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With the topics related to the intelligent AUV, control and navigation have become one of the key researching fields. ,is paper
presents a concise and reliable path planning method for AUV based on the improved APF method. AUV can make the decision
on obstacle avoidance in terms of the state of itself and the motion of obstacles.,e artificial potential field (APF) method has been
widely applied in static real-time path planning. In this study, we present the improved APF method to solve some inherent
shortcomings, such as the local minima and the inaccessibility of the target. A distance correction factor is added to the repulsive
potential field function to solve the GNRON problem. ,e regular hexagon-guided method is proposed to improve the local
minima problem. Meanwhile, the relative velocity method about the moving objects detection and avoidance is proposed for the
dynamic environment. ,is method considers not only the spatial location but also the magnitude and direction of the velocity of
the moving objects, which can avoid dynamic obstacles in time. So the proposed path planning method is suitable for both static
and dynamic environments. ,e virtual environment has been built, and the emulation has been in progress in MATLAB.
Simulation results show that the proposed method has promising feasibility and efficiency in the AUV real-time path planning.
We demonstrate the performance of the proposed method in the real environment. Experimental results show that the proposed
method is capable of avoiding the obstacles efficiently and finding an optimized path.

1. Introduction

Autonomous underwater vehicle (AUV) refers to an
untethered underwater vehicle that can sail underwater by
remote control or autonomous control [1]. AUV is an es-
sential tool for human beings to expand cognition and
explore the world under the sea. It can operate autono-
mously in the place where human beings cannot reach [2]
and has a very profound value of research [3–7] and ap-
plication [8]. ,e circumstances of underwater are not set in
stone. When cruising in the sea, AUV will come across static
as well as dynamic surroundings, which means the obstacles
may be stationary or moving or both, for example, fish,
moving obstacles (such as other AUV) and unknown static

obstacles (such as reefs). ,e AUV must be able to find an
efficient and safe path to avoid collision with them. So the
intelligent path planning is considered to be a key tech-
nology for an AUV’s utility and mission success [9, 10].
Path planning refers to the fact that the robot finds a

collision-free optimal path from the start point to the goal
point in the workspace with obstacles, on the premise of the
one or more optimization criteria among the shortest
moving path, the shortest moving time, and the minimum
working cost [11–13]. Numerous algorithms on robot path
planning have been developed. ,e primary navigation al-
gorithms can be broadly classified into two main ap-
proaches: classical algorithms and heuristics algorithms [14].
,e classical approaches include roadmap building, cell
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decomposition, reactive approaches, and artificial potential
field (APF) method. Roadmap building algorithms are a
group of computational geometry-based approaches to path
planning [15], which included visibility graph [16], Voronoi
diagram [15], subgoal network [17], and silhouette approach
[18]. ,ese algorithms extend the obstacles in the workspace
into polygons. ,e connection is established among the
corner point of polygonal obstacles, the start point, and the
goal point to achieve the shortest path search. ,e algorithm
of cell decomposition is proposed by Cai and Ferrari [19]. Its
principle is to decompose the environment of the robot into
a set of nonoverlapping cells.,e cells are used to construct a
connectivity graph. ,e graph would be transformed into a
decision tree from which an optimal sensing strategy can be
computed to perform the path planning. Reactive ap-
proaches, namely, fuzzy logic [20], neural networks [21], and
neurofuzzy systems [22], are also the algorithms that have
served as the core methodology to develop path planning. It
simulates the workspace of the robot as a network of
neurons. Use the information received from the sensors,
such as the obstacle position and the motion state as inputs
of the neural network. Take the robot movement direction
and the steering angle as outputs through iterative calcu-
lations. ,e robot can avoid the obstacles and move toward
the goal point. ,e APF method [23] is the virtual force
method that was first proposed by Khatib in 1986. ,e
movement of the robot in the environmental space is
transformed into the virtual force field motion. ,e at-
tractive force of the goal point attracts the robot to move
toward it. ,e repulsive force of the obstacles prevents the
robot from moving toward it. ,e resultant force is the
combination of the attractive force of the goal point and the
repulsive forces of all obstacles.,emagnitude and direction
of the resultant force determine the motion state of the
robot. Heuristics algorithms [24] containA∗ algorithm [25],
Dijkstra algorithm [26], BFS algorithm [27], Bio-inspired
algorithms [28–33], and so on [34, 35]. ,ese algorithms can
yield good solutions, but not necessarily the optimum. All
the mentioned algorithms have their respective advantages
and disadvantages. ,ey are not mutually independent but
deeply correlated to each other. In many applications, some
of them can be combined to derive the most effective path
planning manner [14].
AUV needs to work across a broad range of marine

environments. It has higher requirements for real-time
computation and energy consumption of the path planning
method. ,e APF method is the most widely used one in
AUV path planning because the model is simple and ap-
plicable for real-time implementation [36]. When AUV
detects an unknown obstacle, it takes the current position as
the start point and the next turning point in the global path
planning as the goal point. Construct an attractive potential
field at the goal point and the repulsive potential field around
the obstacle. AUV moves toward the goal point in the joint
action of the attractive force and the repulsive forces [10].
However, there are some inherent problems in the tradi-
tional APF method: (1) goal nonreachable with obstacles
nearby (GNRON), (2) the local minima problem, and (3)
dynamic environment obstacle avoidance. Many proposals

have emerged [37–42] to overcome such drawbacks. Matoui
et al. [37] handle the local minimum problem using the
nonminimum speed algorithm. Weerakoon et al. [38]
overcome the local minima problem by replacing tradi-
tionally used functions with exponential functions. It gen-
erates a new repulsive force to the primary force when the
robot detects an obstacle within its sensory range. Sun et al.
[39] use a dynamic window approach to solve the local
minimum problem. It employs a cost function to evaluate
simulated trajectories, such that the local minimum region
can be found in the prior step. Liang et al. [40] propose the
approach of sector division to increase the virtual obstacle in
the appropriate range around the local minimum point.
Under the combined action of the original obstacles and the
target point, the force to the mobile robot is generated. Yang
et al. [41] build a new repulsive potential function that takes
the relative distance between the robot and the goal into
consideration to overcome the GNRON problem. It uses the
potential filling method that sets an additional potential field
in the area to pull the robot away from the local minima. Li
et al. [42] employ virtual local target and repulsive force
disappearance method to eliminate local minimum caused
by traditional APF when attractive force and repulsive force
are in collinear but opposite direction.
For the dynamic environment, Sun et al. [39] define an

evolutionary potential field function based on an improved
minimum danger index. It can plan an optimal path using
not only the relative distance and velocity direction infor-
mation, but also the magnitude information of the robot and
obstacle speeds. Ge and Cui [43] propose a new potential
field method in a dynamic environment where both the
target and obstacles are moving. ,e new potential function
takes into account not only the position but also the velocity
of the robot (relative to target and obstacles). ,e virtual
force is defined as the negative gradient of the potential with
respect to position and velocity. ,e total virtual force then
determines the motion of the mobile robot. Montiel et al.
[44] introduce a parallel evolutionary artificial potential field
for the dynamic environment. It can achieve controllability
in complex real-world sceneries with dynamic obstacles if a
reachable configuration set exists. Zhu et al. [45] take ac-
count of both the ocean current and moving obstacles in-
fluence underwater. It proposes an integrated AUV path
planning algorithm through a combination of velocity
synthesis (VS) and an enhanced APF algorithm. Cheng et al.
[46] propose a novel integrated AUV path planning algo-
rithm by combining the velocity synthesis and artificial
potential field algorithm. ,e improved artificial potential
field method is used to avoid dynamic obstacles effectively,
and the velocity synthesis algorithm is used to achieve the
optimal path. ,ese algorithms may help the robot escaping
from inherent problems and make intelligent path planning.
Based on previous studies and the basic theory of the APF
method, there is still some room for improvement to achieve
more simple and efficient obstacle avoidance path planning.
In this paper, we present a real-time path planning

method for the AUV based on the improved APF method.
,e main contributions of this paper can be summarized as
follows. First, the modified APF method is developed to
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address the inherent problems: a distance correction factor is
added to the repulsive potential field function to solve the
GNRON problem; the regular hexagon-guided (RHG)
method is combined with the traditional APF method to
address the local minima problem. If the AUV trapped in a
local minimum region, the system can construct a virtual
regular hexagon helping it get out of the difficult position.
,e distance of a one-step position is taken as the side length
of the regular hexagon. Second, the relative velocity method,
an evolutionary potential field method, is presented to adapt
the dynamic environment obstacle avoidance. ,is method
considers not only the spatial location but also the mag-
nitude and direction of the velocity of the moving obstacles.
,ird, the proposed path planning method can select a
suitable obstacle avoidance strategy by apperceiving the
motion of the obstacles (static or moving) and the running
status of the AUV (such as whether trapped in a local
minimum region). So the proposed method can not only
reduce the burden of computation but also react to sensory
data as quickly as possible for the static as well as dynamic
environments. AUV can make the decision to avoid both
static and moving obstacles. We demonstrate the proposed
method in the simulation and real environments, respec-
tively, which shows the effectiveness of our method.
,is paper is organized as follows. In Section 2, we briefly

review the mathematical model of the traditional APF
method. In Section 3, the description of the modified ap-
proaches is presented to solve inherent problems in the
traditional APF method. Meanwhile, we present the path
planning strategy based on the modified APF approaches. In
Section 4, the conducted experiments supported with a
complete simulation of static obstacles, moving obstacles, and
dynamic environment, as well as the experimental results, are
provided. In Section 5, the practical application of the pro-
posed method has been analyzed through a real environment
experiment. Finally, conclusions are drawn in Section 6.

2. Theoretical Foundations

2.1. Attractive Potential Field Function. Set the current po-
sition coordinates of AUV as X � (x, y)T, and the goal point
coordinates asXg � (xg, yg)

T. ,e AUV has been affected all
along by the attractive force before reaching the goal point.,e
farther the goal point, the bigger the attraction. ,e attraction
becomes zero when the AUV reaches the goal point. ,e
attractive potential field Uatt produced by the goal point is

Uatt(X) �
1

2
katt · d

2 X,Xg( ), (1)

where d(X,Xg) � ‖Xg −X‖ is the Euclidean distance be-
tween the AUV and the goal point. katt is the attractive
potential field constant.
,e attractive force Fatt(X) of the AUV in the attractive

potential field is the negative gradient of Uatt(X):

Fatt(X) � −∇Uatt(X) � katt · d X,Xg( ). (2)
,e direction of the attractive force is along the line

between the AUV and the goal point and points to the goal
point.

2.2. Repulsive Potential Field Function. Similar to the at-
tractive potential field function, the repulsive potential field
function is also distance-based. When the AUV is inside the
influence range of the obstacle, it would be affected by the
repulsion. ,e closer the obstacle, the bigger the repulsion.
Set the coordinates of the obstacle as Xo � (xo, yo)

T; the
repulsive potential field Urep(X) generated by the relative
distance between the AUV and the obstacle is

Urep(X) �

1

2
krep

1

d X,Xo( ) −
1

d0
( )2, d X,Xo( )≤ d0,

0, d X,Xo( )> d0,


(3)

where d(X,Xo) � ‖Xo −X‖ is the Euclidean distance be-
tween the AUV and obstacle. krep is the repulsive potential
field constant. d0 is the influence range of the repulsive
potential field.
,e repulsive force Frep(X) of the AUV in the repulsive

potential field is the negative gradient of Urep(X):

Frep(X) � −∇Urep(X)

�

krep
1

d X,Xo( ) −
1

d0
( )∇d X,Xo( )

d2 X,Xo( ) , d X,Xo( )≤ d0,

0, d X,Xo( )> d0.


(4)

,e direction of the repulsive force is along the line
between the AUV and obstacle and points to the AUV.

2.3. Resultant Potential Field Function. AUV will be affected
by the combined action of the attractive potential field and
the repulsive potential field while moving toward the goal
point. ,e resultant potential field function U(X) of AUV is

U(X) � Uatt(X) + Urep(X). (5)

,e resultant force F(X) is

F(X) � −∇U(X) � −∇Uatt(X) − ∇Urep(X)
� Fatt(X) + Frep(X).

(6)

,e establishment of the resultant force model in dy-
namic two-dimensional space is shown in Figure 1. Frep1 and
Frep2 are the repulsive forces generated by the two obstacles,
respectively. Frep is the total repulsive force from all ob-
stacles. Fatt is the attractive force generated by the goal point.
,e resultant force F can be obtained by the principle of
superposition.

3. Materials and Methods

,e APF method is here modified significantly to make it
more suitable for AUV path planning in static and dynamic
environments. Meanwhile, we propose the obstacle avoid-
ance strategy based on the modified APF method. Table 1
shows the decision-making framework of the proposed path
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planning method. Figure 2 shows the flowchart of the
proposed method. A distance correction factor is added to
the original repulsive potential field function to solve the
GNRON problem. ,e regular hexagon-guided (RHG)
method is combined with the APF method to help the AUV
escaping from the local minimum region. ,e relative ve-
locity method adds the velocity factor to the APF method to
solve the dynamic environment obstacle avoidance problem.
AUV can choose an appropriate obstacle avoidance strategy
through apperceiving outside environment and self-state
and the motion of obstacles.

3.1. 1e Improvement of the GNRON Problem. ,e essential
cause of the GNRON problem is that the goal point is not the
minimum of the total potential function. From (3), if AUV
infinite closes to the obstacle, d(X,Xo) approaches zero and
1/d(X,Xo) approaches∞. ,at is, as the AUV closes to the
goal, on the one hand, the attractive potential field decreases;
on the other hand, the repulsive potential field increases
quickly. Figure 3(a) shows the GNRON problem in two-
dimensional space.,e dotted circle represents the influence
range of the repulsive potential field. When AUV is located
at the position of Figure 3(a), it is affected by the combined
action of Fatt and Frep. ,e repulsion is much larger than the
attraction, much like the principle of flow, moving from the
higher potential filed to the lower potential field. ,e total
force points to the direction away from the goal point. AUV
cannot reach the goal point.
To solve the GNRONproblem, a distance correction factor

is added to the repulsive potential field function. It can balance
the changes in two kinds of force, especially the rapid increase
of the repulsive force. In this way, the repulsive force can be
reduced gradually when the AUV closes to the goal point. It
can also guarantee the resultant potential field at the goal point

is the global minimum. With the attractive potential field
unchanged, the repulsive potential field function can be defined
as follows:

Urep(X) �

1

2
krep

1

d X,Xo( ) −
1

d0
( )2dn X,Xg( ), d X,Xo( )≤ d0,

0, d X,Xo( )> d0,


(7)

where dn(X,Xg) is added to (7) based on (3). d
n(X,Xg) is

the distance between the AUV and the goal position. n is an
arbitrary real number which is greater than zero. ,e im-
proved repulsive force function is given as follows:

Frep(X) � −∇Urep(X)

�
Frep1(X) + Frep2(X), d X,Xo( )≤d0,
0, d X,Xo( )>d0.{ (8)

Frep1(X) and Frep2(X) are defined as

Frep1(X) � krep
1

d X,Xo( ) −
1

d0
( ) dn X,Xg( )

d2 X,Xo( ), (9)

Frep2(X) �
n

2
krep

1

d X,Xo( ) −
1

d0
( )2dn−1 X,Xg( ). (10)

,e resultant force model of the improved repulsive po-
tential field is shown in Figure 3(b). ,e direction of the
improved repulsive force Frep is not on the line between the
AUV and the obstacle. ,is is different from the traditional
APFmethod. Frep1 is one component of Frep. Its direction is on
the line between the AUV and the obstacle, and it makes AUV
moving away from obstacles. Frep2 is another component of

Goal point

Obstacle 1

AUV

Fatt

Frep 2

Frep

Frep 1

F

Obstacle 2

Figure 1: ,e resultant force model of AUV.

Table 1: ,e decision-making framework of the proposed path planning method.

Environment GNRON problem Local minima problem Both No

Static environment 1 2 1, 2 4
Dynamic environment 1, 3 2, 3 1, 2, 3 3, 4
∗1: the distance correction factor method; 2: the RHG method; 3: the relative velocity method; 4: the APF method.
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Frep. Its direction is on the line between the AUV and the goal
point, and it guides AUV to move toward the goal point.
,e force condition of the AUV can make a further

analysis based on the value of n:

(1) When n� 1, Frep1(X) and Frep2(X) can be expressed
as follows:

Frep1(X) � krep
1

d X,Xo( ) −
1

d0
( ) d X,Xg( )

d2 X,Xo( ), (11)

Frep2(X) �
n

2
krep

1

d X,Xo( ) −
1

d0
( )2, (12)

Start

Initialize parameters of artificial potential
field algorithm, start point, and goal point

Dynamic obstacle

The relative velocity method

Calculate the attractive force, the repulsive force,
and the resultant for the current position

The regular hexagon-guided 
method

Modified repulsive
potential field function

Move to the next position

End

Goal point
(xg, yg)

No

Yes

vao ≥ 0

Yes

Yes

Frep > A ∗ Fatt

(xc, yc) = (xg, yg)

Yes

Yes

Yes

No

No

No

No

No

Frep – Fatt = 0

Figure 2: ,e flowchart of AUV path planning based on the improved APF method.
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when the AUV closes to the goal point, d(X,Xg)

decreases and approaches zero. Frep1 approaches
zero also and Frep2 is a constant. AUV moves toward
the goal point under the action of attraction only.

(2) When n> 1, with the AUV closes to the goal point,
dn(X,Xg) and d

n− 1
(X,Xg) approach zero. Frep1,

Frep2, and the total repulsion Frep approach zero.
AUV can reach the goal point gradually under the
influence of the attractive force.

3.2. 1e Improvement of the Local Minima Problem. ,e
AUV should stop moving after reaching the goal point
because the resultant force is zero or minimized there.
However, AUV may arrive at other locations where the
attractive force and repulsive force are almost equal in
collinear but opposite direction. ,e resultant force of the
AUV is also likely to be zero or minimized. In this situation,
the AUV is trapped in a local minimum region. ,ree
common cases of local minima problems are shown in
Figures 4(a)–4(c). ,e AUV, obstacle, and the goal point are
in collinear in Figures 4(a) and 4(b). In the beginning, the
attractive force is greater than the repulsive force. AUV
moves toward the goal point along the line. ,e repulsive
force increases with the distance between the AUV and the
obstacle decreases. ,ere necessarily exists a certain position
where the repulsive force F is zero and makes the AUV
standstill. ,e local minima problem with multiple obstacles
is shown in Figure 4(c). ,e attractive force is offset by the
repulsive force so that AUV entirely in stop motion.
For solving the local minima problem, we propose a

regular hexagon-guided (RHG) method. As shown in
Figures 4(d) and 4(e), we assume that AUV trapped in the
local minimum region. Let us say that the local minima point
is the coordinate origin. Use the line where the AUV and the
goal point are connected as the y-axis. Take the line passing
through the origin point and perpendicular to the y-axis as
the x-axis. Construct a virtual regular hexagon in which the
distance of a one-step position is taken as the side length.

When the AUV traps in a local minimum region, an angle θ
is generated along the x-axis. Fθ is the motion direction of
the next step size, which can help the AUV escaping from the
local minimum region.When θ is positive, AUV rotates 90 −
|θ| degrees clockwise. When θ is negative, AUV rotates 90 −
|θ| degrees counterclockwise. Each interior angle of a regular
hexagon is 120 degrees, so angle θ is a constant, θ � 30. AUV
can move along the virtual regular hexagon that is close to
the target point but not in the obstacle area to get rid of the
local minimum region. If the target point is within the
obstacle range, the RHG method will be stopped when the
distance of the AUV from the target point is less than the
distance from the obstacle.
To ensure that the AUV can successfully pick out the

local minima at once and improve the efficiency of navi-
gation, we do further analysis of the RHG method.

(1) As shown in Figure 4(f ), the AUV is located at the
local minimum region where the obstacles are
placed symmetrically. AUV scans the surrounding
obstacles using sensors and locates the obstacles.
Construct a two-dimensional coordinate system
and a virtual regular hexagon. If the area of the
obstacle is large, some new regular hexagons can be
added to the first regular hexagon, as the cellular
mobile network. AUV moves along the position of
the regular hexagon until it gets far away from the
obstacle.

(2) When the AUV encounters a concave-shaped ob-
stacle, local minimum occurs, and as a result, the
AUV runs in a closed loop, as shown in Figure 4(g).
,e AUV moves horizontally backwards or turns
around if that is possible. Once it reaches sufficiently
away from the local minimum region, the AUV
builds a two-dimensional coordinate system and a
virtual regular hexagon. AUV constructs the guid-
ance framework by detecting and locating obstacles,
thus getting rid of the local minimum region. ,e
best obstacle avoidance path can be found.

AUV
Obstacle

Goal point
Fatt

Frep
F

(a)

Fatt

F

Frep 2

Frep

Frep 1

Goal point

Obstacle

AUV

(b)

Figure 3: ,e improvement of the GNRON problem. (a) ,e GNRON problem of the traditional APF method. (b) ,e improved resultant
force model.
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Obstacle Goal point

AUV FattFrep

(a)

Frep
AUV Fatt

ObstacleGoal point

(b)

Frep

Frep 2

Frep 1

AUV Fatt

Obstacle 1

Obstacle 1 Goal point

(c)

AUV

Obstacle

Goal point

θ

y

x
θ

Fθ

0

(d)

AUV

Obstacle

Goal point

y

x
θ

Fθ

0

(e)

AUV

Obstacle Obstacle

Goal point

y

x
θ

Fθ

0

(f )

AUV

Obstacle

Goal point

y

x

θ

0

(g)

Figure 4: ,e improvement of the local minima problem. (a) Local minimum problem with three points in collinear of the traditional APF
method (obstacle is between the AUV and target point). (b) Local minimum problem with three points in collinear (target point is between
the AUV and obstacle). (c),e local minimum region with multiple obstacles. (d),e improvement of the case (a). (e),e improvement of
the case (b). (f ) ,e improvement of the case (c). (g) ,e improvement of concave shape obstacle.
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It can be seen from the above analysis that the RHG
method has two definite advantages. On the one hand, this
method can avoid the appearance of foldback and oscilla-
tions because of the improper parameter selection. On the
other hand, this method significantly reduces the calculation
burden through the fixed parameter.

3.3. 1e Improvement of the Dynamic Environment Obstacle
Avoidance Problem. When the velocity of the AUV and
moving obstacles are slow, path planning can determine by
the traditional APF method. When the velocity of the AUV
or moving obstacles or both are fast, AUV could collide with
moving obstacles by the traditional APF method.,e reason
is that the traditional APF method applies to static obstacles
and has no regard for the effect of moving velocity. When
AUV deviates from moving obstacles, the traditional APF
method takes the measure to avoid the obstacles still. As a
result, the path becomes longer, and the efficiency of nav-
igation is reduced.
As shown in Figure 5(a), the AUV is affected by the

repulsive field at t0. It begins to change course by calculating
the resultant force. At t4, AUV has rightly figured out the
position of the next step size. But AUV has not changed
course in time because of the high speed, which could pose a
collision risk. As shown in Figure 5(b), the AUV enters the
influence range of the moving obstacle at t0 and changes
course. Actually, the moving obstacle is moving away from
the AUV. AUV shall soon outside the influence range of the
obstacle andmoves toward the goal point under the action of
the attractive force only. Even if the AUV does not change
course, there is no risk of collision.
To solve the dynamic environment obstacle avoidance

problem, the APF method must consider not only the spatial
location but also the magnitude and direction of the velocity
of the moving obstacles. In this paper, we propose the
relative velocity method. We further improve the repulsive
potential field function Urep(X) based on (7). Take ad-
vantage of the relative velocity component between the AUV
and moving obstacle in the direction from the AUV to the
obstacle as the judgment of obstacle avoidance. ,e new
repulsive potential field function Urep(X,V) is defined as
follows:

Urep(X,V) �
U(X) + U(V), d X,Xo( )≤d0 & vao ≥ 0,
0, else,

{
(13)

where

U(X) �
1

2
krep

1

d X,Xo( ) −
1

d0
( )2dn X,Xg( ), (14)

U(V) � kv
v − vo( )Teao
d X,Xo( ) � kv

vao
d X,Xo( ), (15)

where vo is the velocity of moving obstacles. v is the velocity
of the AUV. If vo ≥ v, AUV plans a path behind the obstacle.
If vo < v, AUV plans a path in front of the obstacle.U(X) is
the same as Urep(X) in (7). U(V) is the velocity repulsive

potential field produced by moving obstacle. kv is the ve-
locity repulsive potential field constant. eao is the accelera-
tion repulsive potential field vector pointing from the AUV
to the moving obstacle. d(X,Xo) is the distance between the
AUV and moving obstacle. (v − vo)

Teao � vao represents the
relative velocity component between the AUV and the
dynamic obstacle in the direction from the AUV to the
obstacle. vao ≥ 0 shows the AUV moving toward the moving
obstacles. vao < 0 shows the AUV deviation from the moving
obstacle.
,e improved repulsive force Frep(X,V) of the AUV in a

dynamic environment is given as follows:

Frep(X,V) � −∇Urep(X,V)

�
F(X) + F(V), d X, Xo( )≤d0 & vao ≥ 0,
0, else,

{
(16)

where

F(X) � −∇XU(X) � F1(X) + F2(X)

� krep
1

d X,Xo( ) −
1

d0
( ) dn X,Xg( )

d2 X,Xo( )
+
n

2
krep

1

d X,Xo( ) −
1

d0
( )2dn−1 X,Xg( ),

(17)

F(V) � −∇VU(V) � −kv
vao

d X,Xo( ) � kv
voa

d X,Xo( ), (18)

where F(X) is the same as Frep(X) in (8). F(V) is the
velocity repulsive force. ,e improved resultant force model
of AUV is shown in Figure 5(c).
,e improved repulsive potential field function allows

the AUV to gain greater repulsion when it has detected the
moving obstacles. ,is can significantly improve its safety.
Take advantage of (v − vo)

Teao � vao to judge the state of
relative motion between the AUV and moving obstacle. So
that blind obstacle avoidance can be avoided. ,e relative
movement of the AUV and moving obstacle is shown in
Figure 6. l1 is the connection line between the AUV and the
center of the obstacle, l2||l1, and l3⊥l1. vao is the component
of the relative velocity in the direction of l1. As shown in
Figure 6(a), vao points to the moving obstacle; that is, vao ≥ 0.
AUV is moving toward the dynamic obstacle, and obstacle
avoidance becomes an inevitable event. As shown in
Figure 6(b), vao points to the opposite direction of the
moving obstacle; that is, vao < 0. AUV is deviating from the
dynamic obstacle, and there is no need for obstacle
avoidance.

4. Experiments and Analysis

To evaluate the performance of the proposed method, the
algorithm is verified onMATLAB R2017b, assuming that the
AUV is a particle. ,e selection and setting of simulation
parameters are according to the most disadvantage condi-
tion mentioned in Section 2. To make the simulations
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simple, there are no uncertainties such as noises added to the
simulated measured ranges between the AUV and obstacles.
,e attractive potential field constant is chosen as katt � 40.
,e repulsive potential field constant is chosen as
krep � 1.25 × 10

5. We compare the proposed method to the
traditional APF approach in the simulation environment to
show how the RHGmethod can improve the performance of

the APF and how the relative velocity method can help the
AUV avoiding the moving obstacle.

4.1. Static Obstacles. In this section, there are four different
cases considered for the simulation of the improved method.
,e cases are simulated with obstacles of equal sizes and they
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Figure 5: ,e improvement of the dynamic environment obstacle avoidance problem. (a) AUV collision with moving obstacle. (b) AUV
deviation from moving obstacle. (c) ,e improved resultant force of moving obstacle avoidance problem.
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Figure 6:,e relative motion of the AUV andmoving obstacle. (a) AUV towardmoving obstacle. (b) AUV deviation frommoving obstacle.
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are located such that local minima occur in a free
environment.
,e initial position of AUV is (0, 0)T, and the goal point is

(200, 200)T. ,e influence range of a single obstacle is set as
d0 � 20.,e velocity of the AUV is set as v� 2m/s (the water
velocity can be regarded as constant in a certain region and
time). ,e position coordinates of the obstacles are fixed.
Figures 7(a) and 7(b) show the path generated by the

proposed method for case 1 (as shown in Figures 4(a) and
4(b)). ,e center position of obstacle is (180, 180)T. ,e start
point, the obstacle center position, and the goal point are in
collinear. ,e goal point is inside the influence range of the
obstacle. AUV moves toward the goal point and traps in the
local minimum region. ,e AUV cannot avoid the local
minimum region using the traditional APF algorithm. A
regular hexagon is generated through the RHG method.
AUV gets the information of the next-step navigation point
in the horizontal plane and then escapes from the local
minimum region by moving to the next location. ,e AUV
reaches the goal point successfully, and there are no foldback
and oscillations.
Figures 7(c) and 7(d) show the path planning situation of

the AUV due to the symmetry of the environment that is
caused by nonconcave obstacles for case 2 (as shown in
Figure 4(c)). ,e start point, the center coordinates of the
obstacles, and the goal point are in collinear. ,e center
positions of obstacles are (140, 140)T and (160, 160)T in
Figure 7(c). ,e center positions of obstacles are (120, 120)T,
(140, 140)T, and (160, 160)T in Figure 7(d). ,e AUV runs in
a closed loop and could not reach the goal point using the
traditional APF algorithm.,e improved APF approach can
get a smooth planned path along the edge of the influence
range of obstacles.
Figure 7(e) shows a complicated environment with

multiple obstacles of the same sizes for case 3 (as shown in
Figure 4(f)). ,e center coordinates of obstacles are (30, 30)T,
(50, 120)T, (120, 50)T, (145, 160)T, and (160, 145)T, which are
symmetrical about centerline between the start point and the
goal point. AUV moves toward the goal point. ,e second
group of obstacles is symmetrical, and the AUV is outside the
influence ranges of the obstacles. It is not affected by the
repulsive potential field, and there is no need to avoid the
obstacles. ,e third set of obstacles is symmetrical and attach
tightly, and the two repulsive potential fields are super-
imposed on the AUV. ,e AUV traps in the local minimum
region and cannot move further in the forward direction
using the traditional APF algorithm. AUV detours the ob-
stacle to the goal position by the regular hexagon-guided
method, and there are a full path and no foldback.
Figure 7(f ) shows the local minimum situation due to

obstacles located in a concave for case 4 (as shown in Figure
4(g)). When using the traditional APF algorithm, AUV tries
to avoid each obstacle. It finally gets into a closed loop and
keeps running in the closed loop. AUV can escape from this
local minimum condition with the improved APF method.

4.2.MovingObstacles. ,e initial position of AUV is (0, 0)T,
and the goal point is (400, 400)T. ,e influence range of a

single obstacle is set as d0 � 40. ,e velocity repulsion
potential field constant is set as kv � 1. ,e acceleration
repulsive potential field vector is set as eao � (1, 0)

T. ,e
AUV starts moving from the initial position (0, 0)T at
constant velocity v� 2m/s. In Figure 8, there is the motion
trajectory of the obstacles below the arrow, and the direction
of the arrow indicates its direction of motion (under the
assumption of line movement with constant velocity).
As evident from Figure 8(a), obstacle moves at velocity

v0 � (0.0, 1.8)
T starting from point (250, 145)T. AUV enters

the influence range of the moving obstacle. ,e relative
velocity can be obtained through computation vao ≥ 0. ,at
is, AUV is moving toward the dynamic obstacle. Meanwhile,
the obstacle velocity is slower, and the AUV can plan a path
in front of the obstacle. In contrast to the traditional APF
method, the improved APF algorithm can generate a col-
lision-free path for the AUV.
As shown in Figure 8(b), obstacle moves at velocity v0 �

(0.0, 1.8)T starting from point (300, 210)T. ,rough the
judgment of the relative velocity vao < 0, AUV deviates from
the moving obstacle, and there is no need for obstacle
avoidance. ,e planned path using the improved APF
method is more efficient than the one using the traditional
APF method.
As shown in Figure 8(c), there are two moving obstacles.

One moves at velocity (1.8, 0.0)T starting from point (210,
100)T and the other moves at velocity (0.0, 1.8)T from point
(280, 240)T. When entering the influence range of the
moving obstacles, the AUV can change course and generate
a collision-free path using the improved method.
As shown in Figure 8(d), there are two moving obstacles.

One moves at velocity v01 � (1.0, 0.0)
T starting from point

(210, 100)T and the other moves at velocity v02 � (1.414,
1.414)T from point (240, 200)T. ,e motion direction of the
second moving obstacle is parallel with the AUV within the
error range allowed, and the velocity of the obstacle is similar
to AUV. AUV needs fine-tuning only and reaches the goal
point using the proposed method. ,e relative velocity
method generates a shorter path than the traditional method
and provides safe obstacle avoidance.

4.3. Dynamic Environment. ,e simulation environment
includes five static obstacles and a moving obstacle. ,e
center coordinates of static obstacles are (50, 50)T, (50, 160)
T, (160, 50)T, (185, 200)T, and (200, 185)T, which are sym-
metrical about centerline between the start point and the
goal point. Moving obstacle moves at velocity v0 � (0.0, 1.8)

T

starting from position (280, 140)T. Figure 9 shows the
simulation result of the AUV obstacle avoidance. ,e
proposed method can make decisions according to the AUV
self-state and themotion of obstacles. It is clear that the AUV
is capable of avoiding all the obstacles efficiently in contrast
to the traditional APF method. ,e entire path trajectory of
obstacle avoidance is complete without oscillations and
foldback.

4.4. Analysis. ,e above simulation results have shown the
effectiveness of the proposed algorithm in obstacle
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avoidance of AUV. Since the proposed path planning
method involves the improvement of the APF method as
well as the choice of obstacle avoidance strategy, it has
definite advantages in finding a smooth, obstacle-free path

for AUV. ,e RHG method can solve the local minima
problems successfully, as shown in Figure 7. When AUV is
inside the influence range of the obstacle, it can avoid ob-
stacles and reach the goal point. When AUV is outside the
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Figure 7: Experimental results of static obstacles. (a) ,e single obstacle (obstacle in the middle). (b),e single obstacle (the target point in
middle). (c),e symmetry obstacles (two obstacles). (d),e symmetry obstacles (three obstacles). (e) Multiple obstacles. (f ) Concave shape
obstacle.

Mathematical Problems in Engineering 13



Y
 (

m
)

X (m)

400

350

300

250

200

150

100

50

0
0 50 100 150 200 250 300 350 400

Start point
Goal point

Direction of motion of moving obstacleAUV motion trajectory
Traditional APF method

(a)

Y
 (

m
)

400

350

300

250

200

150

100

50

0
0 50 100 150 200 250 300 350 400

Start point
Goal point

AUV motion trajectory Direction of motion of moving obstacle
Traditional APF method

X (m)

(b)

Figure 8: Continued.

14 Mathematical Problems in Engineering



Y
 (

m
)

400

350

300

250

200

150

100

50

0
0 50 100 150 200 250 300 350 400

Start point
Goal point

AUV motion trajectory Direction of motion of moving obstacle
Traditional APF method

X (m)

(c)

Y
 (

m
)

400

350

300

250

200

150

100

50

0
0 50 100 150 200 250 300 350 400

Start point
Goal point

AUV motion trajectory Direction of motion of moving obstacle
Traditional APF method

X (m)

(d)

Figure 8: Experimental results of moving obstacles. (a) AUV toward moving obstacle. (b) AUV deviation from moving obstacle. (c) Two
moving obstacles. (d) ,e same direction moving obstacle.

Mathematical Problems in Engineering 15



influence range of the obstacle, it goes straight to the goal
point without obstacle avoidance. During the whole process
of obstacle avoidance, AUV can obtain a smooth motion
path.
,e relative velocity method can achieve obstacle

avoidance for moving obstacles, as shown in Figures 8 and 9.
When AUV enters the influence ranges of the moving

obstacles, it can determine whether the repulsive potential
field function should be modified by judging the relative
motion of the obstacle. ,at can avoid blind obstacle
avoidance. If the obstacle speed is similar or faster, AUV can
plan a path behind the obstacle. If the obstacle velocity is
slower, AUV can plan a path in front of the obstacle. During
the real-time obstacle avoidance, the AUV motion path is

(a) (b)

Figure 10: Real environment experimental condition. (a) ,e IO-I. (b) Experimental environment.
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Figure 9: Experimental results of dynamic environment.
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Figure 11: Experimental results of static obstacles. (a) No local minima situation (obstacles in middle). (b) No local minima situation (the
target point in middle). (c),e local minima situation. (d),e local minima situation (exchange start and goal points). (e),e local minima
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complete, and there are no oscillations. In summary, the
proposed method has promising feasibility and efficiency in
the AUV real-time obstacle avoidance. It improves the in-
herent problems of the traditional APF method while
retaining the advantages of real-time nature.

5. Application and Analysis

We use an AUV that is named “Intelligence Ocean I” to
demonstrate the performance of the proposed method in a
practical application. IO-I is an open-frame ARV with di-
mensions of 1.23m× 0.24m× 0.24m (length, width, and
height). It has two main ducted propellers which are
symmetrically arranged on the horizontal stabilizing wings
on both sides and two vertical groove thrusters which are,
respectively, arranged in the fore and aft along the longi-
tudinal section. ,e movement of AUV is realized flexibly,
including forward, backward, and rotation in the horizontal
plane. ,e motion of the AUV in the depth direction can be
realized flexibly also, including up floating, down diving, and

pitching motion. ,e IO-I and experimental environment
are shown in Figure 10.
In this section, we show the outcome of path planning,

which how the improved APF method and the obstacle
avoidance strategy help the AUV avoid the static and
moving obstacles. A sphere of acceptance with a radial
distance of 0.5m is considered at goal position. If the AUV
reaches a position within this limit, then the AUV is assumed
to have reached the goal position.

5.1. Static Obstacles. We take the convex structure in the
experimental environment as static obstacles. ,e influence
range of a single obstacle is set as d0 � 5. ,e AUV sets off
from the initial position at a constant velocity v� 0.5m/s.
As shown in Figures 11(a) and 11(b), no local minima

situation is encountered. AUV has a smooth planned path
along the line between the start point and the goal point. As
shown in Figures 11(c) and 11(d), the case of the local
minima situation is further classified into two cases to test
the performance of the AUV for different starting and goal
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Figure 12: Experimental results of moving obstacles. (a) Slow-moving obstacle. (b) Fast-moving obstacle.
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Figure 13: Experimental results of the dynamic environment. (a) Slow-moving obstacle. (b) Fast-moving obstacle.
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points. AUV has a smooth planned path along the edge of
the influence range of obstacles taking advantage of the
proposed method. As shown in Figure 11(e), AUV solves the
local minima problem using the RHG method and achieves
better results.

5.2. Moving Obstacles. ,e forward speed of the moving
obstacle is changed, and the experiment is performed for
each condition.,e forward speeds are taken as v01 = 0.6m/s
(fast) and v02 = 0.4m/s (slow). ,e forward speed of the
AUV is fixed to a constant value of v= 0.5m/s.,e proposed
method has good performance for fast and slow-moving
obstacles according to the experiment results, as shown in
Figures 12(a) and 12(b).
For the slow-moving obstacle, AUV plans an obstacle

avoidance path in front of the obstacle. For the fast-moving
obstacle, AUV plans an obstacle avoidance path behind the
obstacle. ,e relative velocity method makes the planned
path more efficient.

5.3. Dynamic Environment. ,e experimental environment
includes two static obstacles and one moving obstacle. AUV
makes decisions according to the relative velocity between
the moving obstacle and itself and is capable of avoiding the
obstacles efficiently for the local minima environment, as
shown in Figures 13(a) and 13(b).

6. Conclusions

A real-time path planning method based on the modified
APF algorithm is presented in this paper. ,e proposed
method can resolve the path planning problem of static and
dynamic environments with unknown obstacles (static and
moving). AUV can make the decision of obstacle avoidance
through apperceiving outside environment and self-state
and the motion of obstacles.,e distance correction factor is
added to the repulsive potential field function based on the
traditional APF method to solve the GNRON problem. ,at
can make the AUV reach the goal point rapidly. ,e RHG
method, combined with the APF method, can overcome the
local minima problem. When the AUV trapped in a local
minimum region, a virtual regular hexagon is constructed.
,at can guide the AUV moving along the regular hexagon
to get rid of the local minima and reaching the goal point.
,e relative velocity method considers not only the relative
distance but also the relative velocity between the AUV and
the moving obstacle. It can solve the obstacle avoidance in
the presence of moving obstacles. ,e improvement of the
APF algorithm and the feasibility of obstacle avoidance
strategy have been evaluated in the simulation environment
and the real environment. ,e experiment results prove that
the proposed method can provide feasible and efficient
obstacle avoidance paths about both the static and the dy-
namic obstacles and has good practicability in AUV real-
time obstacle avoidance. Besides these, such conclusions can
also be drawn as follows: the proposed method inherits the
merits of the original APF algorithm and reduces the volume

of navigation database and the calculation amount in the
process of sailing.
As future work, one work is a further study of safe and

real-time navigation. When the obstacle suddenly acceler-
ates or changes its direction of movement, it may cause a
collision. Further modifications of the repulsive potential
field function or use other methods have to be done for the
safety of the AUV navigation. Another future work is
continuing to improve the three-dimensional space model
that could be beneficial to the forthcoming research and
practical applications.
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P. Melin, “Path planning for autonomous mobile robot
navigation with ant colony optimization and fuzzy cost
function evaluation,” Applied Soft Computing, vol. 9, no. 3,
pp. 1102–1110, 2009.

[30] V. Roberge, M. Tarbouchi, and G. Labonte, “Comparison of
parallel genetic algorithm and particle swarm optimization for
real-time UAV path planning,” IEEE Transactions on In-
dustrial Informatics, vol. 9, no. 1, pp. 132–141, 2013.

[31] M. A. Contreras-Cruz, V. Ayala-Ramirez, and
U. H. Hernandez-Belmonte, “Mobile robot path planning
using artificial bee colony and evolutionary programming,”
Applied Soft Computing, vol. 30, pp. 319–328, 2015.

[32] L. Amador-Angulo, O.Mendoza, J. R. Castro et al., “Fuzzy sets
in dynamic adaptation of parameters of a bee colony opti-
mization for controlling the trajectory of an autonomous
mobile robot,” Sensors, vol. 16, no. 9, pp. 1–27, 2016.

[33] A. H. Khan, S. Li, X. F. Zhou et al., “Neural & bio-inspired
processing and robot control,” Frontiers in Neurorobotics,
vol. 12, no. 72, pp. 1-2, 2018.

[34] C. Liu, Y. X. Zhao, F. Gao, and L. Q. Liu, “,ree-dimensional
path planning method for autonomous underwater vehicle
based on modified firefly algorithm,” Mathematical Problems
in Engineering, vol. 2015, Article ID 561394, 10 pages, 2015.

[35] M. Couillard, J. Fawcett, and M. Davison, “An obstacle
recognizing mechanism for autonomous underwater vehicles
powered by fuzzy domain ontology and support vector ma-
chine,” Mathematical Problems in Engineering, vol. 2014,
Article ID 676729, 10 pages, 2014.

[36] S. Saravanakumar and T. Asokan, “Multipoint potential field
method for path planning of autonomous underwater vehicles
in 3D space,” Intelligent Service Robotics, vol. 6, no. 4,
pp. 211–224, 2013.

[37] F. Matoui, B. Boussaid, and M. N. Abdelkrim, “Distributed
path planning of a multi-robot system based on the neigh-
borhood artificial potential field approach,” Simulation,
vol. 95, no. 7, pp. 637–657, 2019.

[38] T. Weerakoon, K. Ishii, and A. A. F. Nassiraei, “An artificial
potential field based mobile robot navigation method to
prevent from deadlock,” Journal of Artificial Intelligence and
Soft Computing Research, vol. 5, no. 3, pp. 189–203, 2015.

[39] J. B. Sun, G. L. Liu, G. H. Tian, and J. H. Zhang, “Smart
obstacle avoidance using a danger index for a dynamic en-
vironment,” Applied Sciences, vol. 9, no. 8, p. 1589, Apr. 2019.

[40] X. X. Liang, C. Y. Liu, X. L. Song, and Y. K. Zhang, “Research
on improved artificial potential field approach in local path
planning for mobile robot,” Computer Simulation, vol. 35,
no. 4, pp. 291–361, 2018.

[41] X. Yang, W. Yang, H. J. Zhang et al., “A newmethod for robot
path planning based artificial potential field,” in Proceedings of
the IEEE 11th Conference on Industrial Electronics and
Applications, Hefei, China, June 2016.

[42] G. Li, A. Yamashita, H. Asama, and Y. Tamura, “An efficient
improved artificial potential field based regression search
method for robot path planning,” in Proceedings of the IEEE
12th International Conference on Mechatronics and
Automation, Chengdu, China, December 2012.

20 Mathematical Problems in Engineering



[43] S. S. Ge and Y. J. Cui, “Dynamic motion planning for mobile
robots using potential field method,” Autonomous Robots,
vol. 13, no. 3, pp. 207–222, 2002.
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