
Improved Approximation for Guarding Simple Galleries from the

Perimeter∗

James King
School of Computer Science

McGill University
jking@cs.mcgill.ca

David Kirkpatrick
Department of Computer Science
University of British Columbia

kirk@cs.ubc.ca

February 7, 2010

Abstract

We provide an O(log log OPT)-approximation algorithm for the problem of guarding a simple
polygon with guards on the perimeter. We first design a polynomial-time algorithm for building
ε-nets of size O

(
1
ε log log 1

ε

)
for the instances of Hitting Set associated with our guarding

problem. We then apply the technique of Brönnimann and Goodrich to build an approximation
algorithm from this ε-net finder. Along with a simple polygon P , our algorithm takes as input
a finite set of potential guard locations that must include the polygon’s vertices. If a finite
set of potential guard locations is not specified, e.g. when guards may be placed anywhere on
the perimeter, we use a known discretization technique at the cost of making the algorithm’s
running time potentially linear in the ratio between the longest and shortest distances between
vertices. Our algorithm is the first to improve upon O(log OPT)-approximation algorithms that
use generic net finders for set systems of finite VC-dimension.

1 Introduction

1.1 The art gallery problem

In computational geometry, art gallery problems are motivated by the question, “How many security
cameras are required to guard an art gallery?” The art gallery is modeled as a connected polygon
P . A camera, which we will henceforth call a guard, is modeled as a point in the polygon, and we
say that a guard g sees a point q in the polygon if the line segment gq is contained in P . We call a
set G of points a guarding set if every point in P is seen by some g ∈ G. Let V (P) denote the vertex
set of P and let ∂P denote the boundary of P . We assume that P is closed and non-degenerate so
that V (P) ⊂ ∂P ⊂ P .

We consider the minimization problem that asks, given an input polygon P with n vertices, for
a minimum guarding set for P . Variants of this problem typically differ based on what points in
P must be guarded and where guards can be placed, as well as whether P is simple or contains
holes. Typically we want to guard either P or ∂P , and our set of potential guards is typically V (P)

∗Some of these results appeared in preliminary form as D. Kirkpatrick. Guarding galleries with no nooks. In
Proceedings of the 12th Canadian Conference on Computational Geometry (CCCG’00), pages 43–46, 2000.

1

(vertex guards), ∂P (perimeter guards), or P (point guards). For results on art gallery problems not
related to minimization problems we direct the reader to O’Rourke’s book [18], which is available
for free online.

The problem was proved to be NP-complete first for polygons with holes by O’Rourke and
Supowit [19]. For guarding simple polygons it was proved to be NP-complete for vertex guards by
Lee and Lin [17]; their proof was generalized to work for point guards by Aggarwal [1]. This raises
the question of approximability. There are two major hardness results. First, for guarding simple
polygons, Eidenbenz [9] proved that the problem is APX-complete, meaning that we cannot do
better than a constant-factor approximation algorithm unless P = NP. Subsequently, for guarding
polygons with holes, Eidenbenz et al. [10] proved that the minimization problem is as hard to
approximate as Set Cover in general if there is no restriction on the number of holes. It therefore
follows from results about the inapproximability of Set Cover by Feige [11] and Raz and Safra [20]
that, for polygons with holes, it is NP-hard to find a guarding set of size o(log n). These hardness
results hold whether we are dealing with vertex guards, perimeter guards, or point guards.

Ghosh [13] provided an O(log n)-approximation algorithm for guarding polygons with or without
holes with vertex guards. His algorithm decomposes the input polygon into a polynomial number
of cells such that each point in a given cell is seen by the same set of vertices. This discretization
allows the guarding problem to be treated as an instance of Set Cover and solved using general
techniques. This will be discussed further in Section 1.2. In fact, applying methods for Set Cover
developed after Ghosh’s algorithm, it is easy to obtain an approximation factor of O(log OPT) for
vertex guarding simple polygons or O(log h log OPT) for vertex guarding a polygon with h holes.

When considering point guards or perimeter guards, discretization is far more complicated since
two distinct points will not typically be seen by the same set of potential guards even if they are
very close to each other. Deshpande et al. [7] obtain an approximation factor of O(log OPT) for
point guards or perimeter guards by developing a sophisticated discretization method that runs
in pseudopolynomial time. It is a pseudopolynomial-time algorithm in that its running time may
be linear in the ratio between the longest and shortest distances between two vertices. Efrat and
Har-Peled [8] provided a randomized algorithm with the same approximation ratio that runs in
fully polynomial expected time; their discretization technique involves only considering guards that
lie on the points of a very fine grid.

Our contribution is an algorithm for guarding simple polygons, using either vertex guards or
perimeter guards. Our algorithm has a guaranteed approximation factor of O(log log OPT) and
the running time is polynomial in n and the number of potential guard locations. This is the best
approximation factor obtained for vertex guards and perimeter guards. If no finite set of guard
locations is given, we use the discretization technique of Deshpande et al. and our algorithm is
polynomial in n and ∆, where ∆ is the ratio between the longest and shortest distances between
vertices.

1.2 Guarding problems as instances of Hitting Set

1.2.1 Set Cover and Hitting Set

Set Cover is a well-studied NP-complete optimization problem. Given a universe U of elements
and a collection S of subsets of U , Set Cover asks for a minimum subset C of S such that⋃

S∈C S = U . In other words, we want to cover all of the elements in U with the minimum
number of sets from S. In general, Set Cover is not only difficult to solve exactly (see, e.g.,

2

[12]) but is also difficult to approximate—no polynomial time approximation algorithm can have a
o(log n) approximation factor unless P = NP [20]. Conversely, a simple greedy heuristic (repeatedly
picking the set that covers the most uncovered elements) [6] for Set Cover attains an O(log n)
approximation factor. Another problem, Hitting Set, asks for a minimum subset H of U such
that S

⋂
H 6= ∅ for any S ∈ S. Any instance of Hitting Set can easily be formulated as an

instance of Set Cover and vice versa.

1.2.2 Set Systems of Guarding Problems

Guarding problems can naturally be expressed as instances of Set Cover or Hitting Set. We
wish to model an instance of a guarding problem as an instance of Hitting Set. The desired set
system (U ,S) is constructed as follows. U contains the potential guard locations. For each point p
that needs to be guarded, Sp is the set of potential guards that see p, and S = {Sp | p ∈ P}.

1.2.3 ε-Nets

Informally, if we wish to relax the Hitting Set problem, we can ask for a subset of U that hits
all heavy sets in S. This is the idea behind ε-nets. For a set system (U ,S) and an additive weight
function w, an ε-net is a subset of U that hits every set in S having weight at least ε · w(U).

It is known that set systems of VC-dimension d admit ε-nets of size O
(

d
ε log 1

ε

)
[3] and that

this is asymptotically optimal without further restrictions [16]. It is also known that set systems
associated with the guarding of simple polygons with point guards have constant VC-dimension
[14, 21], and this bound also applies a fortiori to perimeter guards and vertex guards. Thus when
guarding simple polygons we can construct ε-nets of size O

(
1
ε log 1

ε

)
using general techniques. In a

polygon with h holes the VC-dimension is O(log h) [21] and therefore ε-nets of size O
(

1
ε log 1

ε log h
)

can be constructed.
Using techniques specific to vertex guarding or perimeter guarding a simple polygon, we are

able to break through the general Θ
(

d
ε log 1

ε

)
lower bound to build smaller ε-nets. This result is

stated in the following theorem.

Theorem 1. For the problem of guarding a simple polygon with vertex guards or perimeter guards,
we can build ε-nets of size O

(
1
ε log log 1

ε

)
in polynomial time.

Proof. In Section 3 we introduce the basic ideas that allow the construction of ε-nets of size O(1/ε2).
In Section 4 we give a more complicated, hierarchical technique that lets us construct ε-nets of size
O

(
1
ε log log 1

ε

)
.

A similar result for a different problem was recently obtained by Aronov et al. [2], who proved
the existence of ε-nets of size O

(
1
ε log log 1

ε

)
when S is either a set of axis-parallel rectangles in R2

or axis-parallel boxes in R3.

1.2.4 Approximating Hitting Set with ε-Nets

Brönnimann and Goodrich [5] introduced an algorithm for using a net finder (an algorithm for
finding ε-nets) to find approximately optimal solutions for the Hitting Set problem. Their algo-
rithm gives an initial weighting to the elements in U . The net finder is then used to find an ε-net
for ε = 1/2c′, with c′ fixed at a constant between 1 and 2 ·OPT. If there is a set in S not hit by the

3

ε-net, the algorithm picks such a set and doubles the weight of every element in it. It then repeats,
finding a new ε-net given the new weighting. This continues until the algorithm finds an ε-net that
hits every set in S. If the net finder constructs ε-nets of size f(1/ε), their main algorithm finds a
hitting set of size f(4 ·OPT).

Previous approximation algorithms achieving guaranteed approximation factors of Θ(log OPT)
[7, 8] have used this technique, along with generic ε-net finders of size O

(
1
ε log 1

ε

)
for set systems

of constant VC-dimension. Instead, we use our net finder from Theorem 1 to obtain the following
corollary, whose proof is given in Section 2.

Corollary 1. Let P be a simple polygon with n vertices and let G be a set of potential guard
locations such that V (P) ⊆ G ⊂ ∂P . Let T ⊆ P be the set of points we want to guard. There is
a polynomial-time algorithm that outputs a guarding set for T of size O(OPT · log log OPT), where
OPT is the size of the minimum subset of G that guards T .

2 The Main Algorithm

2.1 Main algorithm.

Our main algorithm is an application of that presented by Brönnimann and Goodrich [5]. Their
algorithm provides a generic way to turn a net finder, i.e. an algorithm for finding ε-nets for an
instance of Hitting Set, into an approximation algorithm. Along with a net finder we also need
a verifier, which either states correctly that a set H is a hitting set, or returns a set from S that is
not hit by H.

For the sake of completeness we present the entire algorithm here. G is the set of potential
guard locations and T is the set of points that must be guarded. We first assign a weight function
w to the set G. When the algorithm starts each element of G has weight 1. The main idea of
the algorithm is to repeatedly find an ε-net H and, if H is not a hitting set (i.e. if it does not see
everything in T), to choose a point p ∈ T that is not seen by H and double the weight of any guard
that sees p.

2.1.1 Bounding the number of iterations.

For now assume we know the value of OPT and we set ε = 1
2·OPT . We give an upper bound for

the number of doubling iterations the algorithm can perform. Each iteration increases the total
weight of G by no more than a multiplicative factor of (1 + ε) (since the guards whose weight we
double have at most an ε proportion of the total weight). Therefore after k iterations the weight
has increased to at most

|G| · (1 + ε)k ≤ |G| · exp
(

k

2 ·OPT

)
≤ |G| · 2(3k

4·OPT) .

Let H ⊆ G be an optimal hitting set (i.e. guarding set) of size OPT. For an element h ∈ H define
zh as the number of times the weight of h has been doubled. Since H is a hitting set, in each
iteration some guard in H has its weight doubled, so we have∑

h∈H
zh ≥ k

4

and

w(H) =
∑
h∈H

2zh

≥ OPT · 2(k
OPT) (since 2x is a convex function).

We now have
OPT · 2(k

OPT) ≤ w(H) ≤ w(G) ≤ |G| · 2(3k
4·OPT) ,

which gives us

k ≤ 4 ·OPT · log
(

|G|
OPT

)
.

This bound also tells us that the total weight w(G) never exceeds |G|4
OPT3 .

We must now address the fact that the value of OPT is unknown. We maintain a variable c′

which is our guess at the value of OPT, starting with c′ = 1. If the algorithm runs for more than
4 · c′ · log

(
|G|
c′

)
iterations without obtaining a guarding set, this implies that there is no guarding

set of size c′ so we double our guess. When our algorithm eventually obtains a hitting set, we have
OPT ≤ c′ ≤ 2 · OPT. The hitting set obtained is a

(
1

2c′

)
-net build by our net finder. Therefore,

using the method from Section 4 to build an ε-net of size O
(

1
ε log log 1

ε

)
, we obtain a guarding set

of size O(OPT · log log OPT).

2.1.2 Verification

The main algorithm requires a verification oracle that, given a set H of guards, either states correctly
that H guards T or returns a point p ∈ T that is not seen by H. We can use the techniques of
Bose et al. [4] to find the visibility polygon of any guard in H efficiently. It will always be the case
that |H| < n. Finding the union of visibility polygons of guards in H can be done in polynomial
time, as can comparing this union with T .

3 Building quadratic nets

In this section we show how to build an ε-net using O(1/ε2) guards. This result is not directly
useful to us but we use this section to perform the geometric leg work, and hopefully provide some
intuition, without worrying about the hierarchical decomposition to be described in Section 4. It
should be clear that these ε-nets can be constructed in polynomial time.

3.1 Subdividing the Perimeter.

For the construction both of the ε-nets in this section and those in the next section we will subdivide
the perimeter into a number of fragments. Fragment endpoints will always lie on vertices, but the
weight of a guard location may be split between multiple fragments and a fragment may consist of
a single vertex.

The key difference between the construction of the ε-nets in this section and those in the next
section is the method of fragmentation. In this section, the perimeter will simply be divided into
m = 4/ε fragments each having weight ε

4w(G). For our purposes, 1/ε will always be an integer so
m will always be an integer.

5

3.2 Placing Extremal Guards.

For two fragments Ai and Aj we will place guards at extreme points of visibility. Those are the
first and last points on Ai seen from Aj and the first and last points on Aj seen from Ai. For a
contiguous fragment we define the first (resp. last) point of the segment according to the natural
clockwise ordering on the perimeter. We use G(Ai, Aj) to denote the set of up to 4 extremal guards
placed between Ai and Aj .

These extreme points of visibility might not lie on vertices. In fact, it is entirely possible that
two fragments Ai and Aj see each other even if no vertex of Ai sees Aj and vice versa. If an extreme
point of visibility is not a potential guard location, we will simply not place a guard there. Our
proofs, in particular the proof of Lemma 2, will only require guards on extreme points of visibility
that either lie on vertices or on fragment endpoints.

3.3 All Pairs Extremal Guarding.

Our aim in this section is to build an ε-net by placing extremal guards for every pair (Ai, Aj) of
fragments. We denote this set of guards with

SAP =
⋃
i6=j

G(Ai, Aj) .

Note that |SAP | ≤ 4
(
m
2

)
= O(1/ε2). Also note that every fragment endpoint is included in SAP .

Lemma 1. Any point not guarded by SAP sees at most 4 fragments.

Corollary 2. SAP is an ε-net of size O(1/ε2).

For the proof of Lemma 1 we need to present additional properties of the fragments that can
be seen by a point. For a point x, the fragments seen by x are ordered clockwise in the order they
appear on the boundary of P . We need to consider lines of sight from x, and what happens when
a transition is made from seeing one fragment Ai to seeing the next fragment Aj . There are three
possibilities:

1. j = i + 1 and x sees the guard at the common endpoint of Ai and Aj

2. Aj occludes Ai, in which case we say that x has a left tangent to Aj (see Figure 1)

3. Ai was occluding Aj , in which case we say that x has a right tangent to Ai (see Figure 2).

We say a fragment A owns a point x if x sees A in a sector of size at least π. We assume any
point x is owned by at most one fragment; if x is a fragment endpoint it will itself be a guard, and
otherwise if x is owned by two fragments then only those two fragments can see it.

Lemma 2. Let Ai, Aj, Ak be fragments that are seen by x consecutively in clockwise order. If x
has a left tangent to Aj, and the combined angle of Aj and Ak at x is no more than π, then x sees
a guard in G(Aj , Ak). Symmetrically, if x has a right tangent to Aj, and the combined angle of Ai

and Aj at x is no more than π, then x sees a guard in G(Ai, Aj).

Proof. We can assume w.l.o.g. that x has a left tangent to Aj since the proof of the other case is
symmetric. There are now two cases we have to deal with, depending on whether x has a right
tangent to Aj (case 1) or a left tangent to Ak (case 2). Define pL and pR respectively as the first

6

x

Ai

Aj

Figure 1: The point x has a left tangent to Aj .

x

Aj

Ai

Figure 2: The point x has a right tangent to Ai.

x

Ai

Aj

Ak

A`

Figure 3: The point x has no tangent to Ai, a left tangent to Aj , both a left and right tangent to
Ak, and a right tangent to A`. Aj owns x.

7

x

Ai

Aj

Ak

pL
pR

Figure 4: Case 1 in the proof of Lemma 2. The
point x has a left tangent and a right tangent
to Aj .

x

Ai

Aj

Ak

pL

pR

Figure 5: Case 2 in the proof of Lemma 2. The
point x has a left tangent to Aj and a left tan-
gent to Ak.

and last points on Aj seen by x. Observe that x must see every vertex on the geodesic between pL

and pR. Let q be the first point on Aj seen from Ak. In both cases 1 and 2 (see Figures 4 and 5),
q must be a vertex of the geodesic between pL and pR. This can be shown by contradiction; if q
lies between consecutive vertices of this geodesic then those two consecutive vertices must also be
seen from Ak, and one of them comes before q.

The restriction that the combined angle of Aj and Ak at x is no more than π is necessary to
ensure that the geodesic of interest from Ak to Aj does not ‘pass behind’ x to see a point on Aj

before pL.
It should be emphasized that, since there is a left tangent to Aj , pL will always be a vertex.

Also, if pR is not a vertex it will not be the first point on Aj seen from Ak.

The proof of Lemma 1 is now fairly straightforward.

Proof of Lemma 1. Let x be a point that sees at least 5 fragments. Assume x is not a fragment
endpoint, otherwise it is itself a guard in SAP . If we have a directed graph whose underlying
undirected graph is a cycle, then either we have a directed cycle or we have a vertex with in-degree
2. By the same principle, either some fragment seen by x has no tangent from x, or every fragment
seen by x has a left tangent from x (or every one has a right tangent, which can be handled
symmetrically).

If a fragment seen by x has no tangent from x, call such a fragment A0 and let A−2, A−1, A0,
A1, A2 be fragments seen by x in clockwise order. If the combined angle at x of A−2 and A−1 is
more than π, the combined angle of A1 and A2 is less than π. So we can apply Lemma 2 with one
of the two pairs of fragments to show that x is seen by a guard.

If every fragment seen by x has a left tangent from x, then we can apply Lemma 2 using two
consecutive fragments with a combined angle at x of less than π.

8

Before we move on we will prove one more helpful lemma.

Lemma 3. The number of fragments seen by an unguarded point x that do not have a tangent
from x is at most 1.

Proof. Assume the contrary and let A0 and Ai be two such fragments. If one such fragment owns
x, assume it is A0 and call the next two fragments seen by x in the clockwise direction A1 and A2

respectively. By Lemma 2, x is seen by a guard in G(A1, A2) so we reach a contradiction. If no
such fragment owns x then assume w.l.o.g. that, over the fragments seen by x between A0 and Ai

going clockwise, the combined angle at x is less than π (if this is not true it must be true going
counterclockwise). Again, x is seen by a guard in G(A1, A2) so we reach a contradiction.

4 Hierarchical fragmentation

In the last section we showed how a quadratic number of guards (i.e. O(1/ε2)) could be placed
to ensure that any unguarded point sees at most 4 fragments. In this section we discuss how
hierarchical fragmentation can be used to reduce the number of guards required to O

(
1
ε log log 1

ε

)
.

We will use SHF to denote the guarding set constructed in this section. It should be clear that
these ε-nets can be constructed in polynomial time.

We can consider the hierarchy as represented by a tree. At the root there is a single fragment
representing the entire perimeter of the polygon. This root fragment is broken up into a certain
number of child fragments. Fragmentation continues recursively until a specified depth t is reached.
We will set t =

⌈
log log 1

ε

⌉
. The fragmentation factor (equivalently, the branching factor of the

corresponding tree) is not constant, but rather depends on both t and the level in the hierarchy.
The fragmentation factor generally decreases as the level of the tree increases. Specifically, if bi is
the fragmentation factor at the ith step, we have

bi =

{
22t−1+1 · 4t · 21−t · α , i = 1
22t−i+1 , 1 < i ≤ t ,

where α ≤ 1 is a term introduced only to deal with an issue arising from ceilings and double
exponentials, namely the fact that 22dlog log 1/εe

is not in O(1/ε). α is specified in (3) later in this
section.

If fi is the total number of fragments after the ith fragmentation step, this gives us

fi =

1 , i = 0

4t · 22t−2t−i−t+i+1 · α , 0 < i ≤ t

4t · 22t · α , i = t ,

9

since

fi =
i∏

j=1

bj

= 4t · 21−t · α ·
i∏

j=1

22t−j+1

= 4t · 21−t+
Pi

j=1(2t−j+1) · α
= 4t · 22t−2t−i−t+i+1 · α .

Our algorithm will place guards at all pairs of sibling fragments, i.e. fragments having the same
parent fragment. For the purposes of this guard placement, the complement of the parent fragment,
i.e. the subset of G outside the parent fragment, will be considered a dummy child fragment. That
is, it will be considered a child fragment when placing guards, but not when counting the number
of child fragments seen from some point x as in the statement of Corollary 3 or in the proof of
Lemma 4. To denote the complement of a fragment A we use A. Considering A to be a child of A
when placing guards allows us to consider the children of A as if they were fragments with guards
placed for all pairs. For example, we can obtain the following corollary from Lemmas 1 and 3.

Corollary 3. For an unguarded point x and a fragment A, the number of child fragments of A
seen by x is at most 3, and at most one of these child fragments does not have a tangent from x.

The total number of guards placed will be

|SHF | ≤ 4
t∑

i=1

(
bi + 1

2

)
fi−1 ≤ 4

t∑
i=1

b2
i fi−1 .

If t ≥ 6 we have bi ≤ 22t−i+1 for all values of i. This gives us

|SHF | ≤ 4α

t∑
i=1

22(2t−i+1) · 4t · 22t−2t−i+1−t+i

= 16tα

t∑
i=1

22t−t+i+2

= 16tα · 22t−t+3(2t − 1)

< 16tα · 22t+3

= 128tα · 22t
.

Recall that t =
⌈
log log 1

ε

⌉
. We need to define α in a way that ensures b1 is an integer and that

ensures the following two equations hold:

|SHF | = O

(
1
ε

log log
1
ε

)
(1)

ft

4t
≥ 1

ε
. (2)

10

To satisfy these three criteria, it suffices to set

α =

⌈
22t−1+1 · 4t · 2−t · 2log(1/ε)−2t

⌉
22t−1+1 · 4t · 2−t

=

⌈
4t · 2log(1/ε)+1−t−2t−1

⌉
4t · 22t−1+1−t

. (3)

We must now provide a generalization of Lemma 1 that works with our hierarchical fragmen-
tation.

Lemma 4. Any point not guarded by SHF sees at most 4i fragments at level i.

Applying this with i = t and using (1) and (2), we get

Corollary 4. SHF is an ε-net of size O
(

1
ε log log 1

ε

)
.

Proof of Lemma 4. Let x be a point that does not see any guard in SHF . From the tree associated
with the hierarchical fragmentation, we consider the subtree of fragments that see x. We define
a branching fragment as a fragment with multiple children seen by x and we claim that at any
level there are at most 2 branching fragments. Corollary 3 tells us that any fragment has at most
3 children seen by x. At level 1 there are at most 4 fragments seen by x, so it follows that the
number of fragments seen by x at level i is at most 4i. We must now prove our claim that there
are at most 2 branching fragments at any level.

First we note that a branching fragment either has no tangent from x or owns x. To see this,
consider a fragment A that has a tangent from x and does not own x. Assume w.l.o.g. that x has
a left tangent to A and call the point of tangency pL. x must then also have a left tangent to the
child fragment A0 of A that contains pL. A0 must be the leftmost child fragment of A seen by x.
If x sees another child fragment A1 of A to the right of A0, then by Lemma 2 it is seen by a guard
in G(A0, A1).

Consider now the following possibilities for a given fragment A.

1. A is not seen by x. Clearly x cannot see any child fragments of A.

2. A does not own x, and x has a tangent to A. A then has exactly one child fragment that sees
x, and this fragment is of type (2).

3. A does not own x, and x does not have a tangent to A. By Corollary 3, x can see at most 3
child fragments of A. At most one of these children is of type (3) and all others must be of
type (1) or (2).

4. A owns x and has no tangents from x, i.e. A has two tangents from x. If a child of A owns
x it must be the only child of A that sees x, and this child is also of type (4). Otherwise, A
would have a child fragment Ai that is seen by x, does not own x, and is adjacent to A. x
would then be seen by a guard in G(Ai, AP). Thus A has at most one child that is not of
type (1) or (2).

5. A owns x and has two tangents from x. Because A is, in a sense, a ‘dummy’ child of type
(3), A cannot have a real child of type (3) by the proof of Lemma 3. Further, if A has a
child A0 that owns x, this child must also be of type (5). Otherwise assume w.l.o.g. that
A1, immediately clockwise from A0, has a left tangent from x. Then, using A2 to denote the
fragment clockwise from A1 (A2 might be AP), x is seen by G(A1, A2).

11

x

A1

A0

A−1

A

Figure 6: The only way a fragment of type (5) can have three children seen by x.

6. A owns x and has exactly one tangent from x (see Figure 7). We consider how A can have
multiple children seen by x. Assume w.l.o.g. that A has a right tangent. If A−1 is the child
of A seen by x immediately counterclockwise from A then A−1 must own x, otherwise x is
seen by G(A−1, A). If A1 is the child of A seen by x immediately clockwise from A then A1

cannot have a tangent from x otherwise x would be seen by G(A,A1). If x can see A2, a child
of A between A1 and A−1, then x must have two tangents to A−1 otherwise it would be seen
by G(A1, A2).

Therefore if A has more than one child seen by x, there must one of type (3) and one of type
(5), plus (possibly) a child of type (2).

We call a non-root fragment fruitful if it or one of its descendants is a branching fragment.
Only fragments of type (3-6) can be fruitful. Only fragments of type (6) can have more than one
fruitful child, and they can have at most two fruitful children. No non-root fragment can have a
child fragment of type (6). Also, if the root has a child fragment of type (6), the root cannot have
a child of type (3). Therefore any level has at most 2 fruitful fragments.

We can now state the following:

• Level 1 has at most 4 child fragments that see x, at most 2 of which are fruitful.

• A fruitful fragment has at most 3 child fragments that see x, at most 1 of which is fruitful.

• A non-fruitful fragment has at most 1 child fragment that sees x.

Therefore any level has at most 2 fruitful fragments and the number of fragments at level i that
see x is at most 4i.

12

x

A1

A−1

A

A2

Figure 7: The only way a fragment of type (6) can have three children seen by x.

5 Open problems

• We have obtained a o(log OPT)-approximation factor for vertex guards and perimeter guards.
Can the same be done for point guards?

• Can we do better than O(log log OPT) for perimeter guards? In particular, can we find a
constant factor approximation algorithm to match the hardness of approximation result of
Eidenbenz [9]?

• For simple polygons, the set systems associated with point guards have maximum VC-
dimension at least 6 and at most 23 [21]; it is believed that the true value is closer to the lower
end of this range, perhaps even 6 [14]. The upper bound of 23 holds a fortiori for set systems
associated with perimeter guards but the lower bound of 6 does not. A lower bound of 4
follows from a trivial modification to an example for monotone chains [15]; we can increase
this bound to 5 without too much difficulty (see Figure 8). Can set systems associated with
perimeter guards actually have VC-dimension as high as 6? And can the upper bound of 23
be improved? It seems that improving the upper bound would be easier for perimeter guards
than for point guards.

References

[1] A. Aggarwal, The art gallery theorem: its variations, applications and algorithmic aspects,
Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 1984

13

1

2

34

5

135

345

2345

245

234

1234
134123

1235

235

125

1245

124

145
1345

Figure 8: A polygon with a set S of 5 points on the perimeter. The points in S = {1, 2, 3, 4, 5}
are marked with circles and labeled with large numbers. Each point in S sees all of S, and each
guard seeing a subset of S of size 3 or 4 is marked with a cross and labeled with small numbers
indicating which points in S it sees. Guards seeing the 16 subsets of S of size 0, 1, or 2 are not
shown. Adding these is a simple matter of adding nooks with very small angles of visibility, thus
we can construct a polygon with 5 points on the perimeter shattered by 25 perimeter guards. Such
a polygon can also be obtained via a fairly straightforward modification of the example of Kalai
and Matoušek for point guards [14].

14

[2] B. Aronov, E. Ezra, and M. Sharir, Small-size ε-nets for axis-parallel rectangles and boxes, in
Proc. 41st ACM Symp. Theory of Computing, Bethesda, MD, 2009, pp. 639–648.

[3] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth, Learnability and the Vapnik-
Chervonenkis dimension, J. ACM 36:4 (1989), 929–965.

[4] P. Bose, A. Lubiw, and J. I. Munro, Efficient visibility queries in simple polygons, Comput.
Geom. Theory Appl. 23:3 (2002)), 313–335.

[5] H. Brönnimann and M. T. Goodrich, Almost optimal set covers in finite VC-dimension, Dis-
crete & Computational Geometry, 14:1 (1995), 463–479.

[6] V. Chvátal, A greedy heuristic for the set-covering problem, Mathematics of Operations Re-
search 4:3 (1979), 233–235.

[7] A. Deshpande, T. Kim, E. D. Demaine, and S. E. Sarma, A pseudopolynomial time O(log n)-
approximation algorithm for art gallery problems, in Proc. 10th Workshop on Algorithms and
Data Structures, Halifax, Canada, 2007, pp. 163–174.

[8] A. Efrat and S. Har-Peled, Guarding galleries and terrains, Inf. Process. Lett. 100:6 (2006),
238–245.

[9] S. Eidenbenz, Inapproximability results for guarding polygons without holes, in Proc. 9th Int.
Symp. Algorithms and Computation, pp. 427–436, Lecture Notes in Computer Science, Vol.
1533, 1998.

[10] S. Eidenbenz, C. Stamm, and P. Widmayer, Inapproximability results for guarding polygons
and terrains, Algorithmica 31:1 (2001), 79–113.

[11] U. Feige, A threshold of lnn for approximating set cover, J. ACM 45:4 (1998), 634–652.

[12] M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness, W.H. Freeman and Co., San Francisco, 1979.

[13] S. Ghosh, Approximation algorithms for art gallery problems Proc. Canadian Information
Processing Society Congress, 1987, pp. 429–436.

[14] G. Kalai and J. Matoušek, Guarding galleries where every point sees a large area, Israel Journal
of Mathematics 101:1 (1997), 125–139.

[15] J. King, VC-dimension of visibility on terrains, in Proc. 20th Canadian Conference on Com-
putational Geometry, Montreal, Canada, 2008, pp. 27–30.

[16] J. Komlós, J. Pach, G. and Woeginger, Almost tight bounds for ε-nets, Discrete & Computa-
tional Geometry 7:1 (1992), 163–173.

[17] D. Lee and A. Lin, Computational complexity of art gallery problems, IEEE Trans. Inform.
Theory 32 (1986), 276–282.

[18] J. O’Rourke, Art Gallery Theorems and Algorithms, Oxford University Press, 1987.

15

[19] J. O’Rourke and K. J. Supowit, Some NP-hard polygon decomposition problems, IEEE Trans-
actions on Information Theory 29:2 (1983), 181–189.

[20] R. Raz and S. Safra, A sub-constant error-probability low-degree-test and a sub-constant error-
probability PCP characterization of NP, in Proc. 29th ACM Symp. Theory of Computing, El
Paso, TX, 1997, pp. 475–484.

[21] P. Valtr, Guarding galleries where no point sees a small area, Israel Journal of Mathematics
104:1 (1998), 1–16.

16

	Introduction
	The art gallery problem
	Guarding problems as instances of Hitting Set
	Set Cover and Hitting Set
	Set Systems of Guarding Problems
	-Nets
	Approximating Hitting Set with -Nets

	The Main Algorithm
	Main algorithm.
	Bounding the number of iterations.
	Verification

	Building quadratic nets
	Subdividing the Perimeter.
	Placing Extremal Guards.
	All Pairs Extremal Guarding.

	Hierarchical fragmentation
	Open problems

