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Improved Bend Loss Formula Verified for Optical
Fiber by Simulation and Experiment

Ross T. Schermer, Member, IEEE, and James H. Cole

Abstract—This paper presents an improved curvature loss for-
mula for optical waveguides, which is shown to accurately pre-
dict the bend loss of both single-mode and multimode fibers. The
formula expands upon a previous formula derived by Marcuse,
greatly improving its accuracy for the case of multimode fiber. Also
presented are the results of bent fiber simulations using the beam
propagation method (BPM), and experimental measurements of
bend loss. Agreement among simulation, formula and measure-
ment support the validity of both theoretical methods. BPM simu-
lations showed that the lowest order modes of the bent fiber were
reduced to their linearly polarized constituents prior to the onset
of significant bend loss. This implies that certain LP mode orien-
tations should propagate with much lower loss than previously ex-
pected, and should impact the mode stripping ability of bent large
mode area fibers, as employed in fiber lasers and amplifiers.

Index Terms—Dielectric waveguides, laser amplifiers, optical
fiber amplifiers, optical fiber lasers, optical waveguide theory,
waveguide bends.

I. INTRODUCTION

V
ARIOUS theoretical methods exist to predict curvature

loss in optical waveguides. The usual approach is to use

a simplified formula introduced by Marcuse [1], applicable to

weakly guided waveguides, including most optical fibers, for

sufficiently large radii of curvature. This formula agrees well

with experiment for single-mode fiber, after adjustments are

made for bend-induced stress [2]. However, for multimode fiber

it can be quite inaccurate [3]. Other analytical bend loss for-

mulae are similarly limited, in that none are known to reliably

predict mode-dependent bend loss in multimode fibers. This has

become a significant problem with the development of the coiled

multimode fiber amplifier [4], which uses bend loss to strip out

the higher order fiber modes, and thereby achieve single-mode,

large mode area operation. Optimizing these devices, and under-

standing their ultimate limitations, requires that mode-depen-

dent bend loss be predicted accurately.

An alternative to analytical formulae for predicting bend loss

is to use numerical simulation. Various methods have been de-

veloped to simulate field propagation in dielectric waveguides

[5]. The beam propagation method (BPM) [5], in combination

with conformal mapping [6], is well-suited to curved waveg-

uides because it allows one to rapidly determine the modes of
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a structure, and then propagate them over large distances, while

using relatively little computer memory. Both tasks may be done

with the same software package. However, although bend loss

has been studied with BPM in the past [7], [8], the accuracy of

this method has yet to be firmly established.

This paper studies bend loss in step-index, single-mode and

multimode fibers using BPM and conformal mapping, and com-

pares these results to both analytical models and experiment.

One aim is to establish the accuracy of the BPM simulations at

predicting bend loss, for both the fundamental and higher order

modes of a simple waveguide. Another is to clarify the sources

of error in Marcuse’s simplified bend loss formula, and seek

to improve its accuracy for multimode fiber. The final goal is to

demonstrate an accurate, quasi-analytical formula for bend loss,

which is reliable provided that the mode field distribution of the

bent waveguide is known.

Section II begins by describing the simulation method used in

this paper, as well as the modes calculated for the bent fiber and

typical propagation results. Section III compares the simulated

bend loss to analytical predictions and experimental results.

The simulations are shown to accurately predict experimentally

measured fundamental mode bend loss, for both single-mode

and multimode fibers. By comparison, the simplified loss for-

mula is only in agreement for the single-mode case. Section IV

analyzes this discrepancy in detail, and finds that by removing

an unnecessary term in the loss formula, its accuracy is greatly

improved. The BPM-simulated bend loss is then shown to

be in excellent agreement with a quasi-analytical formula,

modified from Marcuse’s original derivation. This latter result

holds for both the fundamental and higher order modes. This

knowledge is used in Section V to gauge the dominant sources

of error in the simplified bend loss formula, and is followed by

a discussion and summary of results.

II. BENT FIBER SIMULATION

Bent fiber simulations were performed in this paper using a fi-

nite difference approach, the beam propagation method (BPM),

in conjunction with the conformal mapping technique. The first

step in the process was to transform the circularly curved fiber

to an equivalent, straight fiber by the process of conformal map-

ping [6], [9]. This process is shown schematically in Fig. 1. Co-

ordinate transformation allowed the bent fiber to be represented

by an equivalent, straight fiber, with modified refractive index

distribution,

(1)

Here is the refractive index of the bent waveguide

cross-section, and the exponential term accounts for the increase
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(a) (b)

Fig. 1. (a) Schematic diagram of a circularly bent fiber and (b) the equivalent,
straight fiber after conformal mapping. Light is guided along the � and z direc-
tions, respectively.

(a) (b)

Fig. 2. (a) Refractive index distribution of an unstressed, bent fiber and (b)
that of its equivalent, straight fiber after conformal mapping. The slice shown
is through the center of the fiber. The refractive index of the conformal mapped
fiber increases away from the center of curvature. Variation in the modal effec-
tive index, n , is also shown in each case.

in optical path length along the fiber with distance from the center

of curvature. Relatively slow bends were assumed in

this paper to allow the first-order approximation used in (1). The

resulting index distribution was tilted with respect to the original,

increasing away from the center of the bend, as shown in Fig. 2.

An additional change occurs to the physical refractive index

of the fiber upon bending, due to stress-optic effects. Compres-

sion along the inner half of the fiber, towards the center of the

bend, and tension along the outer half, cause the material refrac-

tive index to vary according to the relation [10], [11]

(2)

Here is the refractive index of the straight fiber, is

Poisson’s ratio, and and are components of the photo-

elastic (or elasto-optical) tensor. Again, the refractive index tilts

with bending, but in this case it typically decreases toward the

outside of the bend.

Combining (1) and (2), defining the equivalent bend radius as

(3)

and simplifying to first order then leads to an expression similar

to (1), but in terms of the unperturbed index

(4)

This is the refractive index distribution pertaining to the equiva-

lent, straight waveguide that was used for the BPM simulations

Fig. 3. Conformal mapped index distribution used for BPM mode calculations
(solid line). The sloping index distribution was truncated at the point x = x

in order to prevent significant loss to the cladding during the mode calculations.
By setting x just within the caustic boundary, error due to this perturbation
was minimized.

in this paper. The bracketed term represents the net effects of

bending, and the effective bend radius accounts for the domi-

nant stress effects. Note that for silica fiber, [2],

so stress actually counteracts the effects of bending compared

to curvature alone [12].

Given the equivalent, straight fiber represented by (4), it was

not difficult to determine the modes of the structure, and then

simulate their propagation, using standard BPM techniques.

Since the beam propagation method has been well-documented

elsewhere [5], it should suffice to state that the approach solves

Maxwell’s equations numerically, by representing the fields and

refractive index distribution on a uniform transverse

grid, and stepping in equal steps along the waveguide

to simulate wave propagation. Of the various BPM versions

available, a semi-vectorial variation was used in this paper, as

described in [13]. At the simulation boundaries, transparent

boundary conditions were used to minimize unwanted reflec-

tions [14].

The semi-vector BPM was chosen over a full-vector alterna-

tive because it proved to be faster, more stable, and less sensitive

to step size. An apparent disadvantage was that it did not account

for polarization coupling within the fiber. This limited analysis

to the linearly polarized (LP) modes, rather than the more pre-

cise hybrid (HE and EH) fiber modes [15]. However, as will be

seen, this limitation proved to be inconsequential when the fiber

was bent to the point of significant loss.

The lowest order LP modes of the bent fiber were calculated

using the imaginary-distance BPM technique [5], with the refrac-

tive index distribution given by (4). This was done for a variety

of core radii , effective bend radii , unperturbed core

and cladding indices ( and ), and wavelengths .

In order to prevent loss to the cladding during the mode calcula-

tions, which was inevitable for tight bends, and which hindered

convergence, the cladding refractive index was truncated for

larger values of as shown in Fig. 3. Although this perturbation

represented a source of error in the mode calculations, the error

was minimized by moving the transition point, , as far

out as possible without introducing significant loss. This meant

setting just within the caustic boundary, given by [16]

(5)
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where is the modal propagation con-

stant, and . At the caustic boundary the mode speed

matches the speed of light in the cladding, and beyond it the

fields become radiative. Approximate mode solutions were first

calculated by setting in the simulations, and the

resulting propagation constant was used to estimate .

Then the simulations were repeated with just within the

caustic boundary, in order to obtain the modes of the bent fiber.

Step sizes used in the simulations were typically

m and m. For core radii greater than 25 m,

however, the transverse step was increased to

m to allow a larger simulation area. In each case, increasing

or decreasing the step sizes had negligible impact on the prop-

agation constants and simulated loss, so they appeared to be

adequate.

Fig. 4 displays typical results of mode calculations for the

lowest order fiber modes. Conditions for this example were

m, m, , where

(6)

and , which corresponded to a particular fiber of in-

terest. For the case of the bent fiber, the effective bend radius of

1.24 cm was chosen to display the modes when the fundamental

mode was relatively stable, while the others exhibited significant

loss. As expected from previous work [3], bending tended to

distort the fiber modes, and caused them to shift away from the

center of curvature. Furthermore, the two orientations of each

LP mode, denoted here as and for whether they

were even or odd along the direction, became noticeably dif-

ferent upon bending. Whereas in the straight fiber they were

identical other than a rotation, bending destroyed this ro-

tational symmetry.

Such profound changes in the fiber mode distributions also

manifested themselves in significant changes in the modal prop-

agation constants compared to the straight fiber. A useful mea-

sure of this effect was the normalized propagation constant, de-

fined for the bent fiber as

(7)

So defined, all the guided modes of the bent fiber must satisfy

the relation . Fig. 5 plots versus for

the modes in Fig. 4. As shown, the propagation constants of

the and modes deviated substantially from each

other when the fiber was adequately bent. The same was true of

the and modes, although to a lesser extent. Fig. 5

also notes the effective bend radius where each mode began

to radiate appreciably (0.1 dB/m). This shows that by the time

the even-odd mode pairs reached the point of significant loss,

they had significantly different propagation constants, and were

therefore no longer velocity-matched.

An important implication of this is that without precise ve-

locity matching, the even–odd mode pairs of the fiber should not

be expected to maintain significant polarization coupling with

one another. The and modes of the straight

(a) (b)

Fig. 4. Simulated mode field distributions of the lowest order fiber modes, for
(a) straight fiber and (b) bent fiber. Electric field magnitude is displayed on the
scale to the right, and the core-cladding interface is denoted by the circular out-
line. For bent fiber modes, the center of curvature is located to the left of each
figure. The subscripts “e” or “oo” added to the mode labels denote whether the
mode is even or odd with respect to the x axis, respectively. In the straight fiber
the LP and LP modes of opposite polarization are coupled. In the bent
fiber they are no longer degenerate, which can prevent significant polarization
coupling.

fiber, which are comprised of different combinations of polar-

ization-coupled and distributions, should there-

fore be expected to transition into their LP constituents given ad-

equate bending. The same also holds for higher order modes (al-

though at discrete values of , velocity matching may be pos-

sible, as may be inferred from Fig. 9). Simulations also showed

that as fiber number was increased, where is defined

(8)

the LP mode degeneracy was more readily broken.
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Fig. 5. Simulated normalized propagation constants b of the lowest order
fiber modes of a bent fiber. For large bend radii, the propagation constants of
the LP and LP modes are similar. However, with adequate bending
they can differ substantially. The deviation is less pronounced for higher order
modes. The arrows mark the bend radii where simulated bend loss was 0.1 dB/m.
The propagation constants of the even and odd modes differed substantially be-
fore the onset of significant bend loss.

Fig. 6. Mode power versus distance from various BPM simulations. For each
simulation, the mode field distribution was launched and propagated with the
BPM. Power in the launched mode was monitored using the overlap integral
between the propagating fields and the mode field distribution. Bend loss was
inferred from the slope of each curve.

Having shown that the relevant modes of the fiber were the

LP modes as far as bend loss was concerned, the next step was

to simulate their propagation loss. This was accomplished by

launching a given mode field distribution into the fiber (the ini-

tial condition), and then monitoring its power as the fields were

propagated with the BPM. Power was monitored by calculating

the overlap integral of the fields in the simulation region with

those of the mode field distribution, at uniform steps along the

fiber. Results of a typical loss measurement are shown in Fig. 6.

Pure exponential power decay was typical of higher order modes

as well as the fundamental mode. This was possible because the

modes were well-orthogonalized by the mode solver, with typ-

ical inter-mode overlaps less than 30 dB. As a result, mea-

sured decay corresponded to that of an individual mode rather

than their combination.

The propagation simulations were performed using the same

transverse and longitudinal step sizes as the mode calculations.

Simulation regions were 120 60 m for core radii 25 m

or less, and 240 120 m for larger cores. This allowed the

modes to be propagated about 1 cm along the fiber before

reflections from the boundaries began to impact the measure-

ments. Given the high accuracy of the overlap calculation,

bend loss could be simulated with this technique down to about

0.01 dB/m.

Simulations performed for different polarizations showed

that there was no clear polarization dependence to the loss, in

agreement with theoretical predictions for weakly guided fiber

[17]. Selected simulations were also repeated with expanded

to second order in . These did not exhibit substantial

variations in losses or propagation constants compared to the

first-order approximation in (1).

III. COMPARISON WITH EXPERIMENT

In order to test the accuracy of both the BPM simulations in

this paper and the simplified bend loss formula presented by

Marcuse, both were compared to experimental bend loss data.

The simplified bend loss formula for optical fiber [1], modified

here to include fiber stress through use of the effective bend

radius, is given by

(9)

Here is the power loss coefficient, and are the field decay

rates in the core and cladding

(10)

(11)

the terms are modified Bessel functions, and is azimuthal

mode number (equal half the number of azimuthal zeros), corre-

sponding to the subscript in . Note that this formula is only

applicable to even LP modes. Bend loss in units of dB/length is

obtained by multiplying 2 by the factor 4.343.

The first fiber tested was Corning SMF-28, a step-index,

single mode fiber. Two sets of experimentally measured bend

loss data [18] are shown in Fig. 7, for the wavelengths 1320 and

1550 nm. Also shown are bend loss curves calculated by BPM

simulation, and by (9). As can be seen, both theoretical methods

agree well with each other, as well as with the measured data.

Fiber parameters used for the theoretical predictions were

m, and and at m

and 1.55 m, respectively. The quantity was esti-

mated from specifications for fiber cutoff wavelength and mode

field diameters to be 0.117, as discussed in Appendix B. The

propagation constants used in (9)–(11) were determined using

standard numerical techniques for straight fiber [19], and were

in good accord with simulated values for straight SMF-28

fiber. Note that it was necessary to account for stress in the

predictions, through use of the effective bend radius, to obtain

such agreement between theory and experiment.
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Fig. 7. Comparison of bend loss data for SMF-28 fiber, from measurement,
BPM simulation, and simplified loss formula, (9). Simulated data points are as
marked. For this single mode fiber (V = 2:28 at 1320 nm, V = 1:94 at 1550
nm), the simulated and formulaic bend loss was quite similar. Both agreed with
experiment at the wavelength 1320 nm, and reasonably well at 1550 nm. Stress
was accounted for in both simulation and formula, which was necessary for the
good agreement.

Measurements were also performed on a multimode fiber from

Liekki, model Passive 25/240DC. This fiber had a 25- m core

diameter, cladding index of 1.46, and of 0.06, yielding

numbers of 7.44 and 5.67 at the test wavelengths of 633 and

830 nm, respectively. Due its multimode nature ,

loss measurements were restricted to the fundamental mode,

which experiences the least amount of loss when the fiber is bent.

This allowed the higher order modes to be stripped out, leaving

predominantly the fundamental mode in the core at the output.

To test the bend loss, the fiber was wound on rods of various

sizes, and its transmission measured with a laser and photode-

tector. Since light guided by the cladding was a source of error

in the measurements, the low-index fiber jacket was removed

before winding the fiber, and replaced by a coating of black ink.

This adequately extinguished the light in the cladding before

it reached the spool, and removed the light lost to the cladding

while traversing the bend. The photo-detector was mounted

directly on the rod so that transmission measurements could be

taken while winding the fiber. This minimized variations in the

transition loss between the bent and straight fiber regions. Error

in the measurement due to higher order modes and transition

loss was also minimized by neglecting the initial portion of the

decay, and fitting only the pure exponential. Typically, the length

of fiber was adjusted to provide 20 dB of pure fundamental

mode loss for each bend radius measured. Results of the bend

loss measurements are shown in Fig. 8, and exhibit the usual

exponential dependence on bend radius.

Also shown in Fig. 8 are bend loss curves from BPM simu-

lations and the simplified bend loss formula, (9). As indicated

in the figure, and discussed previously in [3], (9) vastly overes-

timates the fundamental mode bend loss in multimode fiber. In

contrast, the results of the BPM simulations were in good agree-

ment with the measured data.

Such agreement between BPM simulations and measure-

ment, for both single-mode and multimode fiber, strongly

suggests the accuracy of the BPM approach. This is interesting

because the simulations were not based on any assumptions

Fig. 8. Comparison of fundamental mode bend loss data for Liekki passive
25/240DC fiber, from measurement, BPM simulation, and simplified loss for-
mula, (9). Simulated data points are as marked. The simulated data was in good
agreement with experiment at both wavelengths. However, for this multimode
fiber (V = 7:44 at 633 nm, V = 5:67 at 830 nm), the simplified formula
drastically overestimated the loss, with greater error for larger fiber V number.
Stress was accounted for in both simulation and formula, which was necessary
for the good agreement between simulation and experiment.

about the mode distributions themselves, other than that they

be localized near the fiber core. We may therefore proceed with

some confidence in the ability of the BPM to predict bend loss,

not only for the fundamental mode, but also those of higher

order. In the next section, this ability is utilized to gauge the

accuracy of different analytical bend loss formulae. As will be

seen, excellent agreement between theory and simulation, for a

variety of fiber modes, provides further support for this claim.

IV. COMPARISON WITH ANALYTICAL FORMULAS

In order to examine the discrepancy between the simplified

bend loss formula and the simulated and experimental results for

multimode fiber, it is useful to consider the derivation of (9), [1],

[19]. A number of simplifying assumptions were made to arrive

at this formula, most notably that the modes must not change

appreciably due to bending. The modal propagation constants,

which vary with position in the bent fiber as shown in Fig. 2(a),

were also assumed to match those of the straight fiber at .

If instead the mode field distributions in the bent fiber are not

assumed, and the fact that the propagation constant varies with

position

(12)

is considered, then a more broadly applicable formula for bend

loss may be derived. In (12) is the angular propagation con-

stant of the mode as it rotates about the center of curvature, and

is defined in analogy to . Following a derivation

based on [1] and [19], it may be shown that a relatively general

formula for bend loss is given by

(13)
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Here is the Fourier transform

(14)

is the angular spatial frequency in the -direction, is

the normalized mode field distribution of the bent fiber

(15)

and is the electric field. The numerator in the integral of (13) is

therefore the spatial Fourier power spectrum of the mode, along

the boundary surface . The denominator in the integral of

(13) is a Hankel function of the second kind, where

(16)

The only major assumptions leading to (13) are those of weak

guidance and slow bending .

In the derivation of (9), the Hankel function of (13) was orig-

inally approximated as [19]

(17)

This approximation was reached by expanding the argument of

the Hankel function about and dropping higher order

terms. The propagation constant and were also evaluated at

in (17). However, the fields and propagation constant

most relevant to the bend loss in (13) are those at rather

than the origin. It would therefore seem more appropriate to

expand the argument of the Hankel function about , which

leads to the modified approximation

(18)

where and are evaluated instead at .

For small values of , this modification to the Hankel func-

tion approximation has relatively little impact on the computed

bend loss. However, for larger core sizes, the difference amounts

of many orders of magnitude. To test the accuracy of the dif-

ferent forms, the calculated modes from the BPM simulations,

and their simulated propagation constants, were used to numer-

ically evaluate (13). The results using the modified expansion of

the Hankel function in (18) are presented in Figs. 9 and 10. As

can be seen, the BPM simulations agreed extremely well with

the loss formula in (13), given the modified Hankel function ex-

pansion. The relative error between simulation and formula av-

eraged less than 1%, for all data points, with an average devia-

tion of 10%. This was extremely good agreement considering a

Fig. 9. Comparison of theoretical bend loss data for the lowest order fiber
modes. BPM simulated loss is marked by symbols as indicated in the legend,
connected by solid lines. Loss calculated directly from the simulated mode field
distributions, using (13) and the modified Hankel function approximation (18),
is indicated by � markers. Loss calculated directly from the mode field dis-
tributions was in excellent agreement with that obtained by propagation simu-
lations with the BPM. If the usual Hankel function approximation in (17) was
instead used, it overestimated the loss by many orders of magnitude, by the
factor exp(2a) � exp(2V ). The loss of each mode was seen to stabilize
with increasing core diameter, contrary to predictions made by the simplified
loss formula. Loss of the different modes also converged with increasing core
diameter. Simulation parameters were � = 1064 nm, NA = 0:1, and
R = 1:24 cm.

Fig. 10. Comparison of theoretical bend loss data for the fundamental fiber
mode. BPM simulated loss is marked by symbols as indicated in the legend,
connected by solid lines. Loss calculated directly from the simulated mode field
distributions, using (13) and the modified Hankel function approximation (18),
is indicated by � markers. Loss calculated directly from the mode field dis-
tributions was in excellent agreement with that obtained by propagation simu-
lations with the BPM. If the usual Hankel function approximation in (17) was
instead used, it overestimated the loss by the factor exp(2a) � exp(2V ),
many orders of magnitude. Simulation parameters were � = 1064 nm and
NA = 0:1.

variation of over five orders of magnitude in the data. By com-

parison, when the Hankel function expansion of (17) was in-

stead used, the predicted loss was overestimated by the factor

. For the largest simulated core diameter,

100 m, this amounted to an error of 25 orders of magnitude.

In light of this, the modified Hankel function approximation in

(18) was the clear favorite.
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Fig. 11. Comparison of different theoretical predictions and experimental data
for the fundamental mode bend loss of Liekki passive 25/240DC fiber at 633 nm.
BPM simulated loss () is in good agreement with measured data (�). The sim-
plified loss formula, (9), overestimated the loss by orders of magnitude. Using
the modified Hankel function approximation, (20) underestimated the loss by
orders of magnitude. However, when the propagation constant of the bent fiber,
rather than the straight fiber, was used in the modified formula ( ), the agree-
ment was much better, within a factor of about 2.5. The remaining factor of 2.5
was due to the modified, simplified formula not accounting for mode field dis-
tortion due to the bend.

When the modified Hankel function approximation (18) is

inserted into (13), the loss formula becomes

(19)

Agreement between simulation and this formula was excellent.

The only discrepancy occurred for weakly confined, tightly bent

fiber ( m, ), as shown in Fig. 10. This was

attributed to error in the simulated mode distribution, due to the

truncated index profile.

V. ERROR IN THE SIMPLIFIED FORMULA

If we were to use the modified Hankel function expansion in

(18) to re-derive the simplified bend loss formula, the following

modified formula would result

(20)

The bend loss predicted by this modified formula for the Liekki

multimode fiber is shown in Fig. 11. As can be seen, although

the original formula overestimated the bend loss, using the mod-

ified Hankel function approximation caused the simplified for-

mula to underestimate it by a similar amount.

The fact that the modified Hankel function approximation did

not provide better results when used in the simplified formula,

while it did in the previous section, provides insight into the lim-

itations of the simplified formula itself. This formula accounts

for neither the mode field deformation, nor the weaker mode

confinement (as expressed by the reduced propagation constant

at ), that occurs within the bent fiber [1]. We can gauge

the relative importance of these two simplifications, however,

by inserting the correct propagation constants from BPM sim-

ulations into (20). Fig. 11 illustrates the results. By using the

correct propagation constant in (20), the relative error in the

loss predictions was reduced from a few orders of magnitude

to a factor of about 2.5. The remaining error was attributable

to not accounting for the mode field deformation. Clearly, not

adjusting the propagation constant was the dominant source of

error in this case.

This result helps explain why the simplified bend loss for-

mula in (9) works relatively well for single-mode fiber, but not

multimode. Although (20) includes the preferred Hankel func-

tion approximation, it tends to underestimate the loss by not ac-

counting for the change in propagation constant. Equation (9),

on the other hand, is greater than (20) by the factor .

For single-mode fiber this factor is sufficient to make up the dif-

ference, providing a reasonably good estimate of the bend loss.

For multimode fiber, however, this factor grows much too large

to provide a good assessment.

VI. DISCUSSION

Before concluding it is worth commenting on the physical

interpretation of these results. Equation (13) states simply that

fiber bend loss may be determined by expanding the fields on

the boundary cylinder, defined by , as a superposition

of outgoing cylindrical waves in the cladding. The amount of

loss depends upon the strength of the mode fields on this sur-

face, and which cylindrical waves (Hankel functions) the fields

excite. The latter are determined by the propagation constant at

the boundary surface, as well as the field variation in the y-direc-

tion. Note also that there is no requirement that the waveguide

be a simple step-index fiber in this formula. Equation (19) is

therefore generally applicable to waveguides that have both a

uniform dielectric, and modal caustic boundaries, located in the

region .

It is also worth comparing the results of this paper to conclu-

sions drawn previously about field deformation in bent fibers.

A previous interpretation was that field deformation decreases

the fundamental mode bend loss in multimode fibers [3]. This is

despite the fact that the fields became stronger on the boundary

surface, and was based on a comparison between numerical pre-

dictions and (9). The alternate interpretation offered here would

seem more intuitive: that the modified simplified formula of (20)

underestimates the loss, but the corrections of field deformation

toward the outer edge of the fiber and weaker confinement (re-

duced propagation constant at ) cause it to increase. The

tendency for modal loss to stabilize with increasing core size in

Figs. 9 and 10 is also in stark contrast to previous predictions

based on the simplified formula. This is due to the fiber modes

transitioning to whispering gallery modes at sufficiently large

core diameter.
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The loss of the odd LP modes is also quite notable, given

that bending causes them to decouple from the even LP modes

in the bent fiber. If one uses the simplified loss formula, their

loss is predicted to be negligible. This is not significant if each

of these modes is coupled to one of the lossy, even LP modes,

because the total loss is then averaged over the even and odd

constituents [1]. However, when uncoupled, the odd LP modes

can have significantly lower loss, which can be quite important.

This is apparent in Fig. 9, which shows that the losses of the

and modes become similar at larger core sizes. This

has serious implications for the effectiveness of mode stripping

using bend loss in multimode fiber amplifiers. For example, at a

core diameter of 25 m, the differential bend loss between the

fundamental and modes was simulated to be 0.35 dB/m.

The simplified formula, in contrast, predicts differential loss on

the order of 5 dB/m [4].

Lastly, it is important to note that by assuming an infinite

cladding, (19) does not account for possible back reflections

from the fiber jacket, or from additional cladding layers. Thus,

although this loss formula predicts the power flow away from

the fiber core, it cannot predict the fraction of the power that

may eventually return. However, (19) may be readily extended

to fibers with high-index jackets using the ap-

proach detailed in [20]. This results in an oscillatory loss spec-

trum, with maxima and minima given by

(20)

where is determined from (19), and

(21)

Here is the difference between the core and cladding radii

, and is similar to (16) but with replaced

by the peak spatial frequency from the modal Fourier expansion

(14), which is zero for even LP modes, but nonzero for odd. The

extremities in the bend loss correspond to the conditions

(22)

where

(23)

Furthermore, these oscillations disappear for large bend radii,

, such that the caustic boundary lies outside of the fiber

cladding.

For low-index fiber jackets

on the other hand, leakage from cladding to jacket is relatively

weak, so light radiated from the core can accumulate substan-

tially in the cladding. In such cases, (19) merely describes the

rate of outward power flow from the fiber core. This must be

balanced against the inward flow due to reflections from the

cladding-jacket interface, which is rather complicated, and be-

yond the scope of this paper. Equation (19) is therefore quite

applicable, but should be used with caution when applied to

low-index jacketed or doubly clad fibers.

VII. CONCLUSION

Although the BPM simulations presented in this paper, and

the analytical formula of (19), represent vastly different theo-

retical approaches to predicting bend loss, they agreed remark-

ably well for both single-mode and multimode fibers, and fun-

damental and higher order modes. This strongly suggests the

soundness of both approaches. Their agreement with experi-

ment also indicates a good degree of accuracy.

One consequence is that this demonstrates the ability of the

beam propagation method with conformal mapping to accu-

rately predict both the modes of a bent fiber, and their prop-

agation characteristics. This suggests that the BPM may also

be able to handle more complicated bent waveguide structures,

which are currently not well understood.

A second consequence is that the loss formula introduced in

(19) can accurately predict waveguide bend loss, without the

need for BPM simulation. This offers a simple approach, which

only requires prior knowledge of the mode field distribution and

the propagation constant. Various mode-solving techniques may

therefore be used in conjunction with (19) to predict bend loss.

This approach is also broadly applicable to more complicated

fiber geometries.

Lastly, the results of this paper provide revised guidelines for

use of simplified bend loss formulae. For single-mode fiber, the

unmodified, simplified formula works well provided that stress

is accounted for through the effective bend radius. For multi-

mode fiber, the modified formula in (20) provides reasonable

results, but requires some knowledge of the propagation con-

stant variation with bending.

APPENDIX A

SIMULATION ACCURACY

To estimate the impact of simulation grid size on the mode

calculations, a series of simulations were performed for the

fundamental mode of the straight fiber discussed in Fig. 4,

using different transverse and longitudinal

steps and a launched Gaussian distribution. The resulting

normalized propagation constants are compared to the

exact value computed from the char-

acteristic equation [19] in Fig. 12. As shown, the simulations

were extremely accurate at the step sizes used in this paper

m and m), as well as for

somewhat larger grids.

To estimate the impact of truncating the refractive index

profile on the mode calculations, a series of simulations were

performed for the fundamental mode of the fiber in Fig. 4,

using various refractive index transition points, , and

bend radii. The resulting normalized propagation constants

are compared to those computed with just inside

the caustic boundary in Fig. 13. Noting that

should approach the exact value as the caustic boundary moves

farther outward, it is evident that the curve for must

closely approximate the relative error in the calculation caused

by truncating the index profile. Furthermore, since the other
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Fig. 12. Relative error in the simulated normalized propagation constant, for
various simulation step sizes and the fundamental mode of the straight fiber in
Fig. 4. Error was relative to the exact value calculated from the characteristic
equation. Accuracy was excellent for the simulation steps used for this fiber in
this paper, �x = �y = 0:1 �m, and �z = 0:5 �m.

Fig. 13. Variation in simulated normalized propagation constants due to trun-
cation of the refractive index profile in bent fibers. Open symbols denote the rel-
ative difference between b and b . Extrapolating these data sets back to
x � x provides an estimate of the relative error in b , which
is indicated by the filled symbols.

curves exhibit a similar exponential dependence, each may be

taken as a decent estimate of the relative error. Extrapolating

each curve back to the caustic then provides an estimate of

the relative error in , indicated by the filled symbols in

Fig. 13.

Repeating this procedure for the various fiber modes, and also

for the fundamental mode of a similar single mode fiber with

V-number 2.36 ( m), leads to the plot in Fig. 14. Here

represented the “exact” value, corresponding to a nontruncated

index profile. The plot shows a clear one-to-one relationship

between the relative error in and the bend loss, calcu-

lated using (19). Such a result is quite intuitive, as both the loss

and the error in the propagation constant depend on the fraction

of the mode power at the caustic boundary. The apparent gen-

erality of this relationship also suggests an alternative method

Fig. 14. Relative error in the simulated normalized propagation constant,
b , caused by truncation of the refractive index profile of the bent fiber.
Data shown correspond to the lowest order modes of the fiber in Fig. 4, as well
as the fundamental mode of an otherwise identical fiber with core diameter 4.0
�m. Loss was calculated from (19), and the trend line represents a power law
fit. The common trend for the various modes and fiber parameters indicates
a one-to-one relationship between bend loss and the error in the propagation
constant caused by truncating the refractive index profile.

Fig. 15. Relative error in the calculated bend loss caused by truncating the
refractive index profile of the bent fiber. The calculated loss refers to the formula
in (19). A similar extrapolation procedure to Fig. 13 was used to determine each
data point. Data shown correspond to the lowest order modes of the fiber in
Fig. 4, as well as the fundamental mode of an otherwise identical fiber with
core diameter 4.0 �m.

for predicting bend loss: using the error in the mode calcula-

tions. For the present study, however, it is sufficient to note that

Fig. 14 shows that the error in the mode calculations was rel-

atively small, even for bend loss of the order of hundreds of

decibels per meter.

To estimate the impact of truncating the refractive index pro-

file on the calculated bend loss, a similar extrapolation proce-

dure was followed, by evaluating (19) for each of the modes sim-

ulated versus . The resulting error in the loss coefficient is

displayed in Fig. 15, where represents the “exact” value for a

nontruncated index profile. As shown, truncating the refractive

index profile led to considerable error in the loss of the highest

order modes, at large values of loss. However, even in the worst
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Fig. 16. Variation in the simulated bend loss for different longitudinal step sizes
�z and bend radii, for the fundamental mode of the fiber in Fig. 4. For scaling
purposes, the simulated loss is compared to a reference value� for each bend
radius. Repeatability in the loss simulations was within 10%, and in many cases
much better.

case, the relative error was less than 10%. For the purposes of

this paper, this was quite tolerable.

To estimate the impact of grid size in the loss simulations, a

series of runs were performed with different longitudinal steps

and bend radii, for the fundamental mode and the fiber discussed

in Fig. 4. The results are illustrated in Fig. 16, which plots the

relative difference between the simulated loss and a reference

value included for scaling purposes. The reference value

was based on results with close to 1.0 m, which were rel-

atively consistent. As shown, the simulated loss varied by less

than 10% for reasonable step sizes, which was tolerable for the

purposes of this paper. To consider other modes, and other fiber

parameters, it is sufficient to note that the agreement between

simulated and calculated bend loss was shown to be quite good

in Section IV.

APPENDIX B

NECESSITY OF THE ELASTOOPTIC CORRECTION

A great body of work demonstrates that stress plays a key

role in the behavior of bent optical fibers through the elasto-

optic effect. Although this and many other papers indicate that

elasto-optic corrections must be included in the bend loss for-

mulae, a recent analysis has concluded otherwise [21]. This

discrepancy may be explained by noting that [21] uses a sig-

nificantly different value of for SMF28, 0.128, as op-

posed to 0.117 in this paper. The cubed ratio of these values is

, which is very close to the elasto-optic

correction for the bend radius, 1.28. Noting that the primary de-

pendence on in (19) is through the term , which

is proportional to , it is clear that use of the larger

numerical aperture should allow the elasto-optic correction to

be dropped. However, although both cases result in similar pre-

dictions of bend loss, only one can be correct.

A literature search for the numerical aperture of SMF28 does

not readily solve the problem, as values range broadly between

0.12 and 0.14. It should be cautioned, however, that quoted

values are typically based on measurements of beam output,

TABLE I
SPECIFICATIONS FOR SMF28 FIBER

which can be entirely inconsistent with the index-based numer-

ical aperture given by (6). For example, manufacturer specifica-

tions for SMF28 fiber [22] list the numerical aperture as 0.14,

but also state the index step as 0.36%, which leads to

of 0.123. To complicate things further, the index step is usually

measured in the pre-form, prior to drawing the fiber, rather than

in the fiber itself. This may be the reason the cutoff wavelength

(B1)

computed using of 0.123 and 1320 nm is significantly

larger than the manufacturer’s specification of nm. Such

a value would imply multimode behavior into the 1310-nm op-

erations band, which is not the case.

A more sensitive indicator of in drawn fiber is the

cutoff wavelength, given by (B1). The 1260-nm upper bound

quoted for the cutoff wavelength implies that should

remain less than 0.118. This is the primary reason behind

choosing 0.117 in this paper. Table I also shows that this value

provided good agreement with quoted mode field diameters

(MFD) at both 1310 and 1550 nm, as calculated using [23]

(B2)

In addition, Table I compares listed specifications to those

calculated using a numerical aperture of 0.128. As shown,

agreement was relatively poor. This, along with the existing

body of work, leads to the conclusions that the correction for

elasto-optic effects in bend loss calculations is indeed neces-

sary, contrary to [21].
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