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The ability to accurately predict lithium-ion battery life-time
already at an early stage of battery usage is critical for ensuring
safe operation, accelerating technology development, and
enabling battery second-life applications. Many models are
unable to effectively predict battery life-time at early cycles due
to the complex and nonlinear degrading behavior of lithium-
ion batteries. In this study, two hybrid data-driven models,
incorporating a traditional linear support vector regression
(LSVR) and a Gaussian process regression (GPR), were devel-
oped to estimate battery life-time at an early stage, before

more severe capacity fading, utilizing a data set of 124 battery
cells with lifetimes ranging from 150 to 2300 cycles. Two type
of hybrid models, here denoted as A and B, were proposed. For
each of the models, we achieved 1.1% (A) and 1.4% (B) training
error, and similarly, 8.3% (A) and 8.2% (B) test error. The two
key advantages are that the error percentage is kept below
10% and that very low error values for the training and test sets
were observed when utilizing data from only the first 100
cycles.The proposed method thus appears highly promising for
predicting battery life during early cycles.

1. Introduction

Lithium-ion (Li-ion) batteries are used in a wide range of
applications, from electronic devices to electric vehicles and
grid energy storage systems, because of their low cost, long life,
and high energy density.[1,2] These rechargeable batteries lose
capacity, energy, and power over time as a result of internal
electrochemical processes and external operating conditions.
Thus, Li-ion battery aging is generally characterized as an
increase in internal resistance and a decrease in capacity, which
constitute major problems.[3,4] Battery aging increases the cost
of energy storage systems and may potentially result in serious
accidents such as fires and explosions. Therefore, accurate
battery cycle life prediction is critical for optimizing the
performance of energy storage systems while assuring their
safety and reliability.[5]

Since the emergence of the commercial electric vehicles
(EVs), battery life-time has been a focus of research, with
different Li-ion batteries being cycled and/or stored in order to
identify different degradation mechanisms.[6] To maintain the

safety and reliability of battery-powered systems, it is generally
recommended that batteries should be replaced when they can
only store 80% of their initial capacity. Laboratory studies are
typically performed to better understand battery aging behav-
ior under various operating conditions, with the resulting data
being fed into or used to develop battery cycle life prediction
models.[7] In recent years, a variety of methods for predicting
battery lifetime have been presented.[8–10] Generally, battery life-
time prediction methods include model-based, data-driven, and
hybrid approaches.[11–14] Model-based approaches use informa-
tion of a system’s failure mechanisms (e.g., solid electrolyte
interface (SEI) growth) to provide a mathematical description of
the degradation process, or they build an empirical model
(experience-based models) to reproduce the system’s declining
trajectory.[15] They normally use different filtering algorithms
such as the Kalman filter (KF),[16] the extended Kalman filter
(EKF),[17] or the particle filter (PF)[18] to update model parameters
recursively by sampling one measurement data point at a time.
Hu et al.,[19] for example, used a dual fractional-order extended
Kalman filter (DFOEKF) for co-estimation of state of charge
(SOC) and state of health (SOH) for Lithium-ion batteries. Data-
driven modeling strategies, on the other hand, use historical
data, real-time data, or both to determine the characteristics of
the currently observed damage state and estimate future
trends.[12,20–22] Ng et al.[23] published a list of the recent data-
driven models for battery state estimation. Finally, hybrid
approaches combine model-based and data-driven methods in
order to leverage the strengths of both approaches.[11,15,24,25]

Data-driven models using statistical and machine learning
techniques have gained a lot of interest in battery prognostic
applications since they do not necessitate a deep understand-
ing of battery failure and other physical mechanisms. In these
models, the battery systems are treated as black box systems to

[a] Dr. M. Alipour, Prof. D. Brandell
Department of Chemistry – Ångström Laboratory,
Uppsala University,
751 21 Uppsala, Sweden
E-mail: mohammad.alipour@kemi.uu.se

[b] Prof. S. S. Tavallaey, Dr. A. M. Andersson
ABB AB Corporate Research, Forskargränd 7,
SE-721 78 Västerås, Sweden

[c] Prof. S. S. Tavallaey
Department of Mechanics, School of Science KTH,
SE-100 44 Stockholm, Sweden

© 2022 The Authors. ChemPhysChem published by Wiley-VCH GmbH.
This is an open access article under the terms of the Creative Commons
Attribution License, which permits use, distribution and reproduction in
any medium, provided the original work is properly cited.

ChemPhysChem

www.chemphyschem.org

Research Article
doi.org/10.1002/cphc.202100829

ChemPhysChem 2022, 23, e202100829 (1 of 11) © 2022 The Authors. ChemPhysChem published by Wiley-VCH GmbH

Wiley VCH Montag, 21.03.2022

2207 / 236280 [S. 88/98] 1

http://orcid.org/0000-0002-7862-2729
http://orcid.org/0000-0002-8019-2801
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcphc.202100829&domain=pdf&date_stamp=2022-03-01


provide a mapping between various input and output variables.
An increasing number of articles has been devoted to data-
driven algorithms for predicting battery state and life-time in
recent years. Che et al.[26] used a universal deep learning
method for prognostic and battery pack state of health
estimation. Hu et al.[27] developed a hybrid approach for lithium-
ion battery RUL prediction based on particle filter (PF) and long
short-term memory (LSTM) neural network. Liu et al.[28] em-
ployed a Gaussian process regression (GPR) with composite
kernels coupling the Arrhenius law and a polynomial equation
to capture the electrochemical and empirical knowledge of
battery degradation. Nuhic et al.[29] used the support vector
machine (SVM) for the estimation of state of health (SOH) and
the remaining useful life (RUL). Ma et al.[30] used the battery
capacity in a specific window (the minimum embedding
dimensions of the capacity data) as input features, and created
a hybrid neural network that integrated a convolutional neural
network and long short-term memory to predict battery life-
time. Son et al.[31] employed a Gaussian process regression using
multiphysics features including mechanical and impedance
evolutionary responses to estimate the SOH of batteries. Even
though these present methods provide satisfactory results in
terms of battery life-time prediction, they often require data
corresponding to at least 25% aging in order to accurately
estimate the target value. Due to the non-linear and complex
degradation process of Li-ion batteries, precisely estimating
battery life-time at early cycles – where the battery is largely yet
to exhibit capacity degradation - is more challenging.

This paper offers two hybrid models combining a linear
support vector regression (LSVR) and a Gaussian process
regression (GPR) for battery cycle-life prediction using data
from only the first 100 cycles in a data set[32] of 124 cells with
lifetimes ranging from 150 to 2300 cycles. The paper is
organized as follows: In section 2, a comprehensive mathemat-
ical description of the proposed hybrid data-driven model is
given. In section 3, the methodologies including the data
description, the data preprocessing, the model development,
and the model assessment methods are reviewed. Section 4
shows the results of the battery cycle-life prediction and
compares them to published data.[32] The paper is concluded in
section 5.

2. Theory

2.1. Regression

Supervised learning can be applied in two different types of
problems: regression as well as classification. While the
regression approach tries to capture the behavior of the system,
the classification tries to group and classify the system behavior
in different subsystems.[33]

Principally, any kind of regression problem could be
modeled as

y ¼ fðxÞ þ e, (1)

where f xð Þ represents a hidden function of input vector x and
e � N 0; s2

n

� �
is an independent and identically distributed

Gaussian noise function with zero mean and variance s2
n

originating from an observation y.

2.2. Linear Support Vector Regression

For a given training data set D of n observations,
D ¼ xi; yið Þ; i ¼ 1; 2; :::; nf g, where xi 2 Rd represents a d-dimen-
sional input feature, yi represents a scalar target value, and n
denotes the number of samples in the training set, Support
Vector Regression (SVR) finds a d-dimensional coefficient vector
w 2 Rd and intercept coefficient b 2 R such that the prediction
given by wT� xið Þ þ b

� �
is close to target value yi. Here, the

target value is the battery cycle life, and xi represents a vector
of input features for battery sample i. The Linear SVR,
subsequently, solves the following primal problem:[34]

min
w;b

1
2w

Twþ C
X

i¼1

maxð0; yi � ðwT�ðxiÞ þ bÞ
�
�

�
� � eÞ

 !

; (2)

where the epsilon-insensitive loss is used, which ignores errors
smaller than e, and C > 0 is the regularization term. The dual
problem is formulated as:[35]

min
a;a*

1
2 ða � a*ÞTQða � a*Þ þ eeTðaþ a*Þ � yTða � a*Þ
� �

; (3)

subject to eT a;a*ð Þ ¼ 0; 0 < a;a* < C; i ¼ 1; :::; n, where e is a
vector of ones, Q 2 Rn�n is a matrix with Qij ¼ �ðxiÞT� xið Þ.
Finally, once the optimization problem is solved, the target
value is predicted as:

X

i2SV

ðai � ai*ÞQij þ b , (4)

where only support vectors (SV), i. e. samples that are within the
margin, are considered.

2.3. Gaussian Process Regression

Gaussian Process Regression (GPR) is a non-parametric machine
learning methodology. Unlike other supervised machine learn-
ing algorithms that estimate the probability of parameters of a
specific function, the GPR calculates all likely functions that are
fitting to the observation data. This approach uses a Bayesian
framework to do prediction by collecting prior knowledge and
deriving a posterior probability hypothesis.

A GPR is typically defined by two key functions: the mean
function m xð Þ and the covariance function k x; x0ð Þ which are
defined as

mðxÞ ¼ E½fðxÞ�; kðx; x0Þ ¼ E½ðfðxÞ � mðxÞÞðfðx0Þ � mðx0ÞÞ�: (5)

ChemPhysChem
Research Article
doi.org/10.1002/cphc.202100829

ChemPhysChem 2022, 23, e202100829 (2 of 11) © 2022 The Authors. ChemPhysChem published by Wiley-VCH GmbH

Wiley VCH Montag, 21.03.2022

2207 / 236280 [S. 89/98] 1



By choosing the mean and covariance functions, one can
write the Guassian process as:[33]

fðxÞ � GPðmðxÞ; kðx; x0ÞÞ; (6)

Furthermore, by summing the target value and noise
distributions, one can simply include independently, identically
distributed (i.i.d) Gaussian noise, e � N 0;s2

n

� �
, to the target

value as:

y � GPðmðxÞ; kðx; x0Þ þ s2
nIÞ: (7)

In supervised learning, locations with comparable observa-
tion values xi are predicted to have similar response (target)
values yi. In GPR, this similarity is reflected by the covariance
function, which determines how responses at one site xi are
influenced by responses at other sites xj, xi 6¼xj; i ¼ 1; 2; :::; n.
Various kernel functions, with one or several hyper-parameters,
can be used to define the covariance function k xi; xj

� �
. Thus,

the covariance function can be written as kðxi; xjjqÞ. For many
conventional kernel functions, kernel variance σf and character-
istic length scale σl are two common hyper-parameters. The
characteristic length scales describe how far the input values xi
can be apart before the response values become uncorrelated.
For any collection of input features X ¼ x1; x2; :::; xn½ �; the GPR
defines a jointly Gaussian probability distribution
pðf x1ð Þ; pðf x2ð Þ; :::; p f xnð Þð Þ. Therefore, from the GPR prior, the
collection of training points and test points are joint multi-
variate Gaussian functions, with zero mean value, distributed as
seen in Eq. (8),

y

f*

" #

� N 0;
KðX; XÞ þ s2

nI KðX; X*Þ

KðX*; XÞ KðX*; X*Þ

2

4

3

5

0

@

1

A: (8)

Given the number of training samples as n and number of
test samples as n* , K X; X*ð Þ denotes the n� n* matrix of the
computed covariances including all pairs of training and test
points, and similarly for the other entries K X; Xð Þ; K X*; Xð Þ; and
K X*; X*ð Þ. To improve the GPR’s performance, the hyper-
parameters of the covariance function must be tuned. This can
be achieved by maximizing the log marginal likelihood defined
as:

logðyjX; qÞ ¼ �
1
2 y

TðK þ s2
nIÞ
� 1y �

1
2 log K þ s2

nI
�
�

�
� �

n
2 log 2p; (9)

where � 1
2 y

TðK þ s2
nIÞ
� 1y is the data-fit term, � 1

2 log K þ s2
nI is

the complexity penalty term, and the � n
2 log2p is the normaliz-

ing constant term. One can obtain the posterior distribution by
limiting the joint prior distribution to the functions that are
fitting to observed data points. Subsequently, predictions at
test points could be made by computing the conditional
distribution as (see e.g.[33]):

pðf *jX; y; X*Þ � Nðf *; covðf *ÞÞ; (10)

where

f * ¼ KðX*; XÞ½KðX; XÞ þ s2
nI�
� 1y; (11)

covðf *Þ ¼ KðX*; X*Þ � KðX*; XÞ½KðX; XÞ þ s2
nI�
� 1KðX; X*Þ: (12)

3. Methodologies

The major purpose of this study is to predict Li-ion battery cycle
life at an early stage of battery usage. More specifically, we
hypothesize that merging the LSVR and GPR models could yield
better results than state-of-the-art methodology,[32] while still
using the same data. Figure 1 depicts the procedure and steps
for estimating cycle life, which include data description, data
pre-possessing, feature selection, and model development, all
of which are covered in detail in the following subsections.

3.1. Data Description

Reis et al.[36] reviewed over 30 datasets associated with Li-ion
batteries. The MIT data set[32] consisting of cycling data for 124
LFP/ graphite cells (A 123 systems, model APR18650M1A, 1.1 Ah
nominal capacity) was used in this work. All cells were charged
using a variety of multi-step fast charging methodologies, then
discharged at a constant current. For all cycles, the ambient
temperature was fixed to 30 °C. Continuous data including
voltage, current, battery temperature, and internal resistance
were collected as the battery cells were cycled to end of life
(EOL), defined as 80% of their initial capacity. The cycle-life
histogram for 124 cell samples ranging from 150 to 2300 cycles
is shown in Figure 2.

3.2. Data Pre-Processing

In ML applications, data pre-processing is critical for improving
data quality and prediction accuracy. Generally, it includes
removing outliers, filling missing values, time-domain synchro-
nization, and normalization.[37] In this context, some battery
samples from noisy channels as well as some batteries that did
not reach 80% capacity were removed. Two samples with
outliers were noticed in the capacity fade curve for the first 100
cycles. The detected outliers were removed, and the missing
data are then filled up using interpolated values. Finally, the
whole data set was normalized using the z-score normalization
method[38] as:

Z ¼
x � m

s
; (13)

where Z is the standard score, x is the observed value, m is the
sample mean, and s is the sample standard deviation.
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3.3. Feature Selection

Normally, machine learning applications contain plenty of input
features in the dataset. While some of these features might
have good predictive strength, the presence of non-informative
features can add uncertainty to the predictions. Therefore,
when it comes to creating a machine learning model, feature
selection is crucial to minimize the number of input variables,
to lower the computational cost of modeling, and to increase
the model’s performance. The two fundamental types of feature
selection approaches are supervised and unsupervised proce-
dures. The distinction is whether or not the features are chosen
based on the target variable. Unsupervised feature selection
strategies, such as those that remove redundant variables using
correlation, disregard the target variable. Approaches that use
the target variable, such as methods that eliminate irrelevant
variables, are supervised feature-selection techniques. In this
section, an unsupervised method was used to remove redun-
dant features. Features with high correlation have approx-

Figure 1. Cycle life estimation procedure.

Figure 2. Cycle-life histogram for 124 battery samples in the MIT dataset.
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imately the same influence on the observed output. Therefore,
when two features have a high correlation, one of them might
be dropped without losing relevant information for predicting
the output of interest.

Before eliminating redundant features, additional features
were added to the available ones developed by Severson
et al.[32] All features with their respective definition are listed in
Table 1. Below is a description of how the features are
derived:[32]

DQðVÞ ¼ Q100ðVÞ � Q10ðVÞ;DQðVÞ 2 Rp;

DTðVÞ ¼ T100ðVÞ � T10ðVÞ;DTðVÞ 2 Rp;
(14)

DQðVÞ ¼
1
p

Xp

i¼1

DQðVÞ; (15)

b* ¼ argmin
b

1
m q � Nbk k22; (16)

where m is the number of cycles in the prediction, q 2 Rm is a
vector of discharge capacities as a function of the cycle number,
N 2 Rm�2 is a matrix with the first column containing cycle
numbers and the second column containing a vector of ones,
and b 2 R2 is a coefficient vector.

Table 1. List of input features.

Features description Symbol Equation

~Q100 10(V)
features

Minimum x_min log min DQ Vð Þð Þj jð Þ

Mean x_mean log DQ Vð Þ
�
�

�
�

� �

Variance x_var
log 1

p� 1

Pp

i¼1
ðDQ Vð Þ � DQ Vð ÞÞ2

�
�
�
�

�
�
�
�

� �

Skewness x_skew

log
1
p

Pp

i¼1
ðDQ Vð Þ� DQ Vð ÞÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp

i¼1
ðDQ Vð Þ� DQ Vð ÞÞ2

p� �3

�
�
�
�
�
�

�
�
�
�
�
�

2

4

3

5

Kurtosis x_kurt

log
1
p

Pp

i¼1
ðDQ Vð Þ� DQ Vð ÞÞ4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp

i¼1
ðDQ Vð Þ� DQ Vð ÞÞ2

p� �2

�
�
�
�
�
�

�
�
�
�
�
�

2

4

3

5

Discharge capacity fade
curve features

Slope of the linear fit to the capacity fade curve,
cycles 2 to 100

x_slopeDC the first value in the vector bS

where d=99
Intercept of the linear fit to capacity fade curve,
cycles 2 to 100

x_constDC the second value in the vector bS

where d=99
Slope of the linear fit to the capacity fade curve,
cycles 91 to 100

x_slope90 the first value in the vector bS

where d=10
Intercept of the linear fit to capacity fade curve,
cycles 91 to 100

x_const90 the second value in the vector bS

where d=10
Discharge capacity, cycle 2 x_QD2 Q(n=2)
Difference between max discharge capacity and
cycle 2

x_Qdiff maxnQ(n) � Q(n=2)

Discharge capacity, cycle 100 x_QD100 Q(n=100)

Other features Average charge time, first 5 cycles x_chargetime 1
5

P6

i¼1
Charge Timei

Maximum temperature,
cycles 2 to 100

x_maxT maxnT (n)

Minimum temperature,
cycles 2 to 100

x_minT minnT (n)

Integral of temperature over time,
cycles 2 to 100

x_tempint ∫t100
t2

T tð Þdt

Internal resistance, cycle 2 x_IR2 IR (n=2)
Minimum internal resistance,
cycles 2 to 100

x_IRmin minnIR(n)

Internal resistance, difference between
cycle 100 and 2

x_IRdiff IR (n=100)� IR(n=2)

Features added
by this work

Variance of ~T (V) x_varT
log 1

p� 1

Pp

i¼1
ðDT Vð Þ � DT Vð ÞÞ2

�
�
�
�

�
�
�
�

� �

Mean of dVdQ curve at cycle 100 x_mean dVdQ log dVdQ100

�
�

�
�

� �

Mean of dVdT curve at cycle 100 x_mean dVdT log dQdT100

�
�

�
�

� �

Mean of dQdV curve at cycle 100 x_mean dQdV log dQdV100

�
�

�
�

� �

Coulombic efficiency at cycle 2 x_CE2 QD
QC n ¼ 2ð Þ

Coulombic efficiency at cycle 100 x_CE100 QD
QC n ¼ 100ð Þ

Variance of Coulombic efficiency
cycle 2 to 100

x_CEvar
log 1

p� 1

Pp

i¼1
ðCE2� 100 � CE2� 100Þ

2

�
�
�
�

�
�
�
�

� �
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Figure 3 shows the correlation heat-map including all
features. To remove redundant input variables, columns with
correlation greater than 0.9 were dropped. As a result, six
features of twenty-six were removed.

3.4. Model Development

In this section, a comprehensive data-driven model was
employed to predict battery cycle life before more severe
capacity degradation phenomenon occurs. To this end, two
hybrid models combining a LSVR and a GPR model were
developed. While the LSVR model was used to forecast battery
cycle life, the GPR model was used to model the cycle life
residual, which is defined as the difference between the real
cycle life and the LSVR model’s predicted cycle life. Severson
et al.[32] utilized a linear model, and used the lasso and elastic
net techniques for regularization to avoid over-fitting. They
used four-fold cross-validation and Monte Carlo sampling for
tuning hyper-parameters. Because recreating the same results
would be difficult, the LSVR model, which employs the linear
kernel, is used in this study. The GPR model was tested in the
form of two different models: model A and model B. As
illustrated in Figure 1, the final predictions were obtained by
adding the LSVR model’s predicted cycle life and the GPR
model’s predicted cycle life residual. The final models are
therefore called hybrid model A and hybrid model B. It is worth
noting that this design is theoretically equal to setting the LSVR
model as a mean function of the GPR model.

In section [FS], an unsupervised feature selection strategy
was used to remove redundant features. In this section, the
filter feature selection method was used to select the most

relevant features. The filter-based feature selection method is a
supervised method which uses statistical techniques to asses
the relevance of features and target variable outside of the
predictive models.[39] The absolute valued Pearson correlation
coefficient, as the most commonly used ranking criterion in the
filter methods, was employed to select the most relevant
features correlated to the target values. It determines the linear
relationship between the feature x and the target y, as:

rxy ¼

Pn

i¼1
ðxi � �xÞðyi � �yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn

i¼1
ðxi � �xÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðyi � �yÞ2

sv
u
u
t

;
(17)

where xi and yi denote the i-th sample of feature x and the
target y, and �x and �y are the independent and dependent
sample means, respectively. Figure 4 shows the listed computed
Pearson coefficients between the remaining features and the
cycle life value. A threshold of 0.5 was utilized to filter the
relevant features to be used as an input variables in the LSVR
model, leading to the final choice of x var, x mean dVdQ,
x minT , x mean dQdV, as well as x IR2.

Learning the parameters of a prediction function and
testing it on the same data set is a fundamental error that can
result in over-fitting. In machine learning applications, the
common practice is to divide the entire data into three sets of
data, i. e. training, cross-validation and testing, 60 :20 :20. It is
well-known that the basic idea of cross-validation is to split the
training set into two disjoint sets, one which is actually used for
training, and the other, the validation set, which is used to
monitor the performance of the trained model. The answer to

Figure 3. Triangle Correlation Heatmap for the dataset.
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the question on what the optimal number of the chosen folds
would be, is more based on experimental rather than theoret-
ical studies. One approach would be to choose the so-called
leave-one-out cross-validation (LOO-CV), i. e. an extreme case of
k-fold cross-validation obtained for k=n, the number of train-
ing cases. While his approach can be computational heavy, but
the typical values for k are often in the range 3 to 10. In this
work, the 80/20 training/test split on the data-set was used.
Furthermore, the training set was split in to 5 smaller sub-sets,
meaning that the 5-fold cross-validation was performed. Fig-
ure 5 depicts the procedure for k-fold cross-validation, in which
a model is trained using k-1 of folds as training data and the
resulting model is validated on the remaining data. After fitting
the model using the training data and thereafter cross-
validating it, the model was evaluated using the test set. We

evaluated various cross-validation with different k-folds
(k ¼ 1; 2; :::5), with the results showing that our choice of 5-fold
cross-validation had the lowest error.

3.5. Model A

It is worth noting that the covariance function must be carefully
chosen or built since it determines the GPR’s functionality. As
discussed earlier, the covariance function determines how
responses at one site xi are influenced by responses at other
sites xj, xi 6¼xj; i ¼ 1; 2; :::; n. In model A, firstly, relevant features
with the cycle life residual were filtered using the Pearson
correlation coefficient. The Pearson coefficients vary from
0.0079 to 0.43, as shown in Figure 6. As a result, a 0.25
threshold was set to filter the relevant features, and five
features were chosen to be used in Model A. Then, five different
isotropic kernel functions, i. e. with the same length scale hyper-
parameter, see section [GPR], for each feature, were used in the
GPR model. The isotropic squared exponential (radial basis
function- RBF) kernel function is one of the most common used
covariance functions, and defined as:

kSEðxi; xjjqÞ ¼ s2
f exp �

ðxi � xjÞTðxi � xjÞ
2s2

l

� �

; (18)

where sl is the characteristic length scale, and sf is the signal
standard deviation. The isotropic Matern 3/2 kernel is defined
by:

Figure 4. Pearson correlation coefficients between individual regressors and
battery cycle lifes.

Figure 5. 5-fold cross validation procedure.
Figure 6. Pearson correlation coefficients between individual regressors and
battery cycle life residual.
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kMatern32ðxi; xjjqÞ ¼ s2
f 1þ

ffiffiffi
3
p

sl
r

� �

exp �

ffiffiffi
3
p

sl
r

� �

; (19)

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi � xjÞT xi � xj
� �q

. Similarly, the Matern 5/2,

rational quadratic (RatQuad), exponential (Exp), and linear
kernel functions are defined as following equations:

kMatern52ðxi; xjjqÞ ¼ s2
f 1þ

ffiffiffi
5
p

sl
r þ

5r2

3s2
l

� �

exp �

ffiffiffi
5
p

sl
r

� �

; (20)

kRatQuadðxi; xjjqÞ ¼ s2
f 1þ

r2

2as2
l

� �

; (21)

kExpðxi; xjjqÞ ¼ s2
f

r
sl

� �

: (22)

3.6. Model B

In model B, in contrast to model A, the entire input features
were used where kernels with different length scales sl were
used for each feature. Here, xil denotes a single feature l of
sample i and xjl denotes a single feature l of sample j where
xi 6¼xj, i ¼ 1; 2; :::; n, and l ¼ 1; 2; . . . ; d. The automatic relevance
determination (ARD) structure was implemented to extract the
highly relevant input features for cycle life estimation. In
principle, through using model B, irrelevant features might be
limited by setting large length scales for them, resulting in a
reduced and descriptive dataset.[40]

Five alternative ARD-kernels were investigated to assess the
GPR performance with model B, just as they were with model A.
The ARD Squared Exponential kernel is defined as:

kSE ARDðxi; xjjqÞ ¼ s2
f exp �

1
2

Xd

l¼1

ðxil � xjlÞ2

s2
l

 !

: (23)

The ARD Matern 3/2 is defined as:

kMatern32 ARDðxi; xjjqÞ ¼ s2
f ð1þ

ffiffiffi
3
p

rÞ expð�
ffiffiffi
3
p

rÞ; (24)

where r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pd

l¼1

ðxil � xjlÞ2

s2
l

s

. Similarly, the ARD Matern 5/2, ARD

rational quadratic (RatQuad), ARD exponential (Exp), and ARD
linear kernel functions are defined in the following equations:

kMatern52 ARDðxi; xjjqÞ ¼ s2
f 1þ

ffiffiffi
5
p

r þ
5r2

3

� �

exp �
ffiffiffi
5
p

r
� �

; (25)

kRatQuad ARDðxi; xjjqÞ ¼ s2
f 1þ

1
2a

Xd

l¼1

ðxil � xjlÞ
2

s2
l

 !
� a

; (26)

kExpðxi; xjjqÞ ¼ s2
f ð� rÞ: (27)

3.7. Model Assessment

To evaluate the outcomes, the predicted cycle lifes should be
compared to the actual cycle lifes from the observation data. In
this sense, this work employs two distinct metrics, root mean
square error (RMSE) and mean percent error (% err), similar to
those employed by Severson et al.[32] The metrics are defined as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1

ðyi � ŷiÞ2
s

; (28)

%err ¼
1
n

Xn

i¼1

yi � ŷij j

yi
� 100: (29)

4. Results and Discussion

Section 3.4 covered the design of the developed hybrid data-
driven models. The major point of interest in this study has
been to improve the accuracy of the predicted remaining useful
life for the studied batteries. Different statistical and data-
driven-models were examined as described in chapter 3. The
GPR model was used to forecast the cycle life residuals after
subtracting the predicted cycle life from the observed cycle life
values using the LSVR model. The hybrid models were
developed in two forms: hybrid model A and hybrid model B.
The key differences between them are the method of input
feature selection and the type of kernels used in the covariance
matrix for each case.

Figure 7 shows the cycle life residual data distribution across
all battery samples. The goal here is to use the GPR model to
estimate the cycle life residual for each of the samples. To this
end, a GPR model with alternative kernel functions was
examined, as described in section 3.4. Although the squared
exponential (SE) kernel function is powerful for machine
learning applications, one drawback could be the smoothness

Figure 7. Distribution of cycle life residual data for all the battery samples.
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of the predicted model which can exclude specific behaviors in
the studied data. Here, the Matern class of covariance with or
without ARD (Automatic Relevance Determination) can be of
use. This class of kernel functions use Bessel functions and
additional positive hyperparameters. The scaling parameter is
chosen so that for an infinitely large scale factor, the kernel will
converge to the ordinary SE covariance function. Thus, there is
a trade-off between the smoothness and required hardness
when choosing the right value for the scaling parameter. Low
values (e.g. 12) would be too rough, whereas high values (e.g. 72)
would be too smooth. The results provided in Table 2 clearly
indicate this fact.

Table 2 lists the prediction accuracy of hybrid model A using
the RBF, Matern 3/2, Matern 5/2, rational quadratic, and
exponential kernels. Despite the fact that the exponential kernel
had the highest RMSE for the training set among all the kernels,
it was chosen to represent model A since it had the lowest
RMSE and %err for the test set. The hybrid model A has the
advantage of keeping the %err for both the training and test
sets below 10%, despite the kernel function used in the GPR
model.

Similarly, Table 3 lists the performance of hybrid model B
with five different ARD kernels. Using all ARD kernels in the GPR
model, hybrid model B, like hybrid model A, is capable of
keeping the %err below 10%. Among these, the model using
the exponential kernel has the best performance, with RMSE of
16.6 and 152, and %err of 1.4 and 8.2 for the training and test
set, respectively.

The final form of the hybrid models A and B is accepted as
those with the exponential kernel in the GPR model. The
predicted versus real cycle lifes for the LSVR, hybrid model A,
and hybrid model B are depicted in Figure 8, with the blue
points representing training samples and the red points
representing test points. The more linear the distribution is, the
higher the prediction performance. The hybrid models are
clearly more linearly distributed, implying that the predicted
cycle lives are closer to the real values.

Performance prediction of the LSVR model, hybrid model A,
and hybrid model B was thereafter evaluated. The models were
tested using five different kernels, and the best results were
chosen and compared with Severson et al.[32] Two metrics, the
RMSE and %err, were used to evaluate the prediction perform-
ance of the models.

Table 4 benchmarks the current work with the linear model
developed by Severson et al.[32] who developed three separate
models: the “Variance”, the “Discharge”, and the “Full” model,
based on the feature types selected from different subgroups,
and predicted and classified cells by cycle life. They reported
their results in two ways (including and excluding an outlier
sample that reached the end of life before cycle 100) for two
sets of test: test 1 and test 2. They obtained high error values
for the entire training, test 1, and test 2 sets using the
“Variance” model, with RMSE values greater than 100 and %err

Table 2. Performance of model A using five different isotropic kernels.

Hybrid model A RMSE Mean Percent Error (%)
Training Test Training Test

RBF 12.8 180.8 1.1 9.3
Matern 32 13.2 177.2 1.1 8.6
Matern 52 13.0 178.5 1.1 8.9
RatQuad 13.5 179.2 1.1 8.6
Exponential 13.8 177 1.1 8.3

Table 3. Performance of model B using five different ARD-kernels.

Hybrid model B RMSE Mean Percent Error (%)
Training Test Training Test

RBF_ARD 21.4 173.2 2.0 9.2
Matern 32_ARD 19.2 176.5 1.8 9.7
Matern 52_ARD 20.2 176.9 1.9 9.7
RatQuad_ARD 20.2 175.8 1.9 9.6
Exponential_ARD 16.6 152 1.4 8.2

Figure 8. Predicted cycle life versus the real cycle life for the LSVR model,
the hybrid model A, and the hybrid model B.
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values greater than 10. They had slightly better results using
the “Discharge” model with %err of 8.6 for test 2 and RMSE
values less tha 100 for training and test 1. Using their “Full”
model, they got 118 for RMSE and 14.1 for %err for test 1
including the outlier. They achieved high prediction accuracy
after excluding that sample, with an RMSE of 100 and a %err of
7.5 for test1. However for test 2, even excluding the outlier, the
“Full” model failed to keep %err below 10.

In this study, results were reported, as shown in Table 4,
both with and without the added input features. Without the
added input features, the LSVR model shows comparable % err
values both for training (12.2%) and test (12.6%) set. However,
when comparing the LSVR model to the hybrid models A and B,
the latter perform better, especially on training data. With the
new input features added to this study, hybrid model A
outperforms all other models in terms of the RMSE (13.8) and %
err (1.1%) for the training set, while hybrid model B, with the
RMSE and %err of 152 and 8.2, showed the best performance
for the test data. Both models offer two key advantages over
the other models: the first is that they keep the %err below
10% for both the training and test sets, and the second is that
the metrics of the training and test sets are not drastically
different.

All of the computations were done on a personal computer
(Intel(R) Core(TM) i9-10885H CPU @ 2.40 GHz). It’s worth
mentioning that loading the data takes the longest time. The
LSVR model takes 0.29 seconds, while the hybrid models A and
B with exponential kernels take 8 and 11 seconds to run,
respectively.

5. Conclusion and Future Work

Battery lifetime prediction at an early stage of cycling is critical
for safe operation, considering the rapid technology develop-
ment, and need for accurate state of health (SOH) monitoring in
EV applications. Most data-driven models described in literature
need data relating to at least 25% of the aging process in order
to properly predict battery lifetime. In this paper, a hybrid data-
driven model combining the LSVR and GPR is proposed to

effectively predict battery cycle life using data from only the
first 100 cycles.

Although the presented approach has shown the inherent
potential of using data-driven approaches for describing and
predicting the complex physical processes such as estimation of
the Li-ion battery cycle life, the data greediness of these
methods still calls for need of further research in the field. A
smart combination of a physical reduced order model (ROM)
with less parameters to be identified together with real as well
as synthetic data would be one option track for future work.
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