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ABSTRACT This paper describes the flight path planning for unmanned aerial vehicles (UAVs) based on the

advanced swarm optimization algorithm of the bat algorithm (BA) in a static environment. The main purpose

of this work is that the UAVs can obtain an accident-free, shorter, and safer flight path between the starting

point and the endpoint in the complex three-dimensional battlefield environment. Based on the characteristics

of the standard BA and the artificial bee colony algorithm (ABC), a new modification of the BA algorithm is

proposed in this work, namely, the improved bat algorithm integrated into the ABC algorithm (IBA). The IBA

mainly uses ABC to modify the BA and solves the problem of poor local search ability of the BA. This article

demonstrates the convergence of the IBA and performs simulations in MATLAB environment to verify its

effectiveness. The simulations showed that the time required for the IBA to obtain the optimum solution is

approximately 50% lower than the BA, and that the quality of the optimum solution is about 14% higher than

the ABC. Furthermore, by comparing with other traditional and improved swarm intelligent path planning

algorithms, the IBA can plan a faster, shorter, safer, accident-free flight path for UAVs. Finally, this article

proves that IBA also has good performance in optimizing functions and has broad application potential.

INDEX TERMS Battlefield environment, path planning, improved bat algorithm, convergence, local search.

I. INTRODUCTION

As life and military needs continue to grow, unmanned aerial

vehicles (UAVs) play an increasingly important role in many

areas. Compared with manned aircraft, UAVs have the advan-

tages of high optical resolution, short warning time, low

cost, and high maneuverability [1]. Therefore, UAVs typi-

cally perform dangerous, boring, complex tasks in a variety

of areas [2], [3]. In the history of UAVs development, path

planning has been thought of as a key factor in the process of

performing tasks. A path with strong security, good feasibil-

ity, high computational efficiency, and low cost can greatly

improve the efficiency of completing the UAVs missions [4].

In fact, planning the flight path of UAVs usually

requires optimization algorithms to optimize the flight path.

Optimization methods generally fall in deterministic mathe-

matical programming methods and stochastic metaheuristic

algorithms [5]. However, deterministic methods of math-

ematical programming are prone to stagnation in non-

linear space research, which requires high preparation for
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mathematics [6]. Over the past years, stochastic metaheuristic

algorithms have been increasingly used to solve UAV path

planning problems due to their flexibility, simplicity, and

ability to avoid local optimization. In general, stochastic

metaheuristic algorithms may be classified into evolutionary,

physics-based, and swarm intelligence (SI) [7]. Evolutionary

algorithms generally generate better new populations through

combinations and mutations between earlier generations of

individuals, such as Genetic Algorithm (GA) [8], Differen-

tial Evolution Algorithm (DE) [9], and Biogeography-based

Optimization (BBO) [10], et al. Physics-based methods are

to use rules extracted from different physical phenomena in

nature in search of objectives [6]. Some well-known algo-

rithms are the Simulated Annealing Algorithm (SA) [11],

Gravity Cable Algorithm (GSA) [12], Central Force Opti-

mization Algorithm (CFO) [13]. SI algorithms usually mimic

and foraging activities of animals in nature. It can save the

solution obtained so far, uses fewer operators, and is easy to

implement than the evolutionary algorithm [7]. Therefore, SI

is more widely used in UAV path planning problems. Popular

SI includes Artificial Bee Colony Algorithm (ABC) [14],

Particle Swarm Optimization Algorithm (PSO) [15],
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Ant Colony Algorithm (ACO) [16], [18], Bat Algo-

rithm (BA) [19], [20], et al.

However, stochastic metaheuristic algorithms also have

unavoidable disadvantages. David H.Wolpert and William

G.Macready [21] proposed no free lunch (NFL) theorems

in 1997. They logically proved that no metaheuristic algo-

rithm could best solve all optimization problems. In other

words, an intelligent algorithm can obtain the desired result

in a particular optimization problem, but it misbehaves in

other problems. Therefore, people are trying to integrate

different intelligent algorithms into UAV path planning to

find better solutions. In terms of the theoretical design of

the controller, in [22], a 6-degree of freedom nonlinear PID

controller (NLPID), which combines the GA, is designed to

meet the system stability and tracking requirements of a four-

wing UAV. The improved active disturbance rejection control

(IADRC) proposed in [23], [24] can stabilize and suppress

external interference and system uncertainty, and minimize

the control energy, adjustment time, and steady-state error.

The decentralized control scheme based on IADRC also pro-

vides good performance [25]. In addition, other new con-

trollers have been designed recently, and can better solve the

problems in the corresponding fields, such as a consistent

control system for three quadrotor intelligent bodies [26],

a new classic adaptive controller based on a synergetic the-

ory [27], a model-free active input-output feedback lineariza-

tion technique based on IADRC [28]. On the other hand,

a large number of papers show that improved swarm intelli-

gence algorithms can also better solve the flight path planning

problem. Cristian Ramirez Atencia proposes a new weighted

random generator that reduces the convergence speed of

the multi-objective evolutionary algorithm (MOEA) [9]. The

algorithm based on disturbed fluid and trajectory proposed

by Yao Peng can effectively avoid obstacles to a certain

extent [4]. Moreover, there is a large volume of published

studies showing that improved intelligent algorithms can

succeed in route planning. For instance, an aging-based ant

colony optimization algorithm (ABACO) is proposed in [29],

which considers the aging of the individual and releases dif-

ferent pheromones according to different ages. [30] conducts

further research on [29] and solves the path planning problem

of a dynamic environment. Despite there are many types of

intelligent algorithms in the planning of UAVs, they suffer

from different main drawbacks. For example, in the process

of planning the flight path, the lack of mutation mechanism

of standard BA is easy to fall into local optimum, resulting in

the population losing subsequent evolutionary capacity.

In order to solve the problem of poor local search ability of

BA, which was first proposed by Xin-She Yang in 2010 [31],

there has been an increasing amount of literature on improved

BA in recent years. People proposed a new directional bat

algorithm, which improved the classic bat algorithm in four

ways and greatly improved the performance of BA in [32].

Amir H. Gandomi and Xin-She Yang tried to combine the

BA algorithmwith chaos, which uses four different variations

to replace the invariant parameters in the BA, and is verified

by thirteen different chaotic maps [33]. Trong-The Nguyen

proposed the bat-bee colony algorithm (BA-ABC) [34]. The

algorithm mainly iterates the results of the BA algorithm

and the ABC algorithm, then replaces the better results of

the both parties with the poor results of the other to realize

the evolution of the group. In [35], a hybrid particle swarm

optimization-improved frequency bat algorithm (PSO-MFB)

and obstacle detection and avoidance algorithm (ODA) are

proposed, which effectively solves the path planning problem

in a dynamic environment. After that, [36] further improved

the algorithm of [35] and proposed a conflict-free shortest

path planning algorithm. Furthermore, in the field of path

planning, in order to increase the diversity of the population,

Gaige Wang applied the bat algorithm with a mutation to

UAVs path planning [18]. N.Lin’s studies have reported that

the enhanced artificial potential field method combined with

the chaotic bat algorithm may enhance the robustness of the

algorithm [37].

Although the standard BA can provide a better quality

solution, it takes a lot of time. However, the ABC can quickly

obtain the solution, and the quality of the solution is poor.

The main contribution of this paper is to propose a new

algorithm to solve the problem of UAVs flight path planning,

which mainly combines the characteristics of BA and ABC

to achieve the purpose of improving the local search ability

and obtaining a crash-free, safer and shorter flight path. The

IBA algorithm proposed in this article mainly contains two

modules. The first module involves the generation of points,

which is implemented through the BA. In order to improve

the local search ability, the mutation factor is taken into

consideration. Then, ABC is used to modify the results of the

first module, so as to further enhance the local search ability

of the algorithm.

The overall structure of the study takes the form of six

chapters, including this introductory chapter. Section 2 intro-

duces the mathematical model of 3D space in UVA path

planning. In section 3, the principle of the classic BA is

described. Subsequently, BA with mutation added ABC for

UAV path planning is presented and its convergence is proven

in detail in section 4. The fifth chapter tests 9 parameters that

appear in the IBA algorithm, compares IBAwith other swarm

intelligence algorithms, and uses IBA to solve UAVs path

planning and benchmark function optimization problems.

The final section gives a summary and identifies areas for

further research.

II. UAV MATHEMATICAL MODEL

In the history of the development of UAVs, path planning has

been thought of as a key factor in the process of performing

tasks. This chapter mainly describes the comprehensive cost

model of UAVs under different threats and the selection

method of random path nodes.

A. PATH PREPROCESSING

To accelerate the convergence of the algorithm, the initial

UAVs path planning is shown in Fig.1. It is assumed that UAV
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FIGURE 1. 3D battlefield environment model.

needs to fly from the starting point S(x0, y0, z0) to the ending

point E(xE , yE , zE ). There are some threat areas during the

flight. We convert the original start and end points to new

coordinates in the x-axis direction by using Eq.1, where

(x, y, z) represents the original coordinates, (x ′, y′, z′) is the

rotated coordinates, θ is the angles between line SE and XOY

plane, and ϕ is the angle between the projection of SE on the

XOY plane and the X -axis.

tanθ =
|zE − Z0|

√

(xE − x0)2 + (yE − y0)2
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Then, we divide the rotated line segment SE into (D+ 1)

segments (include S and E) and passing each node except

S and E to make planes L1,L2, . . . ,LD perpendicular

to the straight line SE [18], [38], [39]. After that, ran-

domly select a point on each plane. Obviously, we can

get D points and connect them with S node and E

node. So that the three-dimensional path planning problem

can be turned into a D-dimensional function optimization

problem.

B. COMPREHENSIVE COST MODEL

The battlefield environment is complex and changeable with

various threats such as radar, climate, missiles, anti-aircraft

guns, et al. These threats will affect the mission completion

of UAV’s missions. In addition, UAV maneuverability is also

a non-negligible poppy that affects path selection.

The scope of the threat on the battlefield is typically depen-

dent on the combination of different cylindrical or conical

geometry [1]. Assuming that the ranges of various threats are

spherical areas with different radius. Eq.2 is the probability

of radar threat detecting UAVs [39].

P(dR) =



















0, dR > dRmax
1

d4R
, dRmin ≤ dR ≤ dRmax

1, dR < dRmin .

(2)

where dRmin , dRmax are the minimum and maximum range of

the radar threat. dR is the distance between UAV and radar

source.

In order to facilitate the experimental simulation, the cli-

matic threats, anti-aircraft threats, missile threats and the

probability of destroying the UAV are as follows:

Pi(di) =















0, di > dimax
1

di
, dimin ≤ di ≤ dimax

1, dR < dimin .

(3)

where PA′ (dA′ ), PM (dM ), PC (dC ) are the threat probability of

antiaircraft guns, missiles, and atmosphere to UAV. di is the

distance from the UAV to the threat source. dimin , dimax are the

minimum and maximum range of the threat.

Apart from these threats, UAV also threatens to crash when

flying over mountains. Supposing that the terrain model is

composed of several mountains with different center posi-

tions, and the mountains are approximately replaced by

cones. Eq.4 is the expression of mountain height [1].

zi(x, y) = hie
−

(x−ai)
2

10 −
(y−bi)

2

10 (4)

hi is the height of the mountain and (ai, bi) is the center of

the mountain. If the flying height is lower than the mountain

height, the probability of UAV (PT (dT )) being destroyed is 1.

Conversely, PT (dT ) is 0.

According to the maneuverability of the UAVs, this paper

considers the constraints of fuel consumption and maximum

climb angle. Fuel consumption is usually measured by flight

distance. Assume there are n segments in the path and each

segment is li. lmax is the maximum path length. Therefore,

the path constraints are:

n
∑

i=1

li ≤ lmax (5)

This article primarily simulates the path planning of UAVs

in 3D space. In order to better integrate the real situa-

tion, we consider that the maneuvering performance can

affect the maximum angle of climb and altitude limitation.

Therefore, this paper assumes the maximum climb angle is

45◦ and the maximum height of the flight is 6 kilometers.

When the UAV’s path is beyond the maximum climb angle,

the probability of the UAV crash PB = 1. On the contrary,

PB = 0. Similarly, When the UAV’s flight altitude exceeds

the maximum flight altitude limit, the probability of the
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FIGURE 2. Sub-path calculation method.

UAV crash PH = 1. On the contrary, PB = 0. The com-

prehensive track cost can be measured by using Eq.6.

minW = min

∫ L

0

∑

δw(s)ds (6)

where
∑

δw(s) = δOwO(s) + δRwR(s) + δMwM (s) +

δCwC (s) + δA′wA′ (s) + wB(s) + wH (s). L is track path

length. W is optimization objective function. wO(s), wR(s),

wM (s), wA′ (s), wC (s), wT (s), wH (s) are the cost of path,

radar threat, missile threat, anti-aircraft threat, climate threat,

terrain threat, maximum climb angle and maximum height.

δO, δR, δM , δA′ , δC are the weight of each threat cost and their

sum is 1.

For simplicity, each path is divided into five segments on

average and the threat cost is calculated at the end of each

discrete segment (as shown in Fig.2). At last, the average

value of the discrete segments is assumed to be the threat cost

of this segment. We can calculate the cost according to the

following Eq.7.

wLi,j =
1

5

∑5

k=1
wk,Li,j

wk,Li,j = δRPR(dR) + δMPM (dM ) + δA′PA′ (dA′ )

+ δCPC (dC ) + PT (dT ) + PB(dB) + PH (dH ) (7)

where Li,j represents the process of UAV flying from node i

to node j. wk,Li,j is the threat cost of UAV at the k − th point

of the sub-segment.

III. CLASSICAL BAT ALGORITHM

The classic bat algorithm is a swarm intelligence algorithm.

Its search strategy is inspired by the social behavior of bats

and the use of echo in foraging and avoiding obstacles.

Besides, the bat algorithm is a promising algorithm, which

combines the advantages of PSO, GA, and harmony search

algorithm to a certain extent [31].

In nature, some bats not only use echolocation, but also

use their vision and smell to find food and avoid obstacles.

Even the loudness and frequency emitted by bats are con-

stantly changing. For simplicity, we idealize some of the echo

characteristics of the bat and follow the rules [18].

(1) All bats only use echolocation to perceive distance, then

find targets and avoid obstacles.

(2) Bats can automatically adjust the wavelength and fre-

quency of their transmitted pulses while preying on prey.

They fly randomly at position Xi with speed Vi, fixed fre-

quency fmin, loudness A0, and continuously adjust the pulse

transmission frequency r ∈ [0, 1] depending on the proximity

to the target.

(3) The bat loudness varies from the smallest constant

value Amin to A0.

This study set out to simulate three-dimensional space

UAV flight. Thus, we use Eq.8 to define the update rule for

the ith bat’s speed V t
i , frequency fi and new solution X ti at

time step t .

fi = fmin + (fmax − fmin)β

V t
i = V t−1

i + (X t−1
i − X∗)fi

X ti = X t−1
i + V t

i (8)

where β ∈ [0, 1] is a random number. Here, X∗ is the optimal

solution from time step 1 to time step t−1, and thenX∗ is only

updated when all bats have determined their position in time

step t . Generally speaking, the frequency of the ultrasonic

waves emitted by each bat is different. Therefore, each bat

was randomly assigned a frequency fi ∈ [0, 100].

For the local search section, we generate a random number

rand1 ∈ [0, 1]. Once rand1 > ri, the new solution Xnew
to replace the original solution X ti , which is obtained by

randomly walking on the current optimal solution.

Xnew = X∗ + εAt (9)

where random number ε ∈ [−1, 1], while At is the average

loudness of all bats at time step t .

Furthermore, we create another random number rand2 ∈

[0, 1]. If rand2 < Ati and the fitness of the new solution f (X ti )

is less than the fitness of the current optimal solution f (X∗),

At+1
i and r t+1

i are updated on the basis of Eq.10.

At+1
i = αAti

r t+1
i = r0[1 − exp(−γ t)] (10)

where α, γ , r0 are constants. Based on the above analysis,

the main part of the classic bat algorithm is described in

Algorithm 1 and in Fig.3.

IV. IMPROVED BAT ALGORITHM (IBA)

This paper intends to integrate the advantages of ABC and

mutation operators into the BA. ABC inspired by bee colony

foraging behavior, used by Dervis Karaboga earlier and com-

pared with other algorithms [14]. ABC is mainly divided

into three steps [40], [41]. Beginning, bees randomly search

for honey sources. Bees with high quality honey sources
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Algorithm 1 BA Algorithm

Begin:

1: Initialization. Set the number of bat populations NP,

the maximum number of iterations Tmax , initialize the

loudness A0, initial speed V 0, frequency r , constant α, γ ,

and generate counter t = 1 of each bat.

2: Calculate the fitness of each bat f (X0
i )

3: For t = 1 : Tmax
4: For i = 1 : NP

V t
i = V t−1

i + (X t−1
i − X∗)fi

X ti = X t−1
i + V i

i

5: If rand1 > r ti , generate a new solution Xnew instead of X ti
Xnew = X∗ + εAt

End if

6:Calculate the fitness of the new solution f (X ti ).

7: If rand2 < Ati and f (X
t
i ) < f (X∗)

Accept the new solutions and update r ti , A
t
i .

End if

End for

8: Update the current optimal solution X∗.

End for

9: Choose the optimal solution as the final result.

End

are called employed bees and bees with poor quality honey

sources are called onlooker bees. Then, the employed bees

recruit the onlooker bees at the honey source and search

together near the honey source. If an improved honey source

is found, the original honey source is replaced. Otherwise,

the honey source remains unchanged. Finally, if the sub-

optimal honey source does not improve over a period of time,

the employed bees become a scout bee and randomly searches

for the honey source to replace the original honey source.

Repeat these three steps continuously until the maximum

number of repetitions is reached.

Generally speaking, we convert the three-dimensional

problem of UAVs track planning into a D-dimensional func-

tion optimization problem, which means that each bat can

represent a planning path. The main idea of IBA is that the bat

population updates positionXi by using speedVi, loudnessAi,

frequency fi, et al. and then the local position is changed by

using the characteristics of ABC.

To better combine the advantages of the BA and the ABC,

we have improved the behavior of individuals. Each individ-

ual generates a random solution. The first part of the indi-

vidual with a smaller fitness is selected as the employed bee

and the remainder as the onlooker bee. Information update

method of employed bees is based on the standard BA’s steps,

namely through V t
i , fi, A

t
i , et al to update the solution X ti .

Then, the onlooker bees choose to employed bees through

roulette and Eq.11.

p(i) =
f (Xi)

∑Ne
k=1 f (Xj)

(11)

FIGURE 3. Flow chart of bat algorithm.

where f (Xi) = 1/W (Xi) is the fitness function of the ith

individual and Ne is the number of employed bees.

For onlooker bees behavior, we introduce mutation factor

F [18] to enhance the local search ability of the algorithm and

only change a certain node of the individual each time (except

for the start and endpoints).

Xi,j = Xr1,j + F(Xr2,j − Xr3,j) (12)

where Xi,j is j − th vector of the ith onlooker bee. Random

number r1, r2, r3 are employed bee serial number and Xr1 6=

Xr2 6= Xr3 6= Xi, In order to improve the iterative speed of the

algorithm, we only calculate the path cost of the path before

and after the replacement point.

To enhance the local search ability of the algorithm, when

third random number rand3 > r ti , local search based on

Eq.13.

Xi,j = X∗
j + εAt (13)

where X∗
j is the j− th vector of the current optimal solution.

Through the greedy criterion, the best result is chosen to

replace the original path.
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The detailed IBA algorithm steps are as follows:

(1). Initialize the loudness Ai, frequency fi ∈ [fmin, fmax],

and speed Vi of each bat in the population, and generate a

random solution X0
i = [S, xi1 , xi2 , . . . ,E] ∈ [Xmin,Xmax].

(2). Calculate the fitness of each bat f (X0
i ), 1 ≤ i ≤ Np.

All bats are arranged in order of fitness, select the bat with

the smallest fitness as the current optimal X∗, the top 50%

small bats are selected as employed bees, and the remaining

bats are selected as onlooker bees.

(3). Update the speed V t
i and position X ti of the employed

bee according to Eq.8

(4). Generate a random number rand1. If rand1 > r ti ,

generate a new solution Xnew instead of X ti through Eq.9

(5). Calculate the fitness of the solution f (X ti ).

(6). Generate a random number rand2. If rand2 < Ati and

f (X ti ) < f (X∗), accept the solution X ti , and update Ati and r
t
i

by Eq.10.

(7). Repeat steps 3-6 to update all employed bees

information.

(8). onlooker bees choose employed bees through roulette,

and randomly select the node j that needs to be changed

(except for the start and end points).

(9). Randomly select three solutions r1 6= r2 6= r3 that

are different from the onlooker bee, and update X ti,j of the

onlooker bees according to Eq.12

(10). Generate a random number rand3. If rand3 > r ti and

generate a new solution X ti,j(new) near the optimal solution

X∗ to replace X ti,j by Eq.13.

(11). Calculate the fitness of the onlooker bee. If the fitness

of the onlooker bee is better than the corresponding employed

bee, then the solution of the onlooker bees can replace the

solution of the employed bee, otherwise, the solution of the

employed bee cannot change.

(12). Repeat steps 8-11 until all onlooker bees information

are updated.

(13). Update the optimal solution X∗ again.

(14). If the solution of the employed bee X ti does not

change after a certain period of time Tlimit and is not the opti-

mal solution X∗, a random solution Xnew ∈ [Xmin,Xmax] will

be generated to replace the employed beeX ti , and initialize the

corresponding speed V t
i ,frequency fi, loudness A

t
i and pulse

rate r ti .

(15). After the iteration is complete, choose the optimal

solution as the final result. The main part of IBA is described

in Algorithm 2 and Fig.4.

Although this article mainly uses the IBA algorithm to

solve the UAV path planning problem in three-dimensional

space, the theory proves that the convergence of the IBA

algorithm is still very necessary. Analyzing the convergence

of the algorithm theoretically can promote the improvement

and development of the algorithm, and provide clear theo-

retical significance for the improvement of the algorithm.

Similar to the proof in [44], we can get Theorem 1 Theorem 2,

and Theorem 3. The definition 1-6 are stated in detail in

Appendix.

Algorithm 2 IBA Algorithm

Begin:

1: Initialization. Set the number of bat populations NP, the

maximum number of iterations Tmax , initialize the

loudness A0, initial speed V 0, pulse frequency r ,

constant α, γ , and generate counter t = 1 of

each bat.

2: Calculate the fitness of each bat f (X0
i ), choose a part as the

employed bees Ne and the rest as the onlooker bees Ns.

3: For t = 1 : Tmax
4: For i = 1 : Ne

V t
i = V t−1

i + (X t−1
i − X∗)fi

X ti = X t−1
i + V i

i

5: If rand1 > r ti , generate a new solution Xnew instead of X ti

Xnew = X∗ + εAt

End if

6: Calculate the fitness of the new solution f (X ti ).

7: If rand2 < Ati and f (X
t
i ) < f (X∗)

Accept the new solutions and update r ti , A
t
i .

End if

End for

8: Update the current optimal solution X∗.

9: For i = 1 : Ns
10: Onlooker bee selects employed bee through roulette and

randomly determines the nodes j that need to

be changed.

11: Randomly choose three different paths from the employed

bee r1 6= r2 6= r3 and Update the position of the

employed bee node j

Xi,j = Xr1,j + F(Xr2,j − Xr3,j)

12: If rand3 > r ti
Xi,j = X∗

j + εAt
End if

13: Calculate the path cost and the best path replaces

the original path through the greedy criterion.

End for

14: Update the optimal solution.

15: Determine if any honey source is exhausted. If so, re-plan

the path to replace the original path, and initialize the

corresponding speed V t
i , frequency fi, loudness A

t
i and

pulse rate r ti .

End for

16: Choose the optimal solution as the final result.

End

Theorem 1: In the IBA algorithm, the state sequence

{S(t); t ≥ 0} of the group is a finite homogeneous Markov

chain.

Proof: (1) In practical problems, the search space

of any optimization algorithm is finite. In addition,

the speed and spatial location of any individual can be
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FIGURE 4. Improved bat algorithm flow chart.

TABLE 1. Parameter settings.

limited, and the whole group is composed of Np indi-

viduals. Therefore, the state space of the algorithm is

finite.

TABLE 2. Compared with other swarm intelligence algorithms.

(2) According to Definition 4 in Appendix, in the group

state sequence s(t) : t > 0, for ∀s(t−1), s(t) ∈ S, p(TS (S(t−

1)) = X (t)) affects p(TS (s(t − 1)) = s(t)). Then from

individual state transition probability we know that p(TS (s(t−

1)) = X (t)) is only related to the state which is at t−1, and is

not related to time t − 1. So, the state sequence {s(t) : t > 0}

is a finite homogeneous Markov chain.
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TABLE 3. Statistical results of different populations, ratios of employed bees and onlooker bees.

TABLE 4. Statistical results of IBA and ABC for different Tlimit .

Theorem 2: The optimal state set G composed of the opti-

mal state of the individual is a closed set on the group state

space S.

Proof: For ∀Si ∈ G, ∀Sj /∈ G, any step l ≥ 1, we can get

Eq.29 from Ckapman-Kolmogorov equation:

Plsi,sj =
∑

sr1∈S

· · ·
∑

srl−1
∈S

p(TS (si) = sr1 )

·p(TS (sr1 ) = sr2 ) · · · p(TS (srl−1
) = sj) (14)

where Plsi,sj is the probability of group state si transitioning

to state sj after l step. There is p(TS (sra−1
) = sra ) in each

product expression of the expansion of Eq.23, satisfying

sra−1
∈ G, sra /∈ G, where 1 ≤ a ≤ l. By Definition 4,

p(TS (sra−1
) = sra ) =

Np
∏

m=1

p(TS (Xim ) = Xjm ) (15)

From sra−1
∈ G and sra /∈ G, there is f (Xa) > f (Xa−1) =

f (g∗) = inf (f (c)), c ∈ A. Thus there is p(TS (sra−1
) = sra ) = 0

at least, at this time Plsi,sj = 0. So, G is a closed set on S.

Theorem 3: The Markov chain population sequence of

the IBA algorithm can converge to the global optimum with

probability 1.

Proof: We can find from the introduction of the IBA

that the evolution direction of the entire population is
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TABLE 5. Statistical results of IBA, BA and BA-ABC for different r0 and γ .

monotonous. Assuming that the state s(t) in which the group

is in time t has entered the global optimal solution setG, then

it is in state s(t + 1) at time t + 1, and P{s(t + 1) ∈ G|

s(t) ∈ G} = 1 always holds. Thereby,

P{s(t + 1) ∈ G}

= P{s(t) /∈ G}P{s(t + 1) ∈ G|s(t) /∈ G}

+P{s(t + 1) ∈ G}P{s(t + 1) ∈ G|s(t) /∈ G}

= (1 − P{s(t) ∈ G})P{s(t + 1) ∈ G|s(t) /∈ G}

+P{s(t) ∈ G}

Let P{s(t + 1) ∈ G|s(t) /∈ G} ≥ h(t) ≥ 0,

limt→∞

∏t
i=1(1 − h(i)) = 0, then:

1 − P{s(t + 1) ∈ G}

= 1 − (1 − P{s(t) ∈ G})P{s(t + 1) ∈ G|s(t) /∈ G}

−P{s(t) ∈ G}

= (1 − P{s(t) ∈ G})(1 − P{s(t + 1) ∈ G|s(t) /∈ G})

≤ (1 − P{s(t) ∈ G})(1 − h(t))

≤

t
∏

i=1

(1 − h(i))(1 − P{s(0) ∈ G})

So,

P{s(t + 1) ∈ G} ≥ 1 −

t
∏

i=1

(1 − h(i))(1 − P{s(0) ∈ G})

When t → ∞, there is:

lim
t→∞

P{s(t + 1) ∈ G} ≥ 1

However, 0 ≤ P{s(t + 1) ∈ G} ≤ 1. So,

lim
t→∞

P{s(t + 1) ∈ G} = 1

Obviously, after iteration, the IBA can finally converge to the

global optimal solution.

TABLE 6. Comparison of different intelligent algorithms with different F .

V. RESULT

A. UAV PATH PLANNING PROBLEM

In order to verify the effectiveness of the algorithm in UAVs

path planning. This chapter not only compares and analyzes

the various parameters of the IBA, but also compares the IBA

algorithm with other intelligent algorithms and the extended

algorithm of the BA. In addition, this paper conducts exper-

imental simulation based on MATLAB R2019b software

with the computer processor Intel Core i5 2.40GHz, RAM

16.00GB, and 64-bit Windows 10 operating system.

In order to be closer to the real environment, this work

constructs a three-dimensional flight environment. We sets
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TABLE 7. Statistical results of iba and ba for different A0 and α.

TABLE 8. Comparison of different intelligent algorithms with different D.

the starting node S(10, 20, 0), the target node E(42, 50, 2.8),

the radar threat point R1(26, 55, 0.2), R2(35, 26, 0.2),

R3(35, 26, 0.2), R4(51.5, 31, 0.4), the missile threat point

M1(17, 22, 0.2),M2(24, 35, 0.4),M3(30, 62, 0.2), the artillery

threat point A′
1(17, 22, 0.2), A

′
2(22, 26, 0.4), A

′
3(14, 46, 0.6),

the climate threat point C1(16, 40, 0.4), C2(24, 48, 0.6).

In addition, we set the parameters in Table 1 [1]:

From Table 2 we can find that compared with other swarm

intelligence algorithms, the IBA greatly reduces the iteration

time and can get a better optimal solution.

It is very necessary to explore the influence of parame-

ters on the performance of IBA. The IBA proposed in this

paper deals with establishing multiple parameters. So we

have therefore conducted many experiments to determine

the appropriate range of parameters. At the same time,

other parameters remain consistent to ensure fairness in the

experience. Furthermore, when the optimum value remains

unchanged, the algorithm is thought to have achieved the

convergence value. In the experiment, when the parameters

are set, we begin to record the iteration time of the algorithm.

This article conducts 50 simulations experiments for each

comparison test. Table 3 shows the influence of different

population numbers and different ratios of employed bees and

onlooker bees of the IBA.

From Table 3 we can find when the population

increases or the proportion of employed bees is large, the iter-

ation time of the IBA can also increase. The main reason is

that the search rules of employed bees and onlooker bees are

different, and employed bees take longer to search for paths.

In this article, the IBA is more suitable for the population size

range of 20-50, and the ratio of employed bees to onlooker

bees is 1:4. Within this range, IBA may obtain better results

more quickly.

This article then tests parameters Tlimit , F , r
0, and γ in

the IBA algorithm in turn, and compares the IBA algorithm

with other intelligent algorithms horizontally and vertically.
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FIGURE 5. The optimal solution convergence curve of BA algorithm and IBA algorithm with different γ and r0 (a)
r0

= 0.3; (b) r0
= 0.6; (c) r0

= 0.9.

The statistics from the simulation experiments in Table 4-6

show that the parameters Tlimit , F , r
0, and γ have a little

impact on the performance of IBA, especially in the average

path cost and convergence time that we are concerned about.

Then, we test the influence of parameters A0 and α on the

IBA. Table 7 shows that A0 and α have no obvious influence

on the iteration time of IBA, but the larger the value of A0 and

α, the smaller the average path cost obtained. In other words,

the flight path for the UAVs under the IBA is better.

At last, take Tlimit = 10, A0 = 0.95, α = 0.9, F = 0.5,

r0 = 0.6, γ = 0.5 as an example, we explore the impact of

the final parameter, namely, the number of nodes D, on the

new algorithm.

From the experimental results in Table 8, the average iter-

ation time and average path cost of the algorithm increase

as D increases. This is reasonable from the introduction of

the method. Following numerous simulation experiments,

we find that the appropriate number of nodes for the IBA in

this article is 15-20.

From Fig. 8, the IBA algorithm can plan a feasible, safe,

and effective flight path for UAVs in a three-dimensional

environment that can effectively avoid no-fly areas andmoun-

tains. It also can be found that the IBA has good convergence

from Fig. 5-7.

In general, from the statistical results in Table 2-8, we can

find that the population size, the ratio of employed bees to

onlooker bees, the number of nodes D, the initial loudness

A0, and α, have a greater impact on the simulation results of

the IBA algorithm, however, Tlimit , F , r
0, and γ have a little

effect on the results of the IBA algorithm. It can be seen from

the comparison results of IBAwith standard BA andABC that

IBA presents better advantages. The convergence speed of

IBA is about 50% faster than classical BA, and the quality of

the optimum solution is about 40% higher than that of ABC.

In addition, compared to traditional swarm intelligence algo-

rithms and improved intelligence algorithms, the optimum

solution of IBA is better than them. In other words, the IBA

can better solve the UAV flight path-planning problem.

B. FUNCTION OPTIMIZATION PROBLEM

This section mainly verifies the performance of the IBA

algorithm on continuous problems. We use four benchmark

functions to test the accuracy and convergence of the IBA

algorithm and compare it with other swarm intelligence algo-

rithms. The goal of optimization is to minimize the test results

of all benchmark functions. Moreover, we run each algorithm

20 times for significant statistical analysis.
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FIGURE 6. The optimal solution convergence curve of BA algorithm and IBA algorithm with different A0 and α.
(a) α = 0.3; (b) α = 0.5; (c) α = 0.7; (d) α = 0.9.

FIGURE 7. Histogram of the average path cost and average iteration time of different algorithms. (a) Average path
cost; (b) Average iteration time.

There are many standard test functions for validating new

algorithms. In this article, we choose the well-known Rosen-

brock’s function [31]

f1(x) =

d−1
∑

i=1

(1 − x2i )
2 + 100(xi+1 − x2i )

2 (16)

and De Jong’s standard sphere function

f2(x) =

d
∑

i=1

x2i (17)

We know that f1(x) has a global minimum f min1 = 0 at (1, 1)

in 2D and Minimum of f2(x) is f
min
2 = 0 at (0, 0, . . . , 0) for

any d ≥ 3.
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FIGURE 8. Path planning of IBA and optimal value convergence curve (a) Path planning; (b) Optimal value convergence curve.

FIGURE 9. Four benchmark functions in 3D. (a) Rosenbrock’s function; (b)De Jong’s standard sphere function; (c)
Michalewicz’s function; (d) Dixon-Price’s function.

Michalewicz’s function is also selected to test the

algorithm.

f3(x) = −

d
∑

i=1

sin(xi)[sin(
ix2i
π

)]2m. (18)

It is usually set m = 10, and the global minimum has been

approximated by f min3 ≈ −1.801 for d = 2 and f min3 ≈

−4.687 for d = 5.

In addition, we also added a standard test function, Dixon-

Price’s function, to perform numerical global optimization,

and its global minimum is f min4 = 0 for xi = 0,
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TABLE 9. Benchmark functions.

TABLE 10. Comparison of IBA with BA, ABC, PSO, IABC.

i = 1, 2, . . . , d .

f4(x) = (x1 − 1)2 +

d
∑

i=2

i(2x2i − xi−1)
2. (19)

However, the minimum value of Michalewicz’s function

can be less than 0, so we have modified the fitness of the IBA

algorithm by Eq 20.

fit(xi) =







1

1 + f (xi)
, f (xi) > 0

1 + |f (xi)|, otherwise.

(20)

where f (xi) is the function value of xi.

Moreover, we add other benchmark functions in Table 9,

and set the initial xi, i = 1, 2, . . . ,Np range of each bench-

mark function to [−100, 100].

We reset the maximum number of evaluations to 3 × 105,

dimension d = 50, F ∈ [−1, 1] and other parameters are the

same as the previous simulation experiment.

From the statistical results in Table 10, we can see that

for each benchmark function, IBA can obtain a better quality

solution and a lower standard deviation, compared to BA,

ABC, PSO, and IABC. From the average of these 10 bench-

mark functions, IBA can also ensure that the obtained mean

and standard deviation are the smallest. We believe that it

is worthwhile to perform multiple changes and comparisons

for individuals to obtain better solutions. Obviously,in the

process of finding the global minimum of different functions,

IBA is more suitable for finding the global minimum solution

within a fixed number of evaluations.

VI. CONCLUSION

The purpose of this paper is to make the UAV obtain a

crash-free, safer, and shorter flight path. An improved bat

algorithm (IBA) is proposed that integrates elements of the

ABC, employed bee, onlooker bees, and scout bees. In the

IBA, the employed bee searches for the path according to

the behavior of bats using sonar positioning. To increase

the local search ability, a mutation factor is considered.

When the individual falls into a local optimum, the scout

bee searches for a new path to replace the old one. In addi-

tion, this work also proves in detail that the IBA is con-

vergent and solves the function optimization problem to

prove that the IBA algorithm has the potential for broad

application.

We tested all the setting parameters in the IBA in this paper.

Based on the statistical results, it can be found that when

Tlimit , F , r
0, and γ are changed, the average path cost and

iteration time of IBA do not change significantly, that is to

say, Tlimit ,F , r
0, and γ have a little impact on the performance

of the IBA. In other aspects, A0 and α mainly affect the

updating of information from the bat algorithm part of the

IBA, and the larger A0 and α, the better the result obtained
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by the IBA. Similarly, the ratio of employed bees to onlooker

bees also affects the results of the IBA. This is mainly due

to the different behaviors of employed bees and onlooker

bees in the search paths. The increase in population size

can inevitably increase the iteration time of the algorithm.

The increase in D increases the path cost mainly because

the method of calculating the cost of a path is flawed, and the

path cost cannot be calculated accurately. From a statistical

data point of view, the ratio of employed bees to onlooker

bees, population size, and D have greater influence than

A0 and α.

In this article, a large number of simulation experiments

have confirmed that the IBA can quickly plan a flight path for

the UAVs, effectively avoiding mountains and various threat-

ening no-fly areas. Additionally, based on the comparison

results, the IBA is superior to DE, BAM, ABC, PSO, BA,

BA-ABC, IABC, and GFACO in the battlefield environment

of this article. The convergence speed of the IBA is about 50%

lower than the standard BA. Moreover, compared to the ABC

algorithm, the IBA sacrifices very little convergence time to

improve the quality of the optimal solution by about 14%.

In terms of function optimization, compared with ABC, BA,

IABC, and PSO, IBA can get higher quality solutions, lower

standard deviation. On the other hand, from the perspective

of time complexity, suppose the number of populations is

n, the problem solution is D-dimensional, and the ratio of

employed bees to onlooker bees is Ra. After t iterations,

the time complexity of the IBA is approximatelyO(nD+t(Ra·

nD+(1−Ra)n)), which is less than the time complexity of the

BA (O(nD+tnD)) and this is consistent with the experimental

results. In future work, we will study the use of the IBA to

solve the UAV flight path-planning problem in a dynamic

environment.

APPENDIX

IBA ALGORITHM CONVERGENCE

This chapter mainly proves the convergence of IBA through

Markov chain. In order to illustrate the Markov chain model

of IBA, we need to give some related mathematical descrip-

tions and definitions.

Definition 1 [42]: State equivalence. Suppose S = {s =

(X1,X2, . . . ,XNP)|Xi ∈ X, 1 ≤ i ≤ NP} is the state space

of the group which is composed of the set of all possible

states of the group. X = {X |X ∈ A} is the individual state

space, and is the feasible solution space. ϕ(s,X ) =
∑

χ|X |(Xi)

is the number of group state contains individual state X ,

where χ|B|is the indicative function of set B, s ∈ S, X ∈ s.

If ∃s1, s2 ∈ S, such that ∀X ∈ X, there is ϕ(s1,X ) = ϕ(s2,X ).

Definition 2 [43]: The group state equivalence class

induced by the equivalence relation ‘‘∼’’ on S is denoted

as L = S/ ∼. The equivalence class of this group has the

following properties:

(1). Any group state in a certain equivalence class L is

equivalent, that is, s1 ∼ s2, ∀s1, s2 ∈ L.

(2). The state of any group within L is not equivalent to

the state of any group outside L, that is, s1 6∼ s2, ∀s1 ∈ L,

s2 ∈ L.

(3). Any two different equivalence classes have no inter-

section, that is, L1 ∩ L2 = ∅, ∀L1 6= L2.

Definition 3: Group state transition. TX (Xi) = Xj is the

group state one-step transition from state Xi to state Xj, where

Xi,Xj ∈ X .

After that, we discuss the state transition probability of

the IBA. According to the structure of the IBA, we can

get the one-step transition probability of the individual state

from Xi to Xj.

p(TX (Xi) = Xj) =



























































pba(TX (Xi) = Xj),

realized by bats

pon(TX (Xi) = Xj),

realized by onlooker bees

psc(TX (Xi) = Xj),

realized by scout bees

pba(TX (Xi) = Xj) × pon(TX (Xi) = Xj),

realized by bats and onlooker bees.

Without considering the population number and dimension

in Eq.8, we can get

Vt = Vt−1 + (Xt−1 − Pg)fi (21)

Thereby, Eq.22 is established.

Xt = (2 + fi)Xt−1 − Xt−2 − Pgfi (22)

where Pg is global optimal position.

According to Definition 3 and the geometric properties of

the IBA, the one-step transition probability of a bat from state

Xi to state Xj is:

pba(TX (Xi) = Xj)

= pba(Vi → Vj) × pba(Xi → Xj)pba(Pgi → Pgj ) (23)

Through individual iterative formula and location update

criterion, we can get Eq.24

pba(Pgi → Pgj ) =

{

1, f (Pgi ) ≤ f (Pgj )

0, otherwise.
(24)

Assuming that the individual has n dimensions. Then the

one-step transition probability of speed and position is:

pba(Vi → Vj)

=



















1

|△1|
, Vj ∈ [Vi,Vi + fi(Xi − Pgi )]

1, j = i+ 1

0, otherwise.

(25)

pba(Xi → Xj)
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=







































































1

|△2|
, Xj ∈ [Vi + Xi,Vi+Xi+fi(Xi − Pgi )]

and rand1 < ri and rand2 < Ai

and f (Xi) < fXj
1

|Pgi+ε · rand |
, Xj ∈ [Pgi − ε · rand,Pgi+ε · rand]

and rand1 > ri and rand2 < Ai

and f (Xi) < fXj

1, j = i+ 1

0, otherwise.

(26)

where |△1| =
∫ vj1
vi1

∫ vj2
vi2

· · ·
∫ vjn
vin

dvn · · · dv2dv1, |△2| =
∫ xj1
xi1

∫ xj2
xi2

· · ·
∫ xjn
xin

dxn · · · dx2dx1

Similarly, we you can get

pon(Ts(Xi) = Xj)

=















1

|Xi − Xj|
p1(Xi → Xj), Xj ∈ [Xi − (Xi − Xk ),

Xi + (Xi − Xk )]

0, otherwise.

(27)

psc(Ts(Xi) = Xj)

=







1

|Xmax − Xmin|
, Xj ∈ [Xmin,Xmax]

0, otherwise.

(28)

where in Eq.21-28, X is multi-dimensional data, Xk is a ran-

domly selected solutionwithin the range of feasible solutions.

p1(Xi → Xj) =

{

1, f (Xi) < f (Xj)

0, otherwise.

Definition 4 [42]: For ∀si, sj ∈ S, in the IBA, the individual

state is one-step transferred from state si to state Sj, denoted

as TS (si) = sj. The one-step transition probability for all

individual states in-group si to simultaneously transfer to all

individual states in group sj is:

p(TS (si = sj)) =

Np
∏

m=1

p(TS (Xim ) = Xjm ) (29)

Definition 5 [42]: Assume that Li = (si1 , si2 , . . . , sin ) and

Lj = (sj1 , sj2 , . . . , sjn ) are the equivalence classes of any two

group states caused by the equivalence relation ‘‘∼’’ on S.

Li one-step transfers to Lj, denoted as TL(Li) = Lj, then the

one-step transition probability of TL(Li) = Lj is:

p(TL(Li) = Lj) =

n
∑

a=1

m
∑

b=1

p(TS (sia ) = sjb ) (30)

Definition 6 [44]: Assuming that the optimal solution of

optimization problem 〈A, f 〉 is g∗, define the group’s optimal

state set G = {s∗ = (X )|f (X ) = f (g∗), s ∈ S}.

If G = S, then every solution in the feasible solution space

is the optimal solution and feasible solution, and optimization

is meaningless at this time. So we discuss the convergence of

the IBA algorithm in the case of G ⊂ S.
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