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ABSTRACT 

Bulk RNA-sequencing technologies have provided invaluable insights into host and 

bacterial gene expression and associated regulatory networks. Nevertheless, the majority 

of these approaches report average expression across cell populations, hiding the true 

underlying expression patterns that are often heterogeneous in nature. Due to technical 

advances, single-cell transcriptomics in bacteria has recently become reality, allowing 

exploration of these heterogeneous populations, which are often the result of 

environmental changes and stressors. In this work, we have improved our previously 

published bacterial single-cell RNA-sequencing protocol that is based on MATQ-seq, 

achieving a higher throughput through the integration of automation. We also selected a 

more efficient reverse transcriptase, which led to reduced cell loss and higher workflow 

robustness. Moreover, we successfully implemented a Cas9-based ribosomal RNA 

depletion protocol into the MATQ-seq workflow. Applying our improved protocol on a 

large set of single Salmonella cells sampled over growth revealed improved gene 

coverage and a higher gene detection limit compared to our original protocol and allowed 

us to detect the expression of small regulatory RNAs, such as GcvB or CsrB at a single-cell 

level. In addition, we confirmed previously described phenotypic heterogeneity in 

Salmonella in regards to expression of pathogenicity-associated genes. Overall, the low 

percentage of cell loss and high gene detection limit makes the improved MATQ-seq 

protocol particularly well suited for studies with limited input material, such as analysis 

of small bacterial populations in host niches or intracellular bacteria.  
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IMPORTANCE 

Gene expression heterogeneity among isogenic bacteria is linked to clinically-relevant 

scenarios, like biofilm formation and antibiotic tolerance. The recent development of 

bacterial single-cell RNA-sequencing (scRNA-seq) enables the study of cell-to-cell 

variability in bacterial populations and the mechanisms underlying these phenomena. 

Here, we report a scRNA-seq workflow based on MATQ-seq with increased robustness, 

reduced cell loss, improved transcript capture rate, and gene coverage. Use of a more 

efficient reverse transcriptase and the integration of a ribosomal RNA depletion step, 

which can be adapted to other bacterial single-cell workflows, was instrumental for these 

improvements. Applying the protocol to the foodborne-pathogen Salmonella, we 

confirmed transcriptional heterogeneity across and within different growth phases and 

demonstrated that our workflow captures small regulatory RNAs on the single-cell level. 

Due to low cell loss and high transcript capture rates, this protocol is uniquely suited for 

experimental settings in which the starting material is limited, such as infected tissues.  
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INTRODUCTION 

Until now, bacterial transcriptome studies have mainly relied on bulk RNA-sequencing 

(RNA-seq) (1). This approach provides averaged gene expression values across an entire 

cell population and therefore does not allow conclusions regarding transcriptional 

heterogeneity between individual bacteria. Yet, such phenotypic heterogeneity is a 

common microbial phenomenon (2). It is important for bacterial survival strategies such 

as bet-hedging, which allows fast adaptations to changing environments (3, 4) or biofilm 

formation, where individual cells take on highly specific roles within a community (5). 

Dating to 2009, pioneering work established single-cell (sc)RNA-seq in eukaryotes (6). 

While this field rapidly evolved (7), the development of scRNA-seq in bacteria was slow 

to progress due to several challenges (8). Compared to eukaryotes, prokaryotic cells are 

much smaller, leading to less input material per cell. Single bacteria contain RNA in the 

femtogram range (9) and the average mRNA copy number is low, with only 0.4 copies/cell 

(10). Further challenges include efficient cell lysis, which is hampered by the bacterial 

cell wall, and capturing non-polyadenylated bacterial transcripts. These differences 

prevent a direct adaptation of most eukaryotic single-cell transcriptomic workflows.  

Nevertheless, thanks to technical advances, bacterial scRNA-seq has recently become a 

reality (8). Three general types of approaches are currently available. Bacterial MATQ-

seq (11), which stands for Multiple Annealing and dC-Tailing-based Quantitative scRNA-

seq, is a workflow originally developed for eukaryotes (12) that relies on cell isolation by 

fluorescence activated cell sorting (FACS) and random priming of cellular transcripts. A 

second type, also previously established for eukaryotes and termed Split-Pool Ligation 

Transcriptomics Sequencing, or SPLiT-seq (13), is based on combinatorial barcoding. It 

was adapted for bacterial scRNA-seq in two independent studies introducing the so-

called PETRI-seq and microSPLiT protocols (14, 15). In comparison to MATQ-seq, 

bacterial split-pool barcoding workflows  enable the analysis of thousands of cells instead 

of a few hundreds, offsetting the lower transcript capture rate and higher rate of cell loss 

in these protocols. The third type is a microscopy- and probe-based approach that does 

not employ RNA-seq. It is called Parallel Sequential Fluorescence In situ Hybridization 

(par-seqFISH) and allows spatial transcriptomics on the level of single bacteria (16).  
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Despite these recent advances, challenges remain. These include a high frequency of cell 

loss and problems with robustness, coverage and prevalence of redundant ribosomal 

RNA (rRNA). In addition, short transcripts, such as regulatory small RNAs (sRNAs), show 

poor coverage or are not measurable at all. Importantly, transcript detection is currently 

limited to ~200 genes per single-cell, which is far below the average bacterial 

transcriptome. We reasoned that targeted improvements of our previous MATQ-seq 

protocol would address some of these challenges. 

In this work, we present the next version of bacterial MATQ-seq. While the original 

protocol (11) has a high transcript capture rate, including low abundance transcripts, it 

is also limited in throughput and robustness. Through the integration of automation, we 

have now achieved increased cell throughput. In addition, we improved robustness 

through the selection of a more efficient reverse transcriptase (RT), which also led to a 

reduced transcript drop-out rate. Finally, given that the fraction of rRNA reads in our 

previous protocol reached up to 93%, we integrated a Cas9-mediated targeted rRNA 

depletion protocol, called Depletion of Abundant Sequences by Hybridization (DASH, 

(17)). This allowed us to obtain more gene expression information per single cell with 

decreased sequencing costs. 

RESULTS 

Automation of the MATQ-seq workflow achieves higher throughput  

Initially, we aimed to increase cell throughput and read quality by integrating automation 

and by refining our analysis pipelines. In order to enable direct comparison with previous 

data, we performed all experiments in Salmonella enterica serovar Typhimurium. Within 

the MATQ-seq protocol, library preparation and quality control consist of a series of 

different labor-intensive pipetting steps. We implemented a user-friendly and highly 

flexible automation process by establishing protocols for all pipetting steps on the I.DOT 

dispensing robot (Dispendix), with the exception of clean-up and quality control steps 

(Fig. 1). This decreased turnaround times and the amount of consumables needed. 

Concurrently, automation increased sample throughput.  
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For cDNA analysis and quality control, we integrated the high-throughput Qubit Flex 

fluorometer for a precise and fast procedure. To facilitate sample processing, we applied 

a miniaturization step for the final PCR reaction volume by skipping the splitting step of 

the PCR reaction implemented in the original MATQ-seq protocol (12). This allowed 

processing of up to 96 single cells per MATQ-seq passage compared to a maximum of 24 

cells in the previous protocol and decreased the overall processing time from about 10 to 

8 hrs. More importantly, the hands-on time was reduced from about 6 to 3 hrs. Finally, 

we updated our data processing and analysis pipeline to improve data quality by 

implementing a better trimming approach, alignment, normalization, and identification 

of outliers (see Methods for details). Overall, all these steps discussed above led to higher 

cell throughput, improved accuracy and to higher read qualities, as described in more 

detail below.  

Optimized reverse transcription leads to higher robustness and reduced cell loss  

Reverse transcription is crucial for RNA conversion and thus greatly affects the 

robustness of the scRNA-seq protocol and the detection of low-abundance transcripts. In 

our previous study, we used Superscript III (SS III) for the reverse transcription step (11). 

In the meantime, RTs with properties that promised to improve reverse transcription 

efficiency were reported (18–20). Therefore, we systematically tested Superscript IV (SS 

IV), an optimized RT based on SS III with improved thermostability, robustness and 

processivity; TGIRT and PrimeScript, two RTs that allow reverse transcription of GC-rich 

regions and highly structured RNAs; and Maxima H Minus and SMARTScribe, two highly 

efficient RTs with a high processivity and the capability to convert RNA transcripts up to 

20 or 14.7 kb in length, respectively. For the analysis of these five different RTs we used 

fluorometer (Qubit) as well as high-resolution gel electrophoresis (Bioanalyzer) systems 

to assess cDNA yield and integrity.  

Initially, we used total RNA as spike-in to evaluate the compatibility of the RTs with the 

MATQ-seq workflow (Fig. 2A). Of note, reverse transcription during MATQ-seq is 

performed with temperature gradients, which might interfere with RT efficiency. Indeed, 

SMARTScribe and PrimeScript showed low efficiency and were excluded from further 
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validation. For the remaining three RTs we adapted buffer conditions to manufacturer’s 

recommendation. This yielded larger fragments in Bioanalyzer profiles, especially for SS 

IV and Maxima H Minus (Fig. S1A). Qubit measurements of cDNA obtained from spike-in 

tests using TGIRT showed low yield insufficient for further library preparation, ruling out 

this RT for further use (Fig. S1B).  

Next, we assessed the performance of SS IV and Maxima H Minus on sorted cells. Whereas 

both RTs showed similar results for 50 and 10 sorted cells, Maxima H Minus was less 

efficient on single-cell level (Fig. S1C). In a direct comparison of SS IV to SS III (Fig. 2B), 

SS IV showed a higher reproducibility, indicated by a pattern of characteristic bands and 

an increase in cDNA yield on the single-cell level. Based on these results and a lower cell 

loss overall, we implemented SS IV in the MATQ-seq protocol. Of note, due to the 

implementation of automation and the improvements in reverse transcription, only 

~10% percent of all cells were lost during wet-lab processing (MATQ-seq and library 

preparation) and/or excluded by bioinformatic filtering.  

Ribosomal RNA depletion substantially increases non-rRNA reads  

In order to reduce rRNA-derived reads, we applied an rRNA depletion step using DASH – 

a Cas9-mediated cleavage protocol originally developed in eukaryotes that can be 

implemented at the cDNA level (17). Specifically, a pool of single guide RNAs (sgRNAs) 

targeting rRNA-derived cDNA is provided together with Cas9, causing targeted cDNA 

cleavage. DASH had already been shown to work efficiently in low-input bacterial 

samples (>1 ng of total input RNA) (21) as well as on a single-cell level in eukaryotes (22).  

In order to optimize DASH conditions to our protocol, we tested five molar ratios of 

Cas9:sgRNAs in the range from 1:2 to 1:50 and compared the percent of mapped rRNA 

reads (Fig. S2). A ratio of 1:2 was the most efficient and led to an rRNA depletion of 75%. 

These results are consistent with previously described DASH protocols for rRNA 

depletion in bacterial bulk samples, reporting depletion efficiencies in the range of 30-

60% for Salmonella (21).  
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To evaluate rRNA depletion efficiency on a larger scale and across growth conditions, we 

applied it to Salmonella in early-exponential (EEP), mid-exponential (MEP), late-

exponential (LEP) and early-stationary phases (ESP) (Fig. 3A). Per condition, 96 single-

cells were processed by MATQ-seq. DASH is performed after tagmentation and 

introduction of full adapter index sequences by index PCR. Without this preamplification 

step, we were not able to recover enough cDNA after DASH. Since indices that allow cell 

identification are introduced during index PCR, samples can be pooled before DASH, 

thereby reducing the number of DASH reactions (Fig. 1, Fig. S3).   

In comparison to data obtained using our original MATQ-seq protocol (11), the newly 

generated data set showed a much higher percentage of non-rRNA reads independent of 

growth condition (Fig. 3B). Importantly, in contrast to single-cell libraries that were not 

treated with DASH, we detected up to 10-fold higher percentage of reads mapped to 

coding sequences (CDSs), sRNAs, tRNAs and untranslated regions (UTRs), indicating 

successful elimination of rRNA-derived cDNA upon Cas9-mediated cleavage. Of note, the 

overall distribution of all other RNA classes did not vary substantially among growth 

conditions or between the two protocols, suggesting no major Cas9 off-target effect 

leading to unwanted cleavage of libraries (see Table S1). Compared to our initial test 

experiments (Fig. S2) using cDNA from sorted single-cells grown under anaerobic shock 

condition, the rRNA depletion efficiency was lower in this larger-scale experiment, 

although we used the same Cas9:sgRNA ratio. This might be due to an additional pooling 

step that could have saturated the Cas9 enzyme or to differences in commercial Cas9 

batches that were used. Nevertheless, the DASH step still decreased rRNA reads up to 

~30%. 

The successful implementation of DASH required several adjustments to facilitate 

compatibility with the scRNA-seq workflow. Specifically, pre- and post-amplification 

cycles were optimized to ensure enough yield and, at the same time, to prevent over-

amplification. We found that heat inactivation of proteinase K used in published DASH 

protocols was highly inefficient in our experimental settings. As a result, the downstream 

PCR was negatively affected by proteinase K and rRNA-depleted libraries were not 

amplified adequately. Inactivation by phenylmethylsulfonylfluorid (PMSF) led to higher 

efficiency and allowed PCR amplification of the final library pool (Fig. S3). Another 
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important adjustment was the clean-up procedure required to remove PCR reagents, 

especially primer dimers from PCR products. The column-based purification used in 

published protocols was not suitable due to high sample loss. Instead, we used magnetic 

beads for the clean-up, which allowed us to purify low-input PCR samples with minimal 

sample loss. The ratio of magnetic beads and PCR product was adjusted to 1:1 (v/v), 

thereby ensuring capture of short fragments, including ones derived from short 

transcripts, such as sRNAs (Fig. S2).   

Improved MATQ-seq provides better gene coverage and shifts the gene detection 

limits 

Due to the improvements we implemented, we were able to reduce the sequencing depth 

compared to our original MATQ-seq protocol (11) and still detect more genes on average 

across the four growth conditions compared to previous data: 307 versus 185 genes, 

respectively (Fig. 4A). We detected the highest number of genes in cells sampled in early-

exponential phase (EEP) and mid-exponential phase (MEP), where more than 375 genes 

were detected on average (Fig. 4A). This is in line with expectations, as the mRNA 

level/cell has previously been observed to increase during exponential growth (23). 

Despite reducing the sequencing depth by ~6-fold, we achieved increased sensitivity of 

gene detection as the proportion of genes with no assigned reads (‘zeros’) across cells 

was reduced (Fig. 4B). This is directly related to the proportion of genes we detect across 

cells genome-wide, which increased to 95% (Fig. S4), but also genome-coverage, which 

increased from 3.0x to 4.8x (Table S2-3).  

We also wanted to assess how well our scRNA-seq data corresponded to condition-

matching bulk RNA-seq data. Therefore, we generated pseudo-bulk data by summing 

gene expression across all cells per condition and compared it against bulk RNA-seq data 

of samples taken from the same culture as the sorted single-cells. Using three bulk RNA-

seq replicates, we show higher correlations than previously observed (11), confirming a 

closer resemblance to bulk RNA-seq data (Fig. S5). 
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MATQ-seq enables detection of small regulatory RNAs 

sRNAs play a major role in bacterial gene regulation and are important during stress 

responses and virulence (24, 25). However, short transcripts, like sRNAs, are notoriously 

difficult to detect at the single-cell level due to inefficient recovery during the scRNA-seq 

workflow. In addition, clean-up procedures are required to remove primer dimers, but 

these bear risk to also target sRNAs which can be similar in size. Nevertheless, the use of 

magnetic beads at high ratio (1:1 v/v) that we adapted in MATQ-seq for this purpose 

improved the recovery of smaller fragments. As a result, we were able to detect a large 

number of sRNAs across the different growth conditions (Table S4), and between 28 to 

41 unique sRNAs per condition (Fig. 5A). We observed a high variability in the overall 

prevalence and expression level of sRNAs across conditions, but also within the same 

growth condition (Fig. 5B). For example, the sRNAs CsrB and CsrC, known regulators of 

the global RNA-binding protein CsrA (26), were among the most prevalent sRNAs 

detected and showed highly variable expression across different growth conditions (Fig. 

5B). The Csr complex constitutes one of the key regulatory systems for virulence, stress 

responses, motility and biofilm formation in Salmonella (27). In accordance with our data, 

condition-dependent differences in expression levels of both sRNAs have previously been 

described (28). The technical feasibility to detect sRNAs on a single-cell level was 

substantiated by csrB reads that only covered its transcribed region, indicating that 

coverage does not arise from processing artifacts. Though uneven mapping was observed 

among different single cells (Fig. 5C), a broad coverage of csrB transcripts suggests robust 

detection of sRNAs by MATQ-seq.  

As an additional example, the sRNA GcvB, whose regulon mainly includes enzymes 

involved in amino acid biosynthesis and transporters, was highly expressed in the 

majority of cells in the MEP phase (Fig. 5B). Nevertheless we also observed cells that did 

not express gcvB (Fig. 5D). This finding is in accordance with earlier reports investigating 

gcvB expression in bulk samples; however, we did not observe a complete absence of 

GcvB in the stationary phase as previously seen (29). Instead, we detected a highly 

variable expression of GcvB in the ESP phase. Therefore, despite low (or non-detectable) 

expression on the whole population level, some cells still express GvcB, indicating 

heterogeneity across the cell population. Overall, these examples show that our improved 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.518171doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.28.518171


11 

 

MATQ-seq protocol enables detection of sRNAs on the single-cell level, reflecting 

expression patterns that have been previously reported using bulk RNA-seq data sets. 

Variability in Salmonella gene expression over different growth conditions 

Visualization of all analyzed cells using principal component analysis (PCA) shows 

variation in gene expression over the different growth phases in Salmonella, as expected 

(Fig. 6A). EEP and MEP cells cluster together, in line with rapid cellular proliferation 

during these growth phases, which necessitates high gene expression (23). LEP and ESP 

are more distinct, reflecting the onset of nutrient starvation and a less active cellular state 

(30). Genes that drive the separation of these three main clusters are involved with 

growth-related processes and have previously been described (31). They include genes 

encoding components of flagella (flaG, also known as flhB, and fliC), lipid metabolism 

(fadB), glycolysis (aceE) and others (Fig. S6). Overlaying the gene expression across all 

cells in the same PCA plot helps visualize these expression patterns across and within 

conditions (Fig. 6B, C).  

We extracted the most highly variable genes (HVG) within each condition (Fig. 6D), 

highlighting their heterogeneous expression within a cell population. Of particular 

interest was the ESP phase, because we observed numerous genes related to Salmonella 

pathogenicity (tar, siiE, sipA, sipB, sipC, prgH and prgI) that appear to be associated with 

specific groups of cells (Fig. 6D).  To explore this further, we focused on genes expressed 

from Salmonella pathogenicity islands (SPI) 1, 2 and 4 (Fig. S7). Here we observed three 

subpopulations based upon a group of ~7 SPI genes, exhibiting very low or no expression 

(middle), low expression (left) and high expression (right). Bulk RNA-seq studies have 

shown that SPI genes are more highly expressed during ESP compared to earlier growth 

conditions (31). Variation in expression of selected genes has previously also been 

reported at the single cell level (32). Here, by examining a larger set of SPI genes, we 

observe that a small subset of these genes mediates clustering of the cells into different 

populations.  
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To further analyze early growth conditions, we visualized only EEP and MEP cells with 

PCA (Fig. 6E). Due to the limited variation from each principal component, the cells 

remained closely clustered, further highlighting their similarities. Returning to the HVG, 

the two flagella genes flaG and fliC show particularly high variability in both growth 

phases (Fig. 6D). Both genes encode proteins of the core flagellum and their expression 

has a direct impact on cell motility (33). Overlaying the expression of fliC suggests two 

distinct subpopulations of cells, including both EEP and MEP cells (Fig. 6E, right panel). 

To visualize if additional flagella genes show the same pattern, we generated heatmaps 

containing flagella-expressing genes (Fig. S8). While we do not detect distinct 

subpopulations, we do see a gradient in flagellar gene expression, with a wide range of 

expression of flagella genes within each growth phase. This observation is in accordance 

with previous findings describing heterogeneous expression of fliC in Salmonella directly 

associated with cell motility and the potential to evade host inflammatory responses (2, 

34). 

Effects of sequencing depth 

The high number of sequenced reads per cell that we obtained allows us to explore gene 

detection limits per cell and how cell clustering is affected as sequence depth decreases. 

For both questions, we simulated scRNA-seq data across all cells for each condition 

separately (see Methods), querying different sequencing depths. Independent of the 

experimental condition, we reached saturation of the number of detected genes per cell 

at around 5 million reads (including rRNA-derived reads; Fig. S9A). This saturation 

analysis will assist future studies using MATQ-seq to find a balance between sequencing 

depth, the number of cells to analyze and the associated costs. 

We also explored how PCA clustering is affected by the number of detected genes. For the 

four growth conditions tested, a minimum of 80 detected genes per cell led to 

qualitatively similar clustering results compared to using a much larger number of 

detected genes (Fig.  S9B). Our expectation was that a greater number of detected genes 

would reveal more distinct sub-populations, but this does not appear to be the case 

within our experimental conditions, where a range between 80-126 genes appears to be 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.518171doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.28.518171


13 

 

sufficient to discriminate between growth phases. This suggests that it may be possible 

to investigate the structure of expression within a population with as few as tens of 

thousands of reads per cell given the efficiencies of cDNA conversion and rRNA depletion 

we have achieved here. 

DISCUSSION  

In this study, we report substantial improvements to our previously established bacterial 

MATQ-seq protocol (11). Specifically, we focused on three elements of the workflow: (i) 

integration of automation and minimization of reaction volumes during different steps of 

the protocol, as well as optimization of the bioinformatic pipeline for data analysis; (ii) 

selection of a more efficient RT; (iii) implementation of an rRNA depletion step by 

integrating DASH into the library preparation. We validated our improved MATQ-seq 

protocol by generating a large data set of single Salmonella cells sampled over growth. 

Overall, our data show that the changes we implemented increased the cell throughput 

and robustness of the protocol, while reducing cell loss. In addition, we were able to 

improve gene coverage and the gene detection limits. We were even able to detect sRNAs 

on the single-cell level, which previously had not been feasible. This will allow the 

exploration of the regulatory functions of sRNA on the single-cell level in future studies. 

Moreover, our data confirm previously described heterogeneity within the same cell 

population, especially regarding Salmonella pathogenicity genes and genes encoding 

components of the flagellum (32, 34).  

The successful implementation of DASH to deplete rRNA-derived cDNA was instrumental 

in achieving these advances. We believe that DASH can be adapted to other single-cell 

approaches, which currently do not include a targeted rRNA depletion protocol (11, 14, 

15). Because depletion is performed at the cDNA level, DASH only needs to be customized 

to the library preparation step. For protocols that also use Nextera XT for library 

preparation, such as PETRI-seq (15), a direct application without any further adjustments 

is possible. The implementation of DASH would reduce the required sequencing depth 

and overall sequencing costs.  
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A general limitation of current scRNA-seq workflows is efficient cell lysis, which might 

require species-specific customization. Consequently, analysis of mixed bacterial 

communities is a challenge. This is especially true if their cell wall compositions vary, as 

this necessitates different enzymatic disruption and poses the risk of introducing bias 

based on varying lysis efficiency. Combinatorial indexing-based protocols (14, 15) can 

cope better with this limitation than MATQ-seq, because these protocols can process 

many more cells at once. Inefficient lysis is therefore compensated for by a higher number 

of input cells, although the danger of introducing bias remains. In contrast, MATQ-seq is 

more limited in throughput because of the cell sorting step and therefore inefficient lysis 

will lead to a high rate of failure. Nevertheless, MATQ-seq can in principle be applied to 

mixed cell populations if lysis conditions can be optimized. 

Due to the high transcript capture rate of MATQ-seq, this method is particularly well 

suited for experimental settings in which the starting material is limited, such as the 

analysis of small subpopulations of bacterial cells in host niches or intracellular bacteria. 

In these settings, the application of Dual RNA-seq allows the study of host-pathogen 

interactions through the simultaneous analysis of the transcriptomes of both the bacteria 

and the host (1, 35). Single-cell Dual RNA-seq (scDual-Seq) has been attempted, but so 

far, bacterial gene detection has either been inefficient (36) or the experiments were 

performed under a high multiplicity of infection, which does not reflect physiological 

conditions (37). Since MATQ-seq was initially developed for scRNA-seq in eukaryotes 

(12), we see high potential in establishing scDual-Seq with MATQ-seq to capture both 

eukaryotic and prokaryotic transcripts. In this context it is interesting to note that DASH 

has been shown to remove bacterial as well as eukaryotic rRNA on single-cell level (22). 

Nevertheless, establishment of a scDual-Seq protocol based on MATQ-Seq will require 

further testing and validation. 
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MATERIAL and METHODS 

Bacterial strains and growth conditions 

The bacterial strains used in this study are listed in Table S5. Salmonella enterica serovar 

Typhimurium SL1344 (38) and constitutively GFP-expressing SL1344 strain (39) were 

grown in Lennox broth (LB) (tryptone 10 g/L, yeast extract 5 g/L, and sodium chloride 

85.6 mM) medium.  GFP-expressing Salmonella strain was only used for FACS gating. 

Bacterial cultures were inoculated to an optical density (OD) at 600 nm of 0.01 and 

incubated at 37°C with agitation (220 rpm) until early-exponential, mid-exponential, 

late-exponential and early-stationary phase (OD 0.1, 0.3, 1.0 and 2.0; according to (31)). 

1 ml of each culture was pelleted and washed twice with 1 ml of 1 x Dulbecco's phosphate 

buffered saline (1x DPBS). Afterwards the pellet was resuspended in 1 ml of 100 % 

RNAlater/ RNAprotect Tissue Reagent (Qiagen) and kept on ice. Right before sorting, 

samples are diluted 1:20 in 1x DPBS. 

All pipetting steps in the sections below were automated using an I.DOT (Dispendix) 

dispensing robot except for clean-up and quality control steps. 

Isolation of single-cells 

Isolation of single-cells was done as previously described by Imdahl et al. (11). Briefly, 

single-cells were isolated using a BD FACS Aria III for sorting individual cells into 96-well 

plates prefilled with lysis buffer (0.26 µl of 10×Lysis buffer (Takara), 0.03 µl of RNase 

Inhibitor (100 U/µl, Takara), 0.26 µl of DPBS (Gibco), 0.1 µl of Lysozyme (50 U/µl, 

Epicentre) and 1.95 µl of nuclease-free water (Ambion)). After sorting, plates were kept 

on ice and stored at -80 °C until further processing. 

Improved MATQ-seq protocol 

The improved MATQ-seq protocol is based on the protocol described by Imdahl et al. (11) 

with several modifications. Briefly, reverse transcription was performed using primers 

described by Sheng et al. (12). Instead of Superscript III, Superscript IV was used 

(Invitrogen) as reverse transcriptase without changing RT reaction volumes. As reaction 

buffer SS IV buffer was used instead. RT is followed by primer, RNA digestion and poly-C 
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tailing. Subsequent Second Strand Synthesis was performed with only ¼ of reaction 

volume before PCR amplification.  cDNA purification was performed using AMPure XP 

beads (Beckman Coulter) at a 1:1 v/v ratio. cDNA quality was checked by using Qubit Flex 

and 2100 Bioanalyzer DNA High Sensitivity kit (Agilent Technologies). Oligonucleotides 

used for MATQ-seq are listed in Table S6. 

DASH sgRNA pool generation 

sgRNA pool for Cas9-based ribosomal depletion in Salmonella was generated according 

to Prezza et al. (21). Briefly, dsDNA template for in vitro transcription was generated 

using KAPA HiFi HotStart ReadyMix (Roche). After column-based Clean-up and quality 

control on Nanodrop and Bioanalyzer DNA 1000 Kit (Agilent), sgRNA pool was generated 

by in vitro transcription using MEGA Shortscript T7 Transcription Kit (Invitrogen). The 

final pool consisting of 797 sgRNAs was purified using the Monarch RNA Cleanup Kit 

(500ug, NEB). sgRNA quality control was performed on Qubit and Bioanalyzer RNA 6000 

Pico Kit (Agilent). 

Single-cell RNA-seq: Library preparation including ribosomal depletion 

cDNA obtained from single-cells after MATQseq was further processed for library 

preparation including ribosomal depletion protocol. Library preparation was done using 

the Nextera XT DNA Library Preparation Kit (Illumina) including DASH protocol 

(according to (21) with several modifications). Tagmentation was performed with only 

¼ of reaction and 0.5 ng cDNA input according to manufacturer’s recommendations. 

Index PCR was performed with 13 cycles using IDT for Illumina Nextera DNA Unique Dual 

Indexes (Illumina). Obtained libraries were purified with AMPure XP beads (Beckman 

Coulter) at a 1:1 v/v ratio to ensure capturing sRNA-derived cDNA. After QC, up to 12 

samples were pooled equimolar for ribosomal depletion. sgRNA/Cas9 complex formation 

is followed by DASH using the appropriate ratio of cDNA : Cas9 : sgRNA. Cas9 enzyme was 

inactivated by Proteinase K (15 min at 37 °C). Afterwards, Proteinase K was inactivated 

by adding PMSF (1 mM final concentration). Depleted cDNA was purified by another 

round of AMPure XP bead clean-up and used as input for second PCR amplification. 0.5 

ng depleted cDNA was used as input for Nextera XT reactions omitting the tagmentation 

steps. As primers i5 and i7 index-independent primers were used to amplify non-cleaved 
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cDNA products. PCR was done with 13 cycles and clean-up was performed with AMPure 

XP beads at a 1:1 v/v ratio. Oligonucleotides used for second PCR are listed in Table S6.  

Total RNA extraction and library preparation 

Bacterial RNA was isolated from Salmonella strain SL1344 grown under the same 

conditions as for scRNA-seq experiments. RNA extraction was performed with 1.8 ml of 

each in vitro culture using the TRIzol reagent (Invitrogen) according to the 

manufacturer’s recommendation. RNA quality was checked using Qubit RNA High 

Sensitivity Assay Kit (Invitrogen) and 2100 Bioanalyzer RNA 6000 Pico/ Nano kit 

(Agilent Technologies). Prior library preparation, DNAse treatment was performed using 

DNAse I kit (Thermo Fisher) followed by ribosomal RNA depletion. Ribosomal RNA 

(rRNA) was depleted using Lexogen's RiboCop META rRNA Depletion Kit protocol 

according to manufacturer’s recommendation using 100ng total RNA as input per sample. 

DNA libraries suitable for sequencing were prepared using CORALL Total RNA-Seq 

Library Prep protocol (Lexogen) according to the manufacturer's recommendation with 

13 PCR cycles. Library quality was checked using a 2100 Bioanalyzer DNA High 

Sensitivity kit. 

Sequencing 

Sequencing pools of single-cell as well as total RNA-seq libraries were checked using 

Qubit DNA High Sensitivity Assay Kit and a 2100 Bioanalyzer DNA High Sensitivity kit. 

Sequencing of library pools, spiked with 1% PhiX control library, was performed in 

single-end 100-cycle sequencing mode on the NextSeq 2000 or NovaSeq 6000 platform 

(Illumina). Demultiplexed FASTQ files were generated with bcl2fastq2 v2.20.0.422 

(Illumina). 

Bioinformatics 

Pre-processing 

Read trimming and quality control of MATQ-seq reads was executed using BBDuk ((40)) 

and MultiQC (41). To efficiently remove primer and adapter sequences located at both 

ends of a read, we ran BBDuk in a two-pass procedure using the default adapter sequence 
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database augmented with MATQ-seq specific sequences (Table S7). The first pass focused 

on the 5’ end, with parameters: minlen=18 qtrim=rl trimq=20 ktrim=l k=17 mink=11 

hdist=1 trimpolya=30; while the second pass focused on the 3’ end with parameters: 

minlen=18 qtrim=rl trimq=20 ktrim=r k=17 mink=11 hdist=1. 

Read alignment and counting 

Read alignment and counting was performed with Bowtie2 (42) and featureCounts (43), 

allowing a single mismatch and run-in --local mode. BigWig files were generated using 

deepTools (44), passing additional parameters: --binSize 5 --normalizeUsing BPM. We 

have employed the same gene detection method from the original MATQ-seq analyses 

(11), requiring a detected gene to have > 5 reads. 

Normalization and differential expression 

DESeq2 (45) was used for normalization and differential expression analysis, using size 

factors calculated by the computeSumFactors function in Scran (46) and other 

recommended parameters for DESeq2 single cell analysis, which included using the 

likelihood ratio test (LRT), useT=TRUE, minmu=1e-6, and minReplicatesForReplace=Inf.  

Identifying outlier cells 

To identify outlier cells, we calculated the average number of detected genes per cell (> 5 

reads) for each condition. Cells were determined to be outliers if their detected gene 

number varied more than two s.d above or below the mean, which removed 14 cells. One 

additional cell was removed based on the PCA plot generated using PCAtools (47). 

Comparison with existing bulk and single cell RNA-seq data 

To ensure fair comparisons between bulk RNA-seq and scRNA-seq datasets, we 

processed all fastq files using the same pre-processing, alignment and counting 

approaches as described above. For our pseudo bulk representation from the single cell 

data, for each condition, we summed the counts across all cells for each gene. Bulk RNA-

seq were generated in parallel with the single-cell data. 
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Small RNA and highly variable genes 

Additional small RNA (sRNA) were added to our annotation giving us 172 sRNAs in total. 

To show the most abundant sRNA in the heatmap for Figure 5, sRNAs were only shown if 

the rowsums of TPM normalized counts across all conditions was > 100. The full list of 

expressed sRNA are provided in (Table S4). Highly variable genes were identified using 

Scran (46), with the top 10% of HVG used for the heatmap in Figure 6. The Salmonella 

pathogenicity and flagellar genes used in the supplementary heatmaps (Fig. S7-8) were 

reduced to only show genes expressed in the examined conditions. 

Single cell simulations and downsampling 

Simulated data was generated using the sample function in R. All Salmonella genes 

(including rRNA) were sampled with replacement, with read count frequencies used as 

probability weights per cell for each condition. Different sample sizes were used to 

represent sequencing read depth and detected genes were the resulting uniquely 

sampled genes. 

Data availability 

Gene Expression Omnibus (GEO) access upon request. 
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Fig. 1 Improved MATQ-seq workflow for bacterial single-cell RNA-seq. A) Overview of bacterial scRNA-seq 
pipeline including major steps from cell culture to bioinformatic analysis. Changes compared to the previous MATQ-
seq protocol are highlighted in blue. B) Detailed workflow of the MATQ-seq protocol separated into two main steps: 
(left) cell isolation and cDNA synthesis; (right) library preparation including DASH for ribosomal RNA depletion. Major 
improvements are highlighted in blue, including the use of SuperScript IV for reverse transcription, reaction 
optimization and integration of DASH into the library preparation. All pipetting steps were automated using the I.DOT 
dispensing robot, with the exception of all clean-up and quality control steps.
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Fig. 2 Selection of alternative reverse transcriptase. Bioanalyzer profiles of cDNA processed by MATQ-seq using 
different reverse transcriptases. A) Comparison of five different reverse transcriptases with Superscript III. Sample 
input was 50 ng of total RNA for all conditions. B) Comparison of cDNA profiles obtained with Superscript III (left 
panel) and Superscript IV (right panel). A gradient from 100, 10 and single sorted cells as input material is shown. The 
positive control was performed with a spike-in of 50 pg total RNA. Characteristic bands are indicated with blue arrows. 
L: ladder; NC: negative control; PC: positive control; sc: single-cell; SS III: SuperScript III; SS IV: SuperScript IV; 
Maxima H-: Maxima H Minus.
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Fig. 3 Experimental design and RNA class distribution. A) Growth curve of Salmonella in LB medium, with 
coloured arrows indicating the four sampling points for scRNA-seq experiments. Data are displayed as mean +/- 
standard deviation of three independent experiments. B) Representation of RNA class distribution comparing both 
protocols under different growth conditions. See Table S1 for detailed information on the prevalence of each RNA 
class. EEP: early-exponential phase: MEP: mid-exponential phase; LEP: late-exponential phase; ESP: early-
stationary phase; LSP: late-stationary phase.
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Fig. 4 Gene detection limit and robustness of improved MATQ-seq workflow.
A) Overlaid violin and boxplots showing the median, quartiles and distribution for the numbers of detected genes per 
condition. Mean numbers of reads per single-cell are indicated above. B) Proportion of genes with no assigned reads 
(‘zeros’) per single-cell compared to the number of sequenced reads, with each color-coded dot representing a 
single-cell.
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Fig. 6 Cluster identification and analysis of highly variable genes detected on a single-cell level. A) Principal 
Component Analysis (PCA) of all analyzed cells across the four growth conditions. B) Overlay of the expression of 
genes contributing to the separation of the three main clusters seen in A. C) Expression of Salmonella pathogenicity 
genes sipC and sipD within early-stationary phase (ESP). D) Heatmap of the gene expression level of the top 10% of 
highly variable genes detected for each growth condition.  E) (Left) PCA analysis of cells from early-exponential 
(EEP) and mid exponential phase (MEP). (Right) Overlay of expression of the flagella gene fliC on the PCA blot 
shown on the left.
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Fig. S1 Validation of reverse transcriptases. Bioanalyzer profiles of cDNA processed with MATQ-seq using 
different reverse transcriptases. A) Further validation of the three RTs SS IV, Maxima H Minus and TGIRT after initial 
selection and subsequent buffer optimization (Fig. 2A). All assays were performed with a spike-in of 50 pg total RNA. 
B) cDNA concentrations of samples in A) measured with a Qubit fluorometer. C) Comparison of cDNA profiles 
obtained using SS III and SS IV (left panel) and Maxima H Minus (right panel). For SS IV and Maxima H Minus a 
gradient from 50, 10 and single sorted cells as input material is shown. L: ladder; NC: negative control; PC: positive 
control; sc: single-cell. SS III: SuperScript III; SS IV: SuperScript IV; Maxima H-: Maxima H Minus.
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Fig. S2 Comparison of different ratios of Cas9 and sgRNA for DASH. RNA class distribution obtained upon 
different Cas9:sgRNA ratios. Per ratio, three single-cells were processed by MATQ-seq including DASH under 
anaerobic shock condition. The RNA classes are shown as a percentage of the mean of the mapped reads (n = 3 
single cells). Numbers below the graph represent the relative molar access of Cas9 and sgRNA over a single cDNA 
fragment. CDS: coding sequence; rRNA: ribosomal RNA; ncRNA: non-coding RNA; tRNA: transfer RNA.
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Fig. S3 Implementation of sc-DASH workflow. Detailed overview of the integration of a single-cell compatible 
DASH workflow into the Nextera XT library preparation protocol. The right panel lists the most important adaptations 
required compared to the published bulk-DASH pipeline (Prezza et al. 2020).
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Fig. S4 Percent of genes detected. The number of detected genes across all cells per condition for both MATQ-seq 
datasets. 
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Fig. S5 Correlations between scRNA-seq data and bulk RNA-seq data of different growth conditions. 
Spearman’s correlation between pseudo-bulk (counts summed across cells per condition) and bulk RNA-seq data for 
all four growth conditions; each dot represents a gene. Three bulk replicates were used and the associated 
correlations (r1 - r3) are shown. EEP: early-exponential phase: MEP: mid-exponential phase; LEP: late-exponential 
phase; ESP: early-stationary phase.  
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Fig. S6 Drivers of heterogeneity. Principal component analysis based on Fig. 6A that includes the genes 
contributing the most amount of variation to separate the clusters across principal components 1 (x-axis) and 2 (y-
axis). EEP: early-exponential phase: MEP: mid-exponential phase; LEP: late-exponential phase; ESP: early-
stationary phase.
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Fig. S7 Heatmap SPI genes. Heatmap with cells from early-stationary phase (ESP) expressing Salmonella 
pathogenicity genes. 
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Fig. S8 Flagella genes. Heatmaps with cells from early-exponential phase (EEP) and mid-exponential phase (MEP) 
expressing flagella genes.
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Fig. S9 Saturation and downsampling PCA with detected genes. A) Reads per cell from simulated scRNA-seq 
data plotted against the number of  detected genes. The right panel shows a zoomed-in view of the boxed area. B) 
Series of principal component analysis (PCA) plots from the same simulated data based upon different numbers of 
detected genes from 15 (top right) to 240 (bottom right).

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.518171doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.28.518171

	scRNA-seq_ms_figures_v8_final_Iarge
	ms-scRNA-seq_v07_CH_biorxiv
	Improved bacterial single-cell RNA-seq through automated MATQ-seq and Cas9-based removal of rRNA reads
	ABSTRACT
	IMPORTANCE
	INTRODUCTION
	RESULTS
	Automation of the MATQ-seq workflow achieves higher throughput
	Optimized reverse transcription leads to higher robustness and reduced cell loss
	Improved MATQ-seq provides better gene coverage and shifts the gene detection limits
	MATQ-seq enables detection of small regulatory RNAs
	Variability in Salmonella gene expression over different growth conditions
	Effects of sequencing depth

	DISCUSSION
	MATERIAL and METHODS
	Bacterial strains and growth conditions
	All pipetting steps in the sections below were automated using an I.DOT (Dispendix) dispensing robot except for clean-up and quality control steps.
	Isolation of single-cells
	Improved MATQ-seq protocol
	DASH sgRNA pool generation
	Single-cell RNA-seq: Library preparation including ribosomal depletion
	Total RNA extraction and library preparation
	Sequencing
	Bioinformatics
	Pre-processing
	Read alignment and counting
	Normalization and differential expression
	Identifying outlier cells
	Comparison with existing bulk and single cell RNA-seq data
	Small RNA and highly variable genes
	Single cell simulations and downsampling

	Data availability

	Acknowledgments
	Author contributions

	REFERENCES
	FIGURES AND TABLES
	Supplementary Tables



