR as its output, where KR

is the complete subgraph on R.

We now show how to find the subset R of k ver-

tices, such that the complete graph induced on the

vertices in R is “light”.

Let S(i) be the “star” graph formed by vertex i

together with the edges to its k – 1 closest neigh-

bors. Let j be a vertex with the weight of S(j)

being minimum over all vertices of G. Select R to

be the vertices of S(j), i. e., R consists of vertex

j and its k – 1 nearest neighbors. Let KR be the

complete graph on the vertices of R.

Lemma 4.6 The weight of KR, the complete

graph on the vertices in R is at most 2(k – 1)/n

times the weight of OPT(G), a minimum weight k

vertex-connected subgraph of G.

Proof: Let N(i) be the subgraph of OPT(G)

formed by vertex i together with its k – 1 closest

neighbors in OPT(G) (observe that each vertex in

OPT(G) has at least k neighbors). Clearly, for

any i, w(S(Z)) ~ w(.iV(i)). Also since each edge is

counted at most twice.

~ ‘(~(i)) ~ 2zu(0PT(G)).
‘2=1

Thus

w(s(j)) = m~nw(s(i)) s ~W(CYPT(G))

This is an upper bound on the weight of the star-

graph centered at vertex j. For any pair of vertices

u, v c S(j), by triangle inequality, we know that

W(U, V) ~ W(ZL, j) + W(j,’V). Thus

8



UERVER,U<V

= (k-l) w(S(j)).

Thus the weight of KR is at most 2(k – 1)/n times

w(CWT(G)). Q

Lemma 4.7 The graph induced by the edges of SU

RR ts k-vertex-connected.

Proof: We give a proof by contradiction. Assume

that the graph contains a vertex cut C with IcI <

k, i.e., the removal of C breaks G into components

Cl, C2,. . . , Cl, where 1>2. Since any two vertices

in R are adjacent. all vertices of R belong to CU C,

(for some i). Consider a vertex v E CJ for some

j # i. By Proposition 4.1 there must be k openly

disjoint paths between v and R. But clearly there

cannot be k openly disjoint paths from v to the

nodes in R since these paths can only

nodes in C, which is a contradiction.

Theorem 4.8 The total weight of S

most (2 + 2(k – 1)/n) w(LW7(G)).

go through

❑

U KR zs at

Proof: By Lemma 4.2, the weight of S is at most

2w(CWT(G)), and by Lemma 4.6, the weight of

KR is at most 2(k – 1)/n. w(OT’T(G)). ❑

Remark: We note that KR can be replaced by any

subgraph SR of G that has the property that there

are k openly disjoint paths between every pair of

vertices in R. If the weight of SR is within a factor

of Q times w(OPT(g)), then the above proofs can

be modified to show that SRU S is k-connected

its weight is at most a + 2 times w(OF’T(g)).

5 Conclusions

and

We conclude with some open problems related to

the topic of obtaining approximation algorithms for

the k-connected spanning subgraph problem.

1. Can we obtain an approximation factor better

than 2 for the unweighed k-vertex-connected

spanning subgraph problem? For the edge

connectivity case we establish a 1.85 factor in

this paper. Can this be improved further?

2. Can we obtain an approximation factor of 2

for the weighted k-vertex-connectivity prob-

lem even when the edge weights do not satisfy

triangle inequality? For the edge connectivity

case, a factor 2 approximation is known [20].

Can this be improved further?
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