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Abstract

Multistate monotone systems are used to describe technological or biological
systems when the system itself and its components can perform at differ-
ent operationally meaningful levels. This generalizes the binary monotone
systems used in standard reliability theory. In this paper we consider the
availabilities of the system in an interval, i.e. the probabilities that the sys-
tem performs above the different levels throughout the whole interval. In
complex systems it is often impossible to calculate these availabilities ex-
actly, but if the component performance processes are independent, it is
possible to construct lower bounds based on the component availabilities to
the different levels over the interval. In the present paper we show that by
treating the component availabilities over the interval as if they were avail-
abilities at a single time point we obtain an improved lower bound. Unlike
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previously given bounds, the new bound does not require the identification
of all minimal path or cut vectors.
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1 Introduction

In multistate reliability theory we consider multistate monotone systems
(MMS), as defined in Block and Savits (1982). An MMS (C, φ) consists
of a set C = {1, 2, . . . , n} of components and a structure function φ, defining
the state of the system as an element in the set S = {0, 1, 2, . . . ,M}. Here n
and M are arbitrary natural numbers. The state of component i at time t is
denoted by Xi(t), and belongs to a subset Si of S, assumed in Natvig (2011)
to contain 0 and M . We will however allow Mi = max(Si) to be smaller than
M in general. By setting M = Mi = 1, all the results of the present paper
cover the binary case.

The system state is supposed to be a non-decreasing function of the
component states, and is given by φ(X(t)), where by definition X(t) =
(X1(t), . . . , Xn(t)). We assume φ(0, . . . , 0) = 0 and φ(M1, . . . ,Mn) = M .
In accordance with tradition in the field, we consider time points t in some
subset τ(I) of an interval I of interest, with τ(I) finite and τ(I) = I be-
ing typical special cases. The interval I is typically chosen for operational
considerations.

The concept of an MMS generalizes the concept of a binary monotone
system (BMS), studied in binary reliability theory. It allows a more refined
description of a system than the concept of a BMS, which is often necessary
in order to handle complex systems that can perform at different levels. The
system could e.g. be an oil or gas transportation system, or an electrical
power grid, where the probabilities that the system can deliver above certain
given levels at any given time point within a certain time period are of in-
terest. In specific applications it may be natural to let S and Si consist of
arbitrary real numbers that are directly interpretable as some kind of mea-
surable quantities. However, by the use of discrete approximations restricting
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attention to state spaces consisting of natural numbers hardly represents a
limitation. In general, the elements of S and Si are thought of as representing
an ordering of meaningful performance levels.

We will illustrate the various concepts through the following simple ex-
ample.

Example 1. Let C = {1, 2, 3, 4}, Si = S = {0, 1, 2} and

φ(x) = max(min(x1, x2),min(x3, x4)).

This system consists of two modules {1, 2} and {3, 4}, both being series
systems, and an organizing structure being a parallel system. 2

The component performance processes {Xi(t), t ∈ τ(I)}, are random,
possibly stochastically dependent processes involving repair at fixed or ran-
dom points of time. The processes are assumed to be continuous from the
right. A full probabilistic analysis of a multistate monotone system over
an interval I requires the specification of a full dynamic model of the joint
component process {X(t), t ∈ τ(I)}. A framework for the specification of
such a parametric model is given in G̊asemyr and Natvig (2005). In all but
very simple cases analytic calculations are intractable. G̊asemyr and Natvig
(2005) outlines a procedure for simulating the process {X(t), t ≥ 0}, and
also a data augmentation procedure for using such simulations in Bayesian
estimation of the parameters of the model. A program for simulation of a
binary system with independent component processes is presented in Huseby
et al. (2010), while a similar program for simulation of a multistate system
with independent components is given in Huseby and Natvig (2013).

In complex systems, the above mentioned simulation based probabilistic
analysis of the system may be prohibitively costly computationally. In many
cases there is also insufficient information to model the dynamic behaviour
of the marginal component processes, and even more so the joint process of
dependent components. The analysis then has to be based on less accurate
information about the system. In this paper we will consider methods based
on the component availabilities

pji = P (Xi(t) ≥ j for all t ∈ τ(I)) =

P ( min
t∈τ(I)

Xi(t) ≥ j), i = 1, . . . , n, j = 0, . . . ,M.

Here, 1 = p0i ≥ p1i ≥ · · · ≥ pMi
i ≥ 0, and pji = pj−1i if j−1 /∈ Si, pji = 0 if Mi <
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j. We denote by p the vector consisting of all the availabilities for all the
components. The determination of pji may be based on experts opinions, test
data or operational data, or on a combination of these information sources. In
the case of a fully specified dynamic model, the component availabilities are
in principle given by the model, but the determination of pji can be a difficult
task in practice. Section 3.6 in Natvig (2011) provides an example where
such a calculation is performed in a very simple system. The component
availabilities can also be estimated by Monte Carlo simulation.

The component availabilities over an interval I do not determine the
corresponding system availabilities

pjφ = P (φ(X(t)) ≥ j for all t ∈ τ(I)), j = 1, . . . ,M.

These system availabilities can then not be calculated, even in the case of in-
dependent components, and we have to resort to bounds. For the binary case,
such bounds are studied in Bodin (1970), Esary and Proschan (1970), Barlow
and Proschan (1975) and Natvig (1980). The multistate case is considered
in Block and Savits (1982), Natvig (1982), Butler (1982), Funnemark and
Natvig (1985), Natvig (1986), Natvig (1993) and G̊asemyr (2012). A com-
prehensive treatment is given in Natvig (2011). The basic bounds given in
these publications are based on the sets of minimal path vectors and minimal
cut vectors to level j, i.e. vectors y respectively z that are minimal respec-
tively maximal in the natural ordering on S1 × · · · × Sn with respect to the
properties that φ(y) ≥ j respectively φ(z < j).

Both upper and lower bounds are provided in these papers, the upper
bounds generally being of poorer quality than the lower ones. From the point
of view of a cautionary principle, lower bounds are much more important, and
these are often quite good. However, in some cases also the lower bounds are
poor, and this may have the unfortunate consequence that a disproportionate
amount of resources is invested in improving the availability of the system.

The present paper, concentrating on independent component processes,
adds a new tool to the toolkit for this case. We define a lower bound for the
system availabilities that unlike the existing ones is not based on the minimal
path or cut vectors. Equation (3.17) of Natvig (2011), appearing in the proof
of its Theorem 3.7, can be used to define a corresponding lower bound for
systems with dependent components.

The new lower bound is introduced in Section 2 of the present paper.
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Despite the apparent simplicity of the idea behind this suggestion, it turns
out that we obtain a lower bound that is an improvement of the existing ones
generally, and a strict improvement in many cases. This is proved in section 3.
Section 4 introduces flow networks and shed light on the theoretical results
by comparing the different lower bounds in a simple example. Section 5
contains some concluding remarks. The applicability of the new lower bound
depends on computational issues, which will be discussed in a separate paper
along with a case study.

2 The new lower bound

Consider first the special case when I collapses to a point, i.e. I = [t, t].
In this special case, assuming in addition that the component states at t
are independent, the system availabilities are deterministic functions hjφ(p)
of the component availabilities. To see this, define for i = 1, . . . , n, k ∈ Si,
(with pMi+1

i = 0),

rki = P (Xi(t) = k) = pki − pk+1
i ,

collected in the vector r. Then by the independence of Xi(t), i = 1, . . . , n,

p(X(t) = x) =
n∏
i=1

rxii .

For each j = 1, . . . ,M , we may then write

pjφ = E(I(φ(X(t)) ≥ j)|r) =
∑

x∈S1×···×Sn

I(φ(x) ≥ j)
n∏
i=1

rxii =

∑
x∈S1×···×Sn

I(φ(x) ≥ j)
n∏
i=1

(pxii − pxi+1
i )

def
= hjφ(p). (1)

If we are able to calculate (1) numerically, the need for a lower bound is
eliminated in this special case.

Returning to a general interval I, we may still evaluate the function hjφ
at p, even though p now represents the component availabilities in I, rather
than the availabilities at a specific point of time. In the case of independent
component processes, our idea is to use the number hjφ(p) as a lower bound.
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We show in the following theorem that a lower bound is in fact obtained in
this way.

Theorem 1 Assume that the component processes are independent. Define

X̌i = min
t∈τ(I)

Xi(t), i = 1, . . . , n,

and let X̌ = (X̌1, . . . , X̌n). Let p be the vector with components

pki = P (X̌i ≥ k, i = 1, . . . , n, k ∈ Si.

Define

l̃jφ(p) = hjφ(p), j = 1, . . . ,M. (2)

Then

pjφ ≥ l̃jφ(p).

Proof: Note that

I(φ(X(t)) ≥ j for all t ∈ τ(I)) ≥ I(φ(X̌) ≥ j).

By taking expectations, the inequality

pjφ ≥ P (φ(X̌) ≥ j) (3)

follows, even in the case of dependent components. If now the component
processes are independent in I, then it is fairly obvious that X̌1, . . . , X̌n are
independent, with P (X̌i = k) = rki , where now

rki = (pki − pk+1
i = P (X̌i = k), i = 1, . . . , n, k ∈ Si. (4)

Comparing with (1) it then follows that the right hand side of the inequality
(3) equals hjφ(p). 2

In non-repairable systems, X̌i = Xi(tB) for every i, where tB is the right end
point of I. It follows that l̃jφ(p) is exact. If there is a high probability that the
processes Xi(t), i = 1, . . . , n, attain their minima simultaneously, the bound
l̃jφ(p) is close to pjφ. In fact, defining τi = {t : Xi(t) = X̌i} ∩ τ(I), we find
by conditioning on the events that the set ∩ni=1τi is respectively empty or
non-empty, that
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pjφ − l̃
j
φ(p) = E(I([mint∈τ(I) φ(X(t))] ≥ j)− I(φ(X̌) ≥ j)) =

E(I([mint∈τ(I) φ(X(t))] ≥ j) − I(φ(X̌) ≥ j)| ∩ni=1 τi = ∅)P (∩ni=1τi = ∅) +
E(I([mint∈τ(I) φ(X(t))] ≥ j)− I(φ(X̌) ≥ j)| ∩ni=1 τi 6= ∅)P (∩ni=1τi 6= ∅) ≤
P (∩ni=1τi = ∅).
This latter probability is for instance small if we consider an interval that is
so short that repairs are unlikely to take place, implying that X̌ = X(tB).

Example 1 continued. We assume p1 = . . . = p4 = p = (p(1), p(2)). The
deviating notation p(1), p(2) instead of p1, p2 is chosen here to avoid confusion
in formulas involving squared availabilities.

Denoting the organizing parallel structure function by ψ and the modular
series structure functions by χ1, χ2, we find for j = 1, 2

l̃jφ(p) = hjφ(p) = hjψ(hjχ1
(p), hjχ2

(p)) =

hjχ1
(p) + hjχ2

(p)− hjχ1
(p)hjχ2

(p) = 2(p(j))2 − (p(j))4, j = 1, 2. 2

The computation of l̃jφ(p) can be quite difficult in more complex sys-
tems than that of Example 1. For moderately sized systems we can use the
conceptually simple but computationally usually inefficient expression

hjφ(p) =
∑

x∈S1×···×Sn|φ(x)≥j

n∏
i=1

rxii ,

building directly on (1), with rxii defined through (4). Still not feasible in
very complex systems, with a suitable choice of i the expression

hjφ(p) =
∑
k∈Si

rki P (φ(X̌) ≥ j|X̌i = k) (5)

can sometimes simplify the computation. Using a modular decomposition,
as we did in Example 1, can be a very efficient way to simplify calculations
when it is available.

In more complex systems, more realistically we may estimate l̃jφ(p) with
arbitrary accuracy by means of a simple Monte Carlo simulation technique,
provided we are able to calculate φ(x) for any x ∈ S1 × · · · × Sn reason-
ably efficiently. Indeed, knowing the probabilities rki = P (X̌i = k), i =
1, . . . , n, k ∈ Si,, we may easily simulate X̌. We estimate l̃jφ(p) by the mean
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of I(φ(X̌∗r) ≥ j) taken over a large sample of independent X̌∗r, r = 1, 2, . . ..
The computational issue will be further discussed in a separate paper.

3 Comparison with the established lower bounds

We start by reviewing the relevant lower bounds given in the literature.
A generally valid lower bound using the minimal path vectors ym,m =
1, . . . ,Mp to level j is given by Funnemark and Natvig (1985) as

l′′jφ = max
1≤m≤Mp

P (∩ni=1(Xi(t) ≥ ymi for all t ∈ τ(I))) =

max
1≤m≤Mp

(P (∩ni=1(X̌i ≥ ymi )).

In the case of independent component processes this takes the form

l′jφ (p) = max
1≤m≤Mp

(
n∏
i=1

P (X̌i ≥ ymi )) = max
1≤m≤Mp

(
n∏
i=1

p
ymi
i ). (6)

Based on the minimal cut vectors zm,m = 1, . . . ,Mc, still under the
assumption of independent component processes, we have the lower bound
(see Butler (1982) and Funnemark and Natvig (1985))

l∗∗jφ (p) =
Mc∏
m=1

n∐
i=1

P (X̌i > zmi ) =
Mc∏
m=1

n∐
i=1

p
zmi +1
i , (7)

where for real numbers pi ∈ [0, 1] we define
∐n
i=1 pi = 1−∏n

i=1(1− pi).
Example 2. Let C = {1, 2}, S1 = S2 = {0, 1, 2}, S = {0, 1, 2, 3, 4} and
φ(x) = x1 + x2. This is an example of a flow network system, which is
discussed more generally in Section 4. Assume the component states are
independent. Let p1 = p2 = (p(1), p(2)) = (0.9, 0.8). As in Example 1,
the deviating notation p(1), p(2) is chosen here to avoid confusion in formulas
involving squared availabilities.

Below we give the minimal path and cut vectors and lower bounds to all
the levels. To help the reader familiarize with the theory, we give both ana-
lytic and numerical formulas for the calculations, in addition to the numerical
value of the lower bounds. We use (5) to calculate l̃jφ(p).
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Level 4:

Minimal path vector: (2, 2).

l′4φ (p) = (p(2))2 = 0.82 = 0.64.

Minimal cut vectors: (2, 1), (1, 2).

l∗∗4φ (p) = [1− (1− p(2)]2 = (p(2))2 = 0.82 = 0.64.

l̃4φ(p) = r2p(2) = (p(2))2 = 0.82 = 0.64.

Level 3:

Minimal path vectors: (2, 1), (1, 2).

l′3φ (p) = p(2)p(1) = 0.9 · 0.8 = 0.72.

Minimal cut vectors: (2, 0), (1, 1), (0, 2).

l∗∗3φ (p) = (p(1))2[1− (1− (p(2)))2] = 0.81 · 0.96 = 0.78

l̃3φ(p) = r1p(2) + r2p(1) = 0.1 · 0.8 + 0.8 · 0.9 = 0.80.

Level 2:

Minimal path vectors: (2, 0), (1, 1), (0, 2).

l′2φ (p) = (p(1))2 = 0.81.

Minimal cut vectors: (1, 0), (0, 1).

l∗∗2φ (p) = [1− (1− p(2))(1− p(1))]2 = 0.96

l̃2φ(p) = r0p(2) + r1p(1) + r2 = 0.97.

Level 1:

Minimal path vectors: (1, 0), (0, 1).

l′1φ = p(1) = 0.9

Minimal cut vector: (0, 0).

l∗∗1φ (p) = 1− (1− p(1))2 = 0.99.

l̃1φ(p) = r0p(1) + r1 + r2 = 0.99. 2
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In a complex system it may be quite difficult to identify all minimal
path and cut vectors. It is worth noting that (6) is a valid but possibly
suboptimal bound if the maximization is taken over a subset of the minimal
path vectors or over a set including non-minimal path vectors. The bound (7)
is however invalid unless all minimal cut vectors are identified and included
in the product.

It depends on the structure function φ and on p whether l∗∗jφ (p) or l′jφ (p)
is the better bound. Moreover, contrary to intuition, the l∗∗j-bound is not
necessarily non-increasing in j. Hence, the best possible bounds based on
(6) and (7) are obtained by maximization, and is defined as follows (see
Funnemark and Natvig (1985)):

B∗jφ (p) = max
j′≥j

max(l∗∗j
′

φ (p), l′j
′

φ (p)). (8)

In order to compare l̃jφ(p) to the bounds (6) – (8) given above, we need some
properties of associated random variables, given in Theorem 3.1 in Barlow
and Proschan (1975). First,

Property 1: Non-decreasing functions of independent variables are as-
sociated.

Moreover,

Property 2: If X1, . . . , Xn are associated random variables taking values
in [0, 1], then

E(X1 · · ·Xn) ≥ E(X1) · · ·E(Xn).

Theorem 2 Assume that the component processes are independent. We then
have

l̃jφ(p) ≥ B∗jφ (p). (9)

Proof: Choose a minimal path vector y for φ to level j. Clearly,

I(φ(X̌) ≥ j) ≥
I(X̌i ≥ yi for all i = 1, . . . , n) = I(∩ni=1(X̌i ≥ yi)).

Taking expectations, we obtain

P (φ(X̌) ≥ j) ≥ P (∩ni=1(X̌i ≥ yi)).
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Maximizing over minimal path vectors y = ym,m = 1, . . . ,Mp, we obtain

P (φ(X̌) ≥ j) ≥ l′′jφ , (10)

valid for any joint distribution of the component processes. With independent
component processes it follows that

l̃jφ(p) ≥ l′jφ (p).

Expressing the system state by means of the minimal cut vectors, we
furthermore have

I(φ(X̌) ≥ j) =
Mc∏
m=1

I(∪ni=1(X̌i > zmi )). (11)

Note that the indicator functions in this product are non-decreasing functions
of the independent variables X̌1, . . . , X̌n. Taking expectations, and using
properties 1 and 2 of associated random variables, we obtain

l̃jφ(p) ≥ ∏Mc
m=1 P (∪ni=1(X̌i > zmi )) =∏Mc

m=1

∐n
i=1 p

zmi +1
i = l∗∗jφ (p).

Furthermore, l̃jφ(p) is clearly non-increasing in j. Combining these facts, the
inequality (9) follows. 2

Remark 1 The probability that the right hand side of (11) equals 1 appears,
in a somewhat different notation, in Equation (3.17) in Natvig (2011) as
part of the proof of its Theorem 3.7. It is shown that this probability, which
equals P (φ(X̌) ≥ j), is smaller than or equal to pjφ and greater than or equal

to l∗∗jφ (p). It is however not realised that it could in fact be expressed as a
function of p, and could hence be used as a lower bound for the availability
of systems with independent components.

The following theorem, giving necessary and sufficient conditions for l̃jφ(p)

to be strictly better than B∗jφ (p), is a counterpart to Theorem 3.24 of Natvig
(2011). The proof uses arguments similar to arguments used in the proofs of
Theorem 3.22 and 3.23 of Natvig (2011).

For a minimal cut vector z to level j we define the corresponding minimal
cut set to be the set {i ∈ C|zi < Mi}. Similarly, the minimal path set
corrresponding to a minimal path vector y to level j is the set {i ∈ C|yi > 0}.
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Theorem 3 Assume that the component processes are independent in I.
Suppose that, for each i ∈ Si, pki is a strictly decreasing function of k ∈ Si,
with pMi

i > 0. Then for a given level j l̃jφ(p) = B∗jφ (p) if and only if for
all minimal cut vectors to level j all the corresponding minimal cut sets are
disjoint. Otherwise, i.e. if at least two minimal cut sets to level j overlap,
the inequality of Theorem 2, Equation (9), is strict.

Proof: Let Dm,m = 1, . . . ,Mc, be the minimal cut sets corresponding to the
minimal cut vectors to level j. For the corresponding minimal cut vectors
zm we have that zmi < Mi for i ∈ Dm, z

m
i = Mi for i ∈ Dc

m,m = 1, . . . ,Mc,
and xi ≤ zmi for all i ∈ Dm implies that φ(x) < j. The indicator functions
I(∪i∈Dm(X̌i ≥ zmi + 1)) are associated by property 1, being nondecreasing
functions of the independent random variables X̌i, i = 1, . . . , n. If the sets
Dm are disjoint, these indicator functions are also independent, by the inde-
pendence of the vectors X̌Dm whose components are the variables X̌i, i ∈ Dm.
In this case it follows that

l̃jφ(p) = E(
Mc∏
m=1

I(∪i∈Dm(X̌i ≥ zmi + 1))) =

Mc∏
m=1

E(I(∪i∈Dm(X̌i ≥ zmi + 1)) =
Mc∏
m=1

∐
i∈Dm

p
zmi +1
i = l∗∗jφ (p). (12)

Since l∗∗jφ (p) ≤ B∗jφ (p), it follows that

l̃jφ(p) ≤ B∗jφ (p).

Since we also have the opposite inequality by (9), this proves the equality
part.

Now assume that the sets Dm are not disjoint. We may assume that
D1 ∩ (D2 ∪ . . . ∪ DMc) 6= ∅. Then, as in the proof of Theorem 3.23 in
Natvig (2011), the variables I(∪i∈D1(X̌i ≥ z1i + 1)) and

∏Mc
m=2 I(∪i∈Dm(X̌i ≥

zmi +1)) are dependent and associated, and hence they have a strictly positive
covariance by Exercise 6, page 31 in Barlow and Proschan (1975). It follows
that

l̃jφ(p) = E[I(∪i∈D1(X̌i ≥ z1i + 1))(
∏Mc
m=2(I(∪i∈Dm(X̌i ≥ zmi + 1)))] >

E(I(∪i∈D1(X̌i ≥ z1i + 1)))E(
∏Mc
m=2(I(∪i∈Dm(X̌i ≥ zmi + 1)))) ≥
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E(I(∪i∈D1(X̌i ≥ z1i + 1)))
∏Mc
m=2E(I(∪i∈Dm(X̌i ≥ zmi + 1))) =∏Mc

m=1

∐
i∈Dm

p
zmi +1
i = l∗∗jφ (p).

Note that if there is only one minimal path vector y to level j, with corre-
sponding minimal path set of the form P = {i1, . . . , ik}, the minimal cut sets
are necessarily {i1}, . . . , {ik}, and are hence disjoint. Hence, by assumption
there are at least two minimal path vectors for φ to level j. Furthermore, we

may assume that l′jφ (p) =
∏n
i=1 p

y1i
i . Then, similar to the proof of Theorem

3.22 in Natvig (2011),

l̃jφ(p) = P (∪Mp

m=1(∩ni=1(X̌i ≥ ymi ))) ≥ P [(∩ni=1(X̌i ≥ y1i )) ∪ (∩ni=1(X̌i ≥ y2i ))] =

P (∩ni=1(X̌i ≥ y1i )) + P (∩ni=1(X̌i ≥ y2i ))− P (∩ni=1(X̌i ≥ max(y1i , y
2
i ))

> P (∩ni=1(X̌i ≥ y1i )) =
∏n
i=1 p

y1i
i = l′jφ (p).

Here we have used that p
max(y1i ,y

2
i )

i < p
y2i
i for at least one i and pki > 0 for

all i, k, and hence P (∩ni=1(X̌i ≥ y2i ))− P (∩ni=1(X̌i ≥ max(y1i , y
2
i )) > 0. Since

also l̃jφ(p) is non-increasing in j, the strict inequality in (9) follows. 2

Corollary 1 Assume that the component processes are independent. Sup-
pose there is only one minimal path vector to level j. Then all the bounds
(2), (6) and (7) for system availability to level j are exact, and we have

pjφ =
n∏
i=1

pyii = l′jφ (p) = l̃jφ(p) = l∗∗jφ (p).

Proof: If there is only one minimal path vector y to level j, we have

pjφ = P (∩ni=1(X̌i ≥ yi)) =
∏n
i=1 p

yi
i = l′jφ (p).

We obviously also have

l̃jφ(p) = hjφ(p) =
∏n
i=1 p

yi
i .

Hence, the first three equalities follow. If P is the minimal path set corre-
sponding to the minimal path vector y, then there is one minimal cut vector
for each i ∈ P , being of the form (M1, . . . ,Mi−1, yi−1,Mi+1, . . . ,Mn). Hence,
(7) takes the form

l∗∗jφ (p) =
∏
i∈P (1− (1− p(yi−1)+1

i )) =
∏n
i=1 p

yi
i = l̃jφ(p),

proving the last equality. 2
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An example of a system with one minimal path vector to each level is
given by the structure function of a series system φ(x) = min1≤i≤n xi, for
which (j, . . . , j) is the only minimal path vector to level j, j = 1, . . . ,M . For
the system of Example 2 (2, 2) is the only minimal path vector to level 4,
which explains the equality of all the lower bounds in this case.

Under the conditions of Corollary 1 we also obviously have pjφ = B∗jφ (p).
This identity does not hold under the weaker condition of Theorem 3 that
the minimal cut sets are disjoint. A simple counterexample is a binary two-
component parallel system, which has a single minimal cut set {1, 2}. By
the equality part of Theorem 3,

p1φ − B∗1φ (p) = p1φ − l̃1φ(p) = the probability that the two components are
in state 0 on nonempty disjoint subsets of τ(I), which is positive due to
independent component processes.

Remark 2 The identity pjφ = l′jφ (p) and the corresponding identity pjφ =

B∗jφ (p) are also stated in respectively Theorems 3.22 and 3.24 in Natvig
(2011), but are erroneously based on the assumption that there is only one
minimal path set to level j rather than the stronger assumption that there is
only one minimal path vector to level j. For a counterexample, see the case
j = 3 of Example 2. The two minimal path vectors (2, 1) and (1, 2) have
a single common minimal path set {1, 2}, but overlapping minimal cut sets
{2}, {1, 2}, {1} corresponding to the minimal cut vectors (2, 0), (1, 1), (0, 2),
and hence the strict inequality of Theorem 3 holds.

In Example 1 there are four minimal cut sets {1, 3}, {1, 4}, {2, 3} and
{2, 4}, each intersecting with two others. Although the conditions for the
strict inequality in Theorem 3 are hence abundantly satisfied, we find in this
example that, for reasonably large values of pj, l∗∗jφ (p) = B∗jφ (p) is very close

to l̃jφ(p). If relevant components of p are large, this is the case also in the
two-component flow network system studied in the next section. However,
for the larger k and correspondingly lower values of the relevant pki involved
when j approaches M , l∗∗jφ (p) becomes increasingly poor compared to l̃jφ(p)
when the number of states in Si and S increases.
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4 Comparison of the lower bounds in simple

flow network systems

In this section we consider the special case of a flow network system. Such
systems in general consist of a source node s, a terminal node t, and a
varying number of other nodes between s and t. The nodes are connected
to each others by directed edges. These edges {1, 2, . . . , n} represent the
components of the system. Each edge i has a flow capacity that changes over
time, representing the random state Xi(t) of the component, while the state
of the system is the flow from s to t. This flow is determined through the
min-cut-max-flow theorem, see Ford and Folkerson (1956), by what we will
call minimal flow cut sets, to distinguish them from the minimal cut sets
defined just before Theorem 3. A subset of components is called a flow cut
set if there is no directed path from s to t if the set is removed from the
graph. Such a set is called minimal if no proper subset is a flow cut set. The
capacity of a flow cut set is the sum of the capacities of the components in
the set. The flow through the system from s to t then equals the capacity of
the minimal flow cut set with the smallest capacity. Denoting by K1, . . . , Kk

the set of minimal flow cut sets, the flow from s to t is hence given by

φ(x) = min
1≤r≤k

(
∑
i∈Kr

xi). (13)

Comparison of the different lower bounds in an extended version of Exam-
ple 2 provides a good illustration of their properties. More complex systems
will be analysed in a separate paper, focusing on computational aspects.
Based on Example 2, one might think that although the minimal path lower
bound is relatively poor in this type of system, the minimal cut lower bound
compares quite favorably with l̃jφ(p). The following Example 3 shows that
this is not the case in general.

Example 3. Let C = {1, 2}, S1 = S2 = {0, 1, 2, . . . , 5}, S = {0, 1, 2, . . . , 10}
and φ(x) = x1 + x2. Assume the component states are independent. Let
p1 = p2 = (0.95, 0.90, 0.85, 0.80, 0.75). We will limit attention to lower
bounds for the system availability to levels 9, 6 and 3, and skip the analytic
formulas for this example. We still use (5) to calculate l̃jφ(p).

Level 9:
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Minimal path vectors: (4, 5), (5, 4).

l′9φ (p) = 0.75 · 0.80 = 0.60.

Minimal cut vectors: (3, 5), (4, 4), (5, 3).

l∗∗9φ (p) = 0.82 · (1− 0.0625) = 0.60.

l̃9φ(p) = 0.05 · 0.75 + 0.75 · 0.80 = 0.64.

Level 6:

Minimal path vectors: (1, 5), (2, 4), 3, 3), (4, 2), (5, 1).

l′6φ (p) = 0.852 = 0.72.

Minimal cut vectors: (0, 5), (1, 4), (2, 3), (3, 2), (4, 1), (5, 0).

l∗∗6φ (p) = 0.952 · 0.9752 · 0.972 = 0.81.

l̃6φ(p) = 0.05 · (0.75 + 0.80 + 0.85 + 0.90) + 0.75 · 0.95 = 0.88.

Level 3:

Minimal path vectors: (1, 2), (2, 1).

l′3φ (p) = 0.95 · 0.90 = 0.86.

Minimal cut vectors: (0, 2), (1, 1), (2, 0).

l∗∗3φ (p) = (1− 0.0075)2 · 0.99 = 0.975.

l̃3φ(p) = 0.05 · (0.85 + 0.90 + 0.95) + 0.85 = 0.985. 2

We see that l′jφ (p) is consistently the poorest lower bound. For the small-

est value j = 3, l∗∗jφ (p) is close to l̃jφ(p). For this value of j, the factors∐n
i=1 p

zmi +1
i = 1−∏

i∈Dm
(1− pz

m
i +1
i )

of (7) depend on values of p
zmi +1
i , i ∈ Dm, 1 ≤ m ≤ Mc, that are close to 1.

When j increases, smaller values of p
zmi +1
i are involved in these factors, and

this apparently makes l∗∗jφ (p) more sensitive to this increase than l̃jφ(p). F

This partly explains a generally poorer performance of l∗∗jφ (p) at the higher

system levels compared to l̃jφ(p). However, the number Mc of factors in (7) is
also important, and Mc attains its highest values at the intermediate values
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of j. This explains why l∗∗jφ (p) compares least favourably with l̃jφ(p) for j = 6
in Example 3, where Mc attains its maximal value 6. A further increase in
Mi and M would aggravate this problem.

The negative effect a large value of Mc can have on l∗∗jφ (p) can also be
expected to be quite significant in more complex systems. Consider in general
a flow network system where the component state spaces are of the form
Si = {0, 1, 2, . . . ,Mi}, whereas the system state space is S = {0, 1, 2, . . . ,M}.
We may assume that M equals the maximal flow through the system, which
by (13) is

min
1≤r≤k

(
∑
i∈Kr

Mi)

.

It is easy to see that z is a minimal cut vector to level j if and only if there
exists r such that

∑
i∈Kr

zi = j − 1, and zi = Mi for every i /∈ Kr. Hence, an
increased number of minimal flow cut sets due to an increased complexity of
the system can be expected to lead to l∗∗jφ (p) being relatively poor.

5 Concluding remarks

In this paper we have introduced a new lower bound l̃jφ(p) for system avail-
ability to level j over an interval I, valid in the case of independent com-
ponent processes. We show both theoretically and in some simple examples
that the bound is an improvement over existing ones. In addition, unlike
these bounds, it does not require the identification of all minimal path or
cut vectors. However, beyond simple cases like those analysed in the present
paper, the computation of l̃jφ(p) may be difficult. The most promising so-
lution to this problem is the use of simulation based methods; a theme we
pursue in another paper. Simulation techniques could also be used to extend
the methodology to dependent component processes. If a reasonable full dy-
namic model for the joint component process X(t) can be specified, and if
we could simulate sample paths x(t), t ∈ τ(I), from this model, extract the
corresponding X̌, and calculate each φ(x̌), we could, possibly at a very high
computational cost, estimate a lower bound l̃jφ defined as the right hand side
of (3). The inequality (10) shows that this would be an improvement over
l′′jφ . However, one could then also in principle estimate pjφ itself, rather than
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a lower bound, but at an even higher and possibly prohibitive computational
cost.
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