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Abstract
Recently we showed that the problem of Max-

imum Inner Product Search (MIPS) is efficient

and it admits provably sub-linear hashing al-

gorithms. In [23], we used asymmetric trans-

formations to convert the problem of approxi-

mate MIPS into the problem of approximate near

neighbor search which can be efficiently solved

using L2-LSH. In this paper, we revisit the prob-

lem of MIPS and argue that the quantizations

used in L2-LSH is suboptimal for MIPS com-

pared to signed random projections (SRP) which

is another popular hashing scheme for cosine

similarity (or correlations). Based on this obser-

vation, we provide different asymmetric transfor-

mations which convert the problem of approxi-

mate MIPS into the problem amenable to SRP

instead of L2-LSH. An additional advantage of

our scheme is that we also obtain LSH type space

partitioning which is not possible with the exist-

ing scheme. Our theoretical analysis shows that

the new scheme is significantly better than the

original scheme for MIPS. Experimental evalu-

ations strongly support the theoretical findings.

In addition, we also provide the first empirical

comparison that shows the superiority of hashing

over tree based methods [21] for MIPS.

1 Introduction

In this paper, we revisit the problem of Maximum Inner

Product Search (MIPS), which was studied in our recent

work [23]. In this work we present the first provably fast

algorithm for MIPS, which was considered hard [21, 15].

Given an input query point q ∈ RD , the task of MIPS is to

find p ∈ S, where S is a giant collection of size N , which

maximizes (approximately) the inner product qT p:

p = argmax
x∈S qTx (1)

The MIPS problem is related to the problem of near neigh-

bor search (NNS). For example, L2-NNS

p = argmin
x∈S ∣∣q − x∣∣22 = argmin

x∈S (∣∣x∣∣22 − 2qTx) (2)

or, correlation-NNS

p = argmax
x∈S

qTx∥q∥∥x∥ = argmax
x∈S

qTx∥x∥ (3)

These three problems are equivalent if the norm of ev-

ery element x ∈ S is constant. Clearly, the value of the

norm ∣∣q∣∣2 has no effect for the argmax. In many scenarios,

MIPS arises naturally at places where the norms of the el-

ements in S have significant variations [15]. As reviewed

in our prior work [23], examples of applications of MIPS

include recommender system [16, 5, 15], large-scale object

detection with DPM [9, 7, 14, 14], structural SVM [7], and

multi-class label prediction [21, 15, 25].

Asymmetric LSH (ALSH): Locality Sensitive Hashing

(LSH) [13] is popular in practice for efficiently solving

NNS. In our prior work [23], the concept of “asymmet-

ric LSH” (ALSH) was formalized and one can transform

the input query Q(p) and data in the collection P (x) in-

dependently, where the transformations Q and P are dif-

ferent. In [23] we developed a particular set of transfor-

mations to convert MIPS into L2-NNS and then solved the

problem by standard hashing i.e. L2-LSH [6]. In this pa-

per, we name the scheme in [23] as L2-ALSH. Later we

showed in [24] the flexibility and the power of the asym-

metric framework developed in [23] by constructing a prov-

ably superior scheme for binary data. Prior to our work,

asymmetry was applied for hashing higher order similar-

ity [22], sketching [8], hashing different subspaces [3], and

data dependent hashing [20] which unlike locality sensi-

tive hashing do not come with provable runtime guarantees.

Explicitly constructing asymmetric transformation tailored

for a particular similarity, given an existing LSH, was the

first observation made in [23] due to which MIPS, a sought

after problem, became provably fast and practical.

It was argued in [17] that the quantizations used in tradi-

tional L2-LSH is suboptimal and it hurts the variance of the

hashes. This raises a natural question that L2-ALSH which

uses L2-LSH as a subroutine for solving MIPS could be

suboptimal and there may be a better hashing scheme. We

provide such a scheme in this work.



Our contribution: Based on the observation that the quan-

tizations used in traditional L2-LSH is suboptimal, in this

study, we propose another scheme for ALSH, by devel-

oping a new set of asymmetric transformations to convert

MIPS into a problem of correlation-NNS, which is solved

by “signed random projections” (SRP) [11, 4]. The new

scheme thus avoids the use of L2-LSH. We name this new

scheme as Sign-ALSH. Our theoretical analysis and exper-

imental study show that Sign-ALSH is more advantageous

than L2-ALSH for MIPS.

For inner products asymmetry is unavoidable. In case of

L2-ALSH, due to asymmetry, we loose the capability to

generate LSH like random data partitions for efficient clus-

tering [12]. We show that for inner products with Sign-

ALSH there is a novel formulation that allows us to gen-

erate such partitions for inner products. With existing L2-

ALSH such formulation does not work.

Apart from providing a better hashing scheme, we also pro-

vide comparisons of the Sign-ALSH with cone trees [21].

Our empirical evaluations on three real datasets show that

hashing based methods are superior over the tree based

space partitioning methods. Since there is no existing com-

parison of hashing based methods with tree based methods

for the problem of MIPS, we believe that the results shown

in this work will be very valuable for practitioners.

2 Review: Locality Sensitive Hashing (LSH)

The problem of efficiently finding nearest neighbors has

been an active research since the very early days of com-

puter science [10]. Approximate versions of the near neigh-

bor search problem [13] were proposed to break the linear

query time bottleneck. The following formulation for ap-

proximate near neighbor search is often adopted.

Definition: (c-Approximate Near Neighbor or c-NN)

Given a set of points in a D-dimensional space R
D, and

parameters S0 > 0, δ > 0, construct a data structure which,

given any query point q, does the following with probabil-

ity 1 − δ: if there exists an S0-near neighbor of q in S, it

reports some cS0-near neighbor of q in S.

Locality Sensitive Hashing (LSH) [13] is a family of func-

tions, with the property that more similar items have a

higher collision probability. LSH trades off query time with

extra (one time) preprocessing cost and space. Existence

of an LSH family translates into provably sublinear query

time algorithm for c-NN problems.

Definition: (Locality Sensitive Hashing (LSH)) A family

H is called (S0, cS0, p1, p2)-sensitive if, for any two points

x, y ∈ RD, h chosen uniformly from H satisfies:

• if Sim(x, y) ≥ S0 then PrH(h(x) = h(y)) ≥ p1
• if Sim(x, y) ≤ cS0 then PrH(h(x) = h(y)) ≤ p2

For efficient approximate nearest neighbor search, p1 > p2
and c < 1 is needed.

Fact 1: Given a family of (S0, cS0, p1, p2) -sensitive hash

functions, one can construct a data structure for c-NN

with O(nρ logn) query time and space O(n1+ρ), where

ρ = log p1

log p2

< 1.

LSH is a generic framework and an implementation of LSH

requires a concrete hash function.

2.1 LSH for L2 distance

[6] presented an LSH family for L2 distances. Formally,

given a fixed window size r, we sample a random vector a

with each component from i.i.d. normal, i.e., ai ∼N(0,1),
and a scalar b generated uniformly at random from [0, r].
The hash function is defined as:

hL2
a,b(x) = ⌊aTx + br

⌋ (4)

where ⌊⌋ is the floor operation. The collision probability

under this scheme can be shown to be

Pr(hL2
a,b(x) = hL2

a,b(y)) (5)

= 1 − 2Φ(−r/d) − 2√
2π(r/d) (1 − e−(r/d)

2/2) = Fr(d)
where Φ(x) = ∫ x

−∞ 1√
2π

e−x
2

2 dx and d = ∣∣x − y∣∣2 is the

Euclidean distance between the vectors x and y.

2.2 LSH for correlation

Another popular LSH family is the so-called “sign random

projections” [11, 4]. Again, we choose a random vector a

with ai ∼ N(0,1). The hash function is defined as:

hSign(x) = sign(aTx) (6)

And collision probability is

Pr(hSign(x) = hSign(y)) = 1 − 1

π
cos−1 ( xT y∥x∥∥y∥) (7)

This scheme is known as signed random projections (SRP).

3 Review of ALSH for MIPS and L2-ALSH

In [23], it was shown that the framework of locality sen-

sitive hashing is restrictive for solving MIPS. The inherent

assumption of the same hash function for both the transfor-

mation as well as the query was unnecessary in the classi-

cal LSH framework and it was the main hurdle in finding

provable sub-linear algorithms for MIPS with LSH. For the

theoretical guarantees of LSH to work there was no require-

ment of symmetry. Incorporating asymmetry in the hashing

schemes was the key in solving MIPS efficiently.

Definition [23]: (Asymmetric Locality Sensitive Hashing

(ALSH)) A family H, along with the two vector func-

tions Q ∶ RD ↦ R
D′ (Query Transformation) and P ∶



R
D ↦ R

D′ (Preprocessing Transformation), is called(S0, cS0, p1, p2)-sensitive if for a given c-NN instance with

query q, and the hash function h chosen uniformly fromH

satisfies the following:

• if Sim(q, x) ≥ S0 then PrH(h(Q(q))) = h(P (x))) ≥ p1

• if Sim(q, x) ≤ cS0 then PrH(h(Q(q)) = h(P (x))) ≤ p2

Here x is any point in the collection S.

Note that the query transformation Q is only applied on

the query and the pre-processing transformation P is ap-

plied to x ∈ S while creating hash tables. By letting

Q(x) = P (x) = x, we can recover the vanilla LSH. Us-

ing different transformations (i.e., Q ≠ P ), it is possible

to counter the fact that self similarity is not highest with

inner products which is the main argument of failure of

LSH. We just need the probability of the new collision

event {h(Q(q)) = h(P (y))} to satisfy the conditions of

definition of ALSH for Sim(q, y) = qT y.

Theorem 1 [23] Given a family of hash function H and

the associated query and preprocessing transformations P

and Q, which is (S0, cS0, p1, p2) -sensitive, one can con-

struct a data structure for c-NN with O(nρ logn) query

time and space O(n1+ρ), where ρ = logp1

logp2

.

[23] provided an explicit construction of ALSH, which we

call L2-ALSH. Without loss of generality, one can assume

∣∣xi∣∣2 ≤ U < 1, ∀xi ∈ S (8)

for some U < 1. If this is not the case, then we can always

scale down the norms without altering the argmax. Since

the norm of the query does not affect the argmax in MIPS,

for simplicity it was assumed ∣∣q∣∣2 = 1. This condition

can be removed easily (see Section 5 for details). In L2-

ALSH, two vector transformations P ∶ RD ↦ R
D+m and

Q ∶ RD ↦ R
D+m are defined as follows:

P (x) = [x; ∣∣x∣∣22 ; ∣∣x∣∣42 ; ....; ∣∣x∣∣2m2 ] (9)

Q(x) = [x; 1/2; 1/2; ....; 1/2], (10)

where [;] is the concatenation. P (x) appends m scalers of

the form ∣∣x∣∣2i2 at the end of the vector x, while Q(x) simply

appends m “1/2” to the end of the vector x. By observing

∣∣P (xi)∣∣22 = ∣∣xi∣∣22 + ∣∣xi∣∣42 + ... + ∣∣xi∣∣2m2 + ∣∣xi∣∣2m+12∣∣Q(q)∣∣22 = ∣∣q∣∣22 +m/4 = 1 +m/4
Q(q)TP (xi) = qTxi + 1

2
(∣∣xi∣∣22 + ∣∣xi∣∣42 + ... + ∣∣xi∣∣2m2 )

one can obtain the following key equality:

∣∣Q(q) − P (xi)∣∣22 = (1 +m/4) − 2qTxi + ∣∣xi∣∣2m+12 (11)

Since ∣∣xi∣∣2 ≤ U < 1, we have ∣∣xi∣∣2m+1 → 0 at the tower

rate (exponential to exponential). Thus, as long as m is not

too small (e.g., m ≥ 3 would suffice), we have

argmax
x∈S qTx ≃ argmin

x∈S ∣∣Q(q) −P (x)∣∣2 (12)

This scheme is the first connection between solving un-

normalized MIPS and approximate near neighbor search.

TransformationsP and Q, when norms are less than 1, pro-

vide correction to the L2 distance ∣∣Q(q)−P (xi)∣∣2 making

it rank correlate with the (un-normalized) inner product.

3.1 Intuition for the Better Scheme : Why Signed

Random Projections (SRP)?

Recently in [17, 18], it was observed that the quantization

of random projections used by traditional L2-LSH scheme

is not desirable when the data is normalized and in fact the

shift b in Eq. (4) hurts the variance leading to less informa-

tive hashes. The sub-optimality of L2-LSH hints towards

existence of better hashing functions for MIPS.

As previously argued, when the data are normalized then

both L2-NNS and correlation-NNS are equivalent to MIPS.

Therefore, for normalized data we can use either L2-LSH

which is popular LSH for L2 distance or SRP which is pop-

ular LSH for correlation to solve MIPS directly. This raises

a natural question ”Which will perform better ?”.

If we assume that the data are normalized, i.e., all the norms

are equal to 1, then both SRP and L2-LSH are monotonic

in the inner product and their corresponding ρ values for

retrieving max inner product can be computed as

ρSRP =
log (1 − 1

π
cos−1(S0))

log (1 − 1
π
cos−1(cS0)) (13)

ρL2−LSH =
log (Fr(√2 − 2S0))
log (Fr(√2 − 2cS0)) (14)

where the function Fr(.) is given by Eq. (5). The

values of ρSRP and ρL2−LSH for different S0 ={0.1,0.2, ..,0.9,0.95} with respect to approximation ratio

c is shown in Figure 1. We use standard recommendation of

r = 2.5 for L2-LSH. We can clearly see that ρSRP is consis-

tently better than ρL2−LSH given any S0 and c. Thus, for

MIPS with normalized data L2-LSH type of quantization

given by equation 5 seems suboptimal. It is clear that when

the data is normalized then SRP is always a better choice

for MIPS as compared to L2-LSH. This motivates us to ex-

plore the possibility of better hashing algorithm for general

(unnormalized) instance of MIPS using SRP, which will

have impact in many applications as pointed out in [23].

Asymmetric transformations give us enough flexibility to

modify norms without changing inner products. The trans-

formations provided in [23] used this flexibility to convert

MIPS to standard near neighbor search in L2 space for

which we have standard hash functions. For binary data,

[24] showed a strictly superior construction, the asymmet-

ric minwise hashing, which outperforms all ALSHs made

for general MIPS.
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Figure 1: Values of ρSRP and ρL2−LSH (Lower is better)

for normalized data. It is clear that SRP is more suited for

retrieving inner products when the data is normalized

Signed random projections are popular hash functions

widely adopted for correlation or cosine similarity. We use

asymmetric transformations to convert approximate MIPS

into approximate maximum correlation search and thus we

avoid the use of sub-optimal L2-LSH. The collision prob-

ability of the hash functions is one of the key constituents

which determine the efficiency of the obtained ALSH al-

gorithm. We show that our proposed transformation with

SRP is better suited for ALSH compared to the existing

L2-ALSH for solving general MIPS instance.

4 The New Proposal: Sign-ALSH

4.1 From MIPS to Correlation-NNS

We assume for simplicity that ∣∣q∣∣2 = 1 as the norm of the

query does not change the ordering, we show in the next

section how to get rid of this assumption. Without loss of

generality let ∣∣xi∣∣2 ≤ U < 1, ∀xi ∈ S as it can always be

achieved by scaling the data by large enough number. We

define two vector transformations P ∶ RD
↦ R

D+m and

Q ∶ RD
↦ R

D+m as follows:

P (x) = [x; 1/2 − ∣∣x∣∣22 ; 1/2 − ∣∣x∣∣42 ; ....; 1/2 − ∣∣x∣∣2m2 ]
(15)

Q(x) = [x; 0; 0; ....; 0], (16)

Using ∣∣Q(q)∣∣22 = ∣∣q∣∣22 = 1, Q(q)TP (xi) = qTxi, and

∣∣P (xi)∣∣22
= ∣∣xi∣∣22 + 1/4 + ∣∣xi∣∣42 − ∣∣xi∣∣22 + 1/4 + ∣∣xi∣∣82 − ∣∣xi∣∣42 + ...
+ 1/4 + ∣∣xi∣∣2m+12 − ∣∣xi∣∣2m2
=m/4 + ∣∣xi∣∣2m+12

we obtain the following key equality:

Q(q)TP (xi)∥Q(q)∥2∥P (xi)∥2 = qTxi√
m/4 + ∣∣xi∣∣2m+12

(17)

The term ∣∣xi∣∣2m+1 → 0, again vanishes at the tower rate.

This means we have approximately

argmax
x∈S qTx ≃ argmax

x∈S
Q(q)TP (xi)∥Q(q)∥2∥P (xi)∥2 (18)

This provides another solution for solving MIPS using

known methods for approximate correlation-NNS. Asym-

metric transformations P and Q provide a lot of flexibility.

Note that transformations P and Q are not unique for this

task and there are other possibilities [2, 19]. It should be

further noted that even scaling data and query differently is

asymmetry in a strict sense because it changes the distribu-

tion of the hashes. Flexibility in choosing the transforma-

tions P and Q allow us to use signed random projections

and thereby making possible to avoid suboptimal L2-LSH.

4.2 Fast MIPS Using Sign Random Projections

Eq. (18) shows that MIPS reduces to the standard approxi-

mate near neighbor search problem which can be efficiently

solved by sign random projections, i.e., hSign (defined by

Eq. (6)). Formally, we can state the following theorem.

Theorem 2 Given a c-approximate instance of MIPS, i.e.,

Sim(q, x) = qTx, and a query q such that ∣∣q∣∣2 = 1 along

with a collection S having ∣∣x∣∣2 ≤ U < 1 ∀x ∈ S. Let P and

Q be the vector transformations defined in Eq. (15) and Eq.

(16), respectively. We have the following two conditions for

hash function hSign (defined by Eq. (6))

• if qTx ≥ S0 then

Pr[hSign(Q(q)) = hSign(P (x))]
≥ 1 − 1

π
cos−1 ⎛⎝ S0√

m/4 +U2m+1

⎞⎠
• if qTx ≤ cS0 then

Pr[hSign(Q(q)) = hSign(P (x))]
≤ 1 − 1

π
cos−1

⎛⎜⎝
min{cS0, z

∗}√
m/4 + (min{cS0, z∗})2m+1

⎞⎟⎠
where z∗ = ( m/2

2m+1−2)2−m−1 .



Proof: When qTx ≥ S0, we have, according to Eq. (7)

Pr[hSign(Q(q)) = hSign(P (x))]
= 1 − 1

π
cos−1

⎛⎜⎝
qTx√

m/4 + ∣∣x∣∣2m+12

⎞⎟⎠
≥ 1 − 1

π
cos−1 ⎛⎝ qTx√

m/4 +U2m+1

⎞⎠
When qTx ≤ cS0, by noting that qTx ≤ ∥x∥2, we have

Pr[hSign(Q(q)) = hSign(P (x))]
= 1 − 1

π
cos−1

⎛⎜⎝
qTx√

m/4 + ∣∣x∣∣2m+12

⎞⎟⎠
≤ 1 − 1

π
cos−1 ⎛⎝ qTx√

m/4 + (qTx)2m+1
⎞⎠

For this one-dimensional function f(z) = z√
a+zb

, where

z = qTx, a =m/4 and b = 2m+1 ≥ 2, we know

f ′(z) = a − zb (b/2 − 1)(a + zb)3/2
One can also check that f ′′(z) ≤ 0 for 0 < z < 1, i.e., f(z)
is a concave function. The maximum of f(z) is attained at

z∗ = ( 2a
b−2)1/b = ( m/2

2m+1−2)2−m−1If z∗ ≥ cS0, then we need

to use f(cS0) as the bound. ◻
Therefore, we have obtained, in LSH terminology,

p1 = 1 − 1

π
cos−1 ⎛⎝ S0√

m/4 +U2m+1

⎞⎠ (19)

p2 = 1 − 1

π
cos−1

⎛⎜⎝
min{cS0, z

∗}√
m/4 + (min{cS0, z∗})2m+1

⎞⎟⎠ ,
(20)

z∗ = ( m/2
2m+1 − 2)

2
−m−1

(21)

Theorem 1 allows us to construct data structures with worst

case O(nρ logn) query time guarantees for c-approximate

MIPS, where ρ = log p1

log p2

. For any given c < 1, there always

exist U < 1 and m such that ρ < 1. This way, we obtain

a sublinear query time algorithm for MIPS. Because ρ is

a function of 2 parameters, the best query time chooses U

and m, which minimizes the value of ρ. For convenience,

we define

ρ∗ =min
U,m

log(1 − 1
π
cos−1 ( S0√

m/4+U2m+1
))

log(1 − 1
π
cos−1 ( min{cS0,z∗}√

m/4+(min{cS0,z∗})2m+1
))
(22)

See Figure 2 for the plots of ρ∗, which also compares the

optimal ρ values for L2-ALSH in the prior work [23]. The

results show that Sign-ALSH is noticeably better.
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Figure 2: Optimal values of ρ∗ (lower is better) with re-

spect to approximation ratio c for different S0, obtained by

a grid search over parameters U and m, given S0 and c.

The curves show that Sign-ALSH (solid curves) is notice-

ably better than L2-ALSH (dashed curves) in terms of their

optimal ρ∗ values. The results for L2-ALSH were from the

prior work [23]. For clarity, the results are in two figures.

4.3 Parameter Selection

00.20.40.60.81
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m = 2, U = 0.75

c

ρ

S
0
 = 0.9U

S
0
 = 0.1U

Figure 3: The solid curves are the optimal ρ values of Sign-

ALSH from Figure 2. The dashed curves represent the ρ

values for fixed parameters: m = 2 and U = 0.75 (left

panel). Even with fixed parameters, the ρ does not degrade.

Figure 3 presents the ρ values for (m, U) = (2, 0.75)
We can see that even if we use fixed parameters, the per-



formance would only degrade little. This essentially frees

practitioners from the burden of choosing parameters.

5 Removing Dependency on Norm of Query

Changing norms of the query does not affect the

argmaxx∈C qTx, and hence, in practice for retrieving top-

k, normalizing the query should not affect the performance.

But for theoretical purposes, we want the runtime guaran-

tee to be independent of ∣∣q∣∣2. Note, both LSH and ALSH

schemes solve the c-approximate instance of the problem,

which requires a threshold S0 = q
Tx and an approximation

ratio c. These quantities change if we change the norms.

We can use the same idea used in [23] to get rid of the norm

of q. Transformations P and Q were precisely meant to re-

move the dependency of correlation on the norms of x but

at the same time keeping the inner products same. Let M

be the upper bound on all the norms i.e. M =maxx∈C ∣∣x∣∣2.

In other words M is the radius of the space.

Let U < 1, define the transformations, T ∶ RD
→ R

D as

T (x) = Ux

M
(23)

and transformations P,Q ∶ RD
→ R

D+m are the same for

the Sign-ALSH scheme as defined in Eq (15) and (16).

Given the query q and any data point x, observe that the

inner products between P (Q(T (q))) and Q(P (T (x))) is

P (Q(T (q)))TQ(P (T (x))) = qTx × ( U2

M2
) (24)

P (Q(T (q))) appends first m zeros components to T (q)
and then m components of the form 1/2 − ∣∣q∣∣2i .

Q(P (T (q))) does the same thing but in a different or-

der. Now we are working in D + 2m dimensions. It is

not difficult to see that the norms of P (Q(T (q))) and

Q(P (T (q))) is given by

∣∣P (Q(T (q)))∣∣2 =√m

4
+ ∣∣T (q)∣∣2m+12 (25)

∣∣Q(P (T (x)))∣∣2 =√m

4
+ ∣∣T (x)∣∣2m+12 (26)

The transformations are very asymmetric but we know that

it is necessary.

Therefore the correlation or the cosine similarity between

P (Q(T (q))) and Q(P (T (x))) is

Corr =
qTx × ( U2

M2 )√
m
4
+ ∣∣T (q)∣∣2m+12

√
m
4
+ ∣∣T (x)∣∣2m+12

(27)

Note ∣∣T (q)∣∣2m+12 , ∣∣T (x)∣∣2m+12 ≤ U < 1, therefore both∣∣T (q)∣∣2m+12 and ∣∣T (x)∣∣2m+12 converge to zero at a tower

rate and we get approximate monotonicity of correlation

with the inner products. We can apply sign random projec-

tions to hash P (Q(T (q))) and Q(P (T (q))).
As 0 ≤ ∣∣T (q)∣∣2m+12 ≤ U and 0 ≤ ∣∣T (x)∣∣2m+12 ≤ U , it is

not difficult to get p1 and p2 for Sign-ALSH, without con-

ditions on any norms. Simplifying the expression, we get

the following value of optimal ρu (u for unrestricted).

ρ∗u = min
U,m,

log(1 − 1
π
cos−1 ( S0×( U

2

M2
)

m

4
+U2m+1

))
log(1 − 1

π
cos−1 ( cS0×( 4U2

M2
)

m
)) (28)

s.t. U2
m+1

<
m(1 − c)

4c
, m ∈ N+, and 0 < U < 1.

With this value of ρ∗u, we can state our main theorem.

Theorem 3 For the problem of c-approximate MIPS in a

bounded space, one can construct a data structure having

O(nρ∗
u logn) query time and space O(n1+ρ∗

u), where ρ∗u <
1 is the solution to constraint optimization (28).

Note, for all c < 1, we always have ρ∗u < 1 because the

constraintU2
m+1

<
m(1−c)

4c
is always true for big enoughm.

The only assumption for efficiently solving MIPS that we

need is that the space is bounded, which is always satisfied

for any finite dataset. ρ∗u depends on M , the radius of the

space, which is expected.

6 Random Space Partitioning for Inner

Product

In this section, we show that due to the nature of the new

transformations P and Q there is one subtle but surprising

advantage of Sign-ALSH over L2-ALSH.

One popular application of LSH (Locality Sensitive Hash-

ing) is random partitioning of the data for large scale clus-

tering, where similar points map to the same partition (or

bucket). Such partitions are very useful in many applica-

tions [12]. With classical LSH, we simply use h(x) to gen-

erate partition for x. Since PrH(h(x) = h(y)) is high if

sim(x, y) is high, similar points are likely to go into the

same partition under the usual LSH mapping. For general

ALSH, this property is lost because of asymmetry.

In case of ALSH, we only know that Pr(h(P (x)) =
h(Q(y)) is high if sim(x, y) is high. Therefore, given

x we cannot determine whether to assign partition using

h(P (.)) or h(Q(.)). Neither Pr(h(P (x)) = h(P (y)) nor

PrH(h(Q(x)) = h(Q(y)) strictly indicates high value of

sim(x, y) in general. Therefore, partitioning property of

classical LSH does not hold anymore with general ALSHs.

However for the case of inner products using Sign-ALSH,

there is a subtle observation which allows us to construct

the required assignment function, where pairs of points

with high inner products are more likely to get mapped in



the same partition while pairs with low inner products are

more likely to map into different partitions.

In case of Sign-ALSH for MIPS, we have the transforma-
tions P (Q(T (x))) and Q(P (T (x))) given by

P (Q(T (x))) = [x; 1/2 − ∣∣T (x)∣∣22; ....; 1/2 − ∣∣T (x)∣∣
2
m

2 ,0, ...,0]

Q(P (T (x))) = [x; 0, ...,0,1/2 − ∣∣T (x)∣∣22; ....; 1/2 − ∣∣T (x)∣∣
2
m

2 ].

After this transformation, we multiply the generated D +
2m dimensional vector by a random vector a ∈ R

D+2m
whose entries are i.i.d. Gaussian followed by taking the
sign. For illustration let a = [w; s1, ...sm, t1, ...tm] where

w ∈ RD bi and ci are numbers. All components of a are
i.i.d. from N(0,1). With this notation, we can write the
final Sign-ALSH as

h
Sign(P (Q(T (x)))) = Sign(wT

T (x) +
m

∑
i=1

si(1/2 − ∣∣T (x)∣∣
2
i

2 ))

h
Sign(Q(P (T (x)))) = Sign(wT

T (x) +
m

∑
i=1

ti(1/2 − ∣∣T (x)∣∣
2
i

2 ))

The key observation here is that hSign(P (Q(T (x)))) does

not depend on ti and hSign(Q(P (T (x)))) does not de-

pend on si. If we define

hw(x) = Sign(wTT (x) + m∑
i=1

αi(1/2 − ∣∣T (x)∣∣2i2 )) (29)

where αi are sampled i.i.d. from N(0,1) for every x in-

dependently of everything else. Then, under the random-

ization of w, it is not difficult to show that

Prw(hw(x) = hw(y)) = Pr(hSign(P (x)) = hSign(Q(y)))
for any x, y. The term Pr(hSign(P (x)) = hSign(Q(y)))
satisfies the LSH like property and therefore, in any parti-

tions using hw, points with high inner products are more

likely to be together. Thus, hw(x) is the required assign-

ment. Note, hw is not technically an LSH because we are

randomly sampling αi for all x independently. The con-

struction of hw using independent randomizations could be

of separate interest. To the best of our knowledge, this is

the first example of LSH like partition using hash function

with independent randomization for every data point.

The function hw is little subtle here, we sample w i.i.d from

Gaussian and use the same w for all x, but while computing

hw we use αi independent of everything for every x. The

probability is under the randomization of w and indepen-

dence of all αi ensures the asymmetry. We are not sure if

such construction is possible with L2-ALSH. For LSH par-

titions with binary data, the idea used here can be applied

on asymmetric minwise hashing [24].

7 Ranking Evaluations

In [23], the L2-ALSH scheme was shown to outperform

other reasonable heuristics in retrieving maximum inner

products. Since our proposal is an improvement over L2-

ALSH, in this section we first present comparisons with

L2-ALSH, in particular on ranking experiments.

7.1 Datasets

We use three publicly available dataset MNIST, WEB-

SPAM and RCV1 for evaluations. For each of the three

dataset we generate two independent partitions, the query

set and the train set. Each element in the query set is used

for querying, while the training set serves as the collec-

tion C that will be searched for MIPS. The statistics of the

dataset and the partitions are summarized in Table 1

Dataset Dimension Query size Train size

MNIST 784 10,000 60,000

WEBSPAM 16,609,143 5,000 100,000

RCV1 47,236 5,000 100,000

Table 1: Datasets used for evaluations.

7.2 Evaluations

In this section, we show how the ranking of the two ALSH

schemes, L2-ALSH and Sign-ALSH, correlates with inner

products. Given a query vector q, we compute the top-10

gold standard elements based on the actual inner products

qTx, ∀x ∈ C, here our collection is the train set. We then

generate K different hash codes of the query q and all the

elements x ∈ C and then compute

Matchesx =
K∑
t=1

1(ht(Q(q)) = ht(P (x))), (30)

where 1 is the indicator function and the subscript t is

used to distinguish independent draws of h. Based on

Matchesx we rank all the elements x. Ideally, for a better

hashing scheme, Matchesx should be higher for element

x having higher inner products with the given query q. This

procedure generates a sorted list of all the items for a given

query vector q corresponding to the each of the two asym-

metric hash functions under consideration.

For L2-ALSH, we used the same parameters used and rec-

ommended in [23]. For Sign-ALSH, we used the recom-

mended choice shown in Section 4.3, which is U = 0.75,

m = 2. Note that Sign-ALSH does not have parameter r.

We compute precision and recall of the top-10 gold stan-

dard elements, obtained from the sorted list based on

Matchesx. To compute this precision and recall, we start

at the top of the ranked item list and walk down in order.

Suppose we are at the kth ranked item, we check if this ele-

ment belongs to the gold standard top-10 list. If it is one of

the top-10 gold standard elements, then we increment the

count of relevant seen by 1, else we move to k + 1. By kth

step, we have already seen k elements, so the total items

seen is k. The precision and recall at that point are

Precision =
relevant seen

k
, Recall =

relevant seen

10

We show performance for K ∈ {64,128,256,512}. Note

that it is important to balance both precision and recall. The
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Figure 4: Precision-Recall curves (higher is better). We compare L2-ALSH (using parameters recommended in [23]) with

our proposed Sign-ALSH using (m = 2, U = 0.75) for retrieving top-10 elements. Sign-ALSH is noticeably better.

method which obtains higher precision at a given recall is

superior. Higher precision indicates higher ranking of the

top-10 inner products which is desirable. We report aver-

aged precisions and recalls.

The plots for all the three datasets are shown in Figure 4.

We can clearly see, that our proposed Sign-ALSH scheme

gives significantly higher precision recall curves than the

L2-ALSH scheme, indicating better correlation of top in-

ner products with Sign-ALSH compared to L2-ALSH. The

results are consistent across datasets.

8 Comparisons of Hashing Based and Tree

Based Methods for MIPS

We have shown in the previous Section that Sign-ALSH

outperforms L2-ALSH in ranking evaluations. In this Sec-

tion, we consider the actual task of finding the maximum

inner product. Our aim is to estimate the computational

saving, in finding the maximum inner product, with Sign-

ALSH compared to the existing scheme L2-ALSH. In ad-

dition to L2-ALSH which is a hashing scheme, there is an

another tree based space partitioning method [21] for solv-

ing MIPS. Although, in theory, it is know that tree based

methods perform poorly [25] due to their exponential de-

pendence on the dimensionality, it is still important to un-

derstand the impact of such dependency in practice. Un-

fortunately no empirical comparison between hashing and

tree based methods exists for the problem of MIPS in the

literature. To provide such a comparison, we also consider

tree based space partitioning method [21] for evaluations.

We use the same three datasets as described in Section 7.1.

Tree based and hashing based methodologies are very dif-

ferent in nature. The major difference is in the stopping



criteria. Hashing based methods create buckets and stop

the search once they find a good enough point, they may

not succeed with some probability. On the other hand, tree

based methods use branch and bound criteria to stop ex-

ploring further. So it is possible that a tree based algo-

rithm finds the optimal point but continues to explore fur-

ther requiring more computations. The usual stopping cri-

teria thus makes tree based methods unnecessarily expen-

sive compared to hashing based methods where the criteria

is to stop after finding a good point. Therefore, to ensure

fair comparisons, we allow the tree based method to stop

the evaluations immediately once the algorithm finds the

maximum inner product and prevent it from exploring fur-

ther. Also, in case when hashing based algorithm fails to

find the best inner product we resort to the full linear scan

and penalize the hashing based algorithm for not succeed-

ing. All this is required to ensure that tree based algorithm

is not at any disadvantage compare to hashing methods.

We implemented the bucketing scheme with Sign-ALSH

and L2-ALSH. The bucketing scheme requires creating

many hash tables during the preprocessing stage. Dur-

ing query phase, given a query, we compute many hashes

of the query and probe appropriate buckets in each table.

Please refer [1] for more details on the process. We use the

same fixed parameters for all the evaluations, i.e., (m=2,

U=0.75) for Sign-ALSH and (m=3, U=0.83, r=2.5) for L2-

ALSH as recommended in [23]. The total number of inner

products evaluated by a hashing scheme, for a given query,

is the total number of hash computation for the query plus

the total number of points retrieved from the hash tables. In

rare cases, with very small probability, if the hash tables are

unable to retrieve the gold standard maximum inner prod-

uct, we resort to linear scan and also include the total num-

ber of inner products computed during the linear scan. We

stop as soon as we reach the gold standard point.

We implemented Algorithm 5 from [21], which is the best

performing algorithm as shown in the evaluations. For

this algorithm, we need to select one parameter which is

the minimum number of elements in the node required for

splitting. We found that on all the three datasets the value

of 100 for this parameter works the best among {500, 200,

100, 50}. Therefore, we use 100 in all our experiments.

The total number of inner products evaluated by tree based

algorithm is the total number of points reported plus the to-

tal number of nodes visited, where we compute the branch

and bound constraint. Again we stop the search process as

soon as we reach the point with gold standard maximum

inner product. As argued, we need this common stopping

condition to compare with hashing based methods, where

we do not have any other stopping criteria [13].

For every query we compute the number of inner products

evaluated by different methods for MIPS. We report the

mean of the total number of inner products evaluated per

query in Table 2. We can clearly see that hashing based

Sign-ALSH L2-ALSH Cone Trees

MNIST 7,944 9,971 11,202

WEBSPAM 2,866 3,813 22,467

RCV1 9,951 11,883 38,162

Table 2: Average number of inner products evaluated per

query by different MIPS algorithms. Both Sign-ALSH and

L2-ALSH [23] outperform cone trees [21]. Sign-ALSH is

always superior compared to L2-ALSH for MIPS.

methods are always better than the tree based algorithm.

Except on MNIST dataset, hashing based methods are sig-

nificantly superior, which is also not surprising because

MNIST is an image dataset having low intrinsic dimen-

sionality. Among the two hashing schemes Sign-ALSH is

always better than L2-ALSH, which verifies our theoreti-

cal findings and supports our arguments in favor of Sign-

ALSH over L2-ALSH for MIPS.

9 Conclusion

The MIPS (maximum inner product search) problem has

numerous important applications in machine learning,

databases, and information retrieval. [23] developed the

framework of Asymmetric LSH and provided an explicit

scheme (L2-ALSH) for approximate MIPS in sublinear

time. L2-ALSH uses L2-LSH as a subroutine which uses

suboptimal quantizations. In this study, we present another

asymmetric transformation scheme (Sign-ALSH) which

converts the problem of maximum inner products into the

problem of maximum correlation search, which is subse-

quently solved by sign random projections, thereby avoid-

ing the use of L2-LSH.

Theoretical analysis and experimental study demonstrate

that Sign-ALSH can be noticeably more advantageous than

L2-ALSH. The new transformations with Sign-ALSH can

be adapted to generate LSH like random data partitions

which is very useful for large scale clustering. Such an

adaptation is not possible with existing L2-ALSH. This

was a rather unexpected advantage of the proposed Sign-

ALSH over L2-ALSH. We also establish by experiments

that hashing based algorithms are superior to tree based

space partitioning methods for MIPS.

It should be noted that for MIPS over binary data our recent

work asymmetric minwise hashing [24] should be used.

We showed that for binary domain asymmetric minwise

hashing is both empirically and provably superior, please

see [24] for more details.
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