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ABSTRACT

Global climate model (GCM) output typically needs to be bias corrected before it can be used for climate

change impact studies. Three existing bias correction methods, and a new one developed here, are applied to

daily maximum temperature and precipitation from 21 GCMs to investigate how different methods alter the

climate change signal of the GCM. The quantile mapping (QM) and cumulative distribution function

transform (CDF-t) bias correction methods can significantly alter the GCM’s mean climate change signal,

with differences of up to 28C and 30% points for monthly mean temperature and precipitation, respectively.

Equidistant quantile matching (EDCDFm) bias correction preserves GCM changes in mean daily maximum

temperature but not precipitation. An extension to EDCDFm termed PresRat is introduced, which generally

preserves the GCM changes in mean precipitation. Another problem is that GCMs can have difficulty sim-

ulating variance as a function of frequency. To address this, a frequency-dependent bias correction method is

introduced that is twice as effective as standard bias correction in reducing errors in the models’ simulation of

variance as a function of frequency, and it does so without making any locations worse, unlike standard bias

correction. Last, a preconditioning technique is introduced that improves the simulation of the annual cycle

while still allowing the bias correction to take account of an entire season’s values at once.

1. Introduction

Climate impact assessments can be sensitive to biases

in global climatemodel (GCM) output (IPCC 2013). For

example, precipitation biases degrade hydrological sim-

ulations because of the nonlinear nature of runoff:

a moderate amount of precipitation generates little runoff

if the soil can absorb the moisture, while doubling the

precipitation generates more than twice the runoff if the

moisture storage capacity of the soil is exceeded. This

nonlinear relationship becomes more extreme in arid re-

gions (Wigley and Jones 1985). Similarly, temperature

biases can influence the partition of precipitation into

snow or rain, affecting the snowpack and therefore the

timing and magnitude of runoff over the entire year.

For this reason, hydrological simulations generally

use bias-corrected GCM output. Bias correction is often

* Supplemental information related to this paper is available at the

Journals Onlinewebsite: http://dx.doi.org/10.1175/JHM-D-14-0236.s1.

Corresponding author address: David W. Pierce, Division of

Climate, Atmospheric Sciences, and Physical Oceanography,

Scripps Institution of Oceanography, University of California, San

Diego, Mail Stop 0224, La Jolla, CA 92093-0224.

E-mail: dpierce@ucsd.edu

DECEMBER 2015 P I ERCE ET AL . 2421

DOI: 10.1175/JHM-D-14-0236.1

� 2015 American Meteorological Society

http://dx.doi.org/10.1175/JHM-D-14-0236.s1
mailto:dpierce@ucsd.edu


an integral part of downscaling GCM output (e.g., Wood

et al. 2002; Maurer et al. 2010). Here, however, we con-

sider the bias correction step alone. Bias correction is best

applied on a spatial scale near the original GCM’s spatial

resolution (Maraun 2013), so we examine bias correction

on a grid commensurate with the original GCMs.

Many bias correction methods have been used in cli-

mate impact studies. One widely used method is quan-

tile mapping (QM; e.g., Panofsky and Brier 1968; Wood

et al. 2002; Thrasher et al. 2012), which adjusts a model

value by mapping quantiles of the model’s distribution

onto quantiles of the observations. QMhas been applied

to climate model output over both the United States

(e.g., Maurer et al. 2007, 2014) and globally (Thrasher

et al. 2012).

Previous studies have shown that QM alters the

magnitude and even direction of mean changes pro-

jected from the original GCM (Hagemann et al. 2011;

Pierce et al. 2013; Maurer and Pierce 2014). This can

engender confusion and inconsistent results, for exam-

ple, between bias-corrected GCM output for regional

climate studies and unadulterated GCM output evalu-

ated by the IPCC (2007, 2013). If a climatemodel has too

much variability, QM tends to reduce variability on all

time scales, including the trend (Pierce et al. 2013;

Maurer and Pierce 2014). If the GCM has too little

variability, QM tends to increase the trend. Since bias

correction is a purely statistical method, it fails to dis-

criminate between the physical processes determining

trends associated with anthropogenic forcing and

shorter-term fluctuations associated with natural in-

ternal climate variability. From this perspective there is

little justification for allowing bias correction that pri-

marily addresses problems on synoptic, seasonal, and

annual time scales to change the trend as well.

Although the correct long-term future trend in cli-

mate variables is unknown, as witnessed by the IPCC’s

adoption of a ‘‘one model, one vote’’ policy for evalu-

ating climate projections, in this work we choose to

implement a bias correction scheme that does not alter

the original GCM trend. This reduces the disparity be-

tween global model studies with a given GCM and re-

gional models based on bias-corrected output from that

GCM. Other options for how to interpret the long-term

trend in a GCM that has incorrect short-time-scale

variability await further research.

Other bias correction methods include the cumulative

distribution function transform (CDF-t) method

(Michelangeli et al. 2009), which assumes that the his-

torical mapping between the model and observed cu-

mulative distribution functions applies to the future

period, and equidistant quantile matching (EDCDFm;

Li et al. 2010), which preserves the GCM-predicted

change at each quantile evaluated additively (i.e., as the

future minus historical value). However, changes in

precipitation are often more usefully evaluated as mul-

tiplicative changes, since a fixed amount of precipitation

change has different implications in wet and arid

regions. We show that EDCDFm alters the GCM-

predicted mean precipitation change (evaluated multi-

plicatively), and CDF-t alters both the model-predicted

temperature and precipitation changes. The first goal of

this work is to show that a straightforward extension to

EDCDFm, which we term PresRat (because it preserves

the ratio), can retain the model-predicted future change

in mean precipitation evaluated as a ratio (cf. Wang and

Chen 2014).

GCM biases in temporal variance can also pose

problems for impact modeling. For example, a model

might have too much variability on synoptic time scales

yet too little on annual time scales, making it challenging

to represent the proper magnitude and spectra of phe-

nomena such as droughts. Although simulations have

improved with the models in phase 5 of the Coupled

Model Intercomparison Project (CMIP5), deficiencies

still remain in representing regional variability on in-

terannual to decadal time scales (Sheffield et al. 2013).

QM, CDF-t, and EDCDFmdo not address this problem.

Such biases could influence the simulation of heat waves

or flooding events, with consequences for agriculture,

ecosystems, droughts, or reservoir simulations. The

second goal of this work is to describe a method that

reduces frequency-dependent climate model biases.

Last, bias correction is typically implemented in a

time window, often of about a month long. Choosing an

appropriate time window involves compromises be-

tween correcting the annual cycle, reducing disconti-

nuities at the edge of the time window, and evaluating

extreme values over an entire season. The third goal of

this work is to show that a simple preconditioning

technique together with iteratively applied bias correc-

tion can improve the final corrected seasonal cycle,

while still allowing a seasonal time window and reducing

discontinuities at the window’s edges.

The rest of this work is structured as follows. In sec-

tion 2, we describe the observed and model data sources

we use to evaluate the bias correction schemes. Section 3

addresses the problem of bias correction altering model-

predicted changes and proposes an extension to the

EDCDFm bias correction scheme that preserves model-

predicted mean future changes in precipitation. Section

4 addresses frequency-dependent model biases, docu-

ments the extent to which these are seen in the current

generation of global climate models, and proposes a

method for reducing these biases. Section 5 shows how

simple preconditioning together with an iterative bias
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correction scheme can improve the representation of the

annual cycle and reduce bias measured in different

windows. A summary and conclusions are given in

section 6.

2. Data sources and time periods

a. Global climate models

Weuse daily maximum temperature and precipitation

fields from 21GCMs that participated in CMIP5 (Taylor

et al. 2012), listed in Table 1. The models used are all

those available from the U.S. Bureau of Reclamation

(USBR) archive of regridded (18 3 18 longitude–

latitude) global climate models in CMIP5 at the time

this work was performed (ftp://gdo-dcp.ucllnl.org/pub/

dcp/archive/cmip5/bcca; Maurer et al. 2014). GCM

output was obtained from both historical (1950–2005)

runs and future (2006–99) runs using representative

concentration pathway 8.5 (RCP8.5).

b. Observations

We used observed daily maximum temperature and

precipitation data fromMaurer et al. (2002), as updated

through 2010 (available from http://www.engr.scu.

edu/;emaurer/gridded_obs/index_gridded_obs.html).

The ultimate source of this gridded product is the

NOAA Cooperative Observer weather stations, with

techniques from the PRISM project (Daly et al. 1994)

used to adjust observed precipitation values to match

long-term PRISM climatology. The data come on a
1/88 3 1/88 latitude–longitude grid, which we aggregated

to the same 18 3 18 grid as the GCM output.

c. Time periods

The World Meteorological Organization (WMO)

recommends that climatological normals be calculated

over 30-yr periods (Trewin 2007). We follow this guid-

ance by bias correcting GCM values to a 30-yr clima-

tological record of observations, and furthermore by

bias correcting contiguous 30-yr segments of climate

simulations individually. A different segment length

could be used, subject to two opposing considerations:

1) the segments should be long enough to provide a rea-

sonable estimate of the climatological normals, given

natural internal climate variability; and 2) the segments

should be short enough that the statistical characteristics

of the variable being downscaled are reasonably station-

ary over the period being downscaled. We used 30 years

as a compromise for these two criteria.

For the future model projections, we bias correct the

periods 2010–39, 2040–69, and 2070–99 separately. In

TABLE 1. The GCMs used in this work and their originating institutions (see http://www.ametsoc.org/PubsAcronymList for full model

expansions).

Model acronym Model source/institution

ACCESS1.0 Commonwealth Scientific and Industrial Research

Organisation (CSIRO) and Bureau of Meteorology, Australia

BCC_CSM1.1 Beijing Climate Center, China

BNU-ESM Beijing Normal University, China

CanESM2 Canadian Centre for Climate Modelling and Analysis, Canada

CCSM4 National Center for Atmospheric Research (NCAR), United States

CESM1[biogeochemistry

(BGC)]

NCAR, United States

CNRM-CM5 Centre National de Recherches Météorologiques, France

CSIRO Mk3.6.0 Queensland Climate Change Centre of Excellence and CSIRO, Australia

GFDL CM3 Geophysical Fluid Dynamics Laboratory (GFDL), Princeton, New Jersey,

United States

GFDL-ESM2G GFDL, Princeton, New Jersey, United States

GFDL-ESM2M GFDL, Princeton, New Jersey, United States

INM-CM4 Institute of Numerical Mathematics, Russian Academy of Sciences, Russia

IPSL-CM5A-LR L’Institut Pierre-Simon Laplace, France

IPSL-CM5A-MR L’Institut Pierre-Simon Laplace, France

MIROC-ESM Japan Agency for Marine-Earth Science and Technology (JAMSTEC)

and National Institute for Environmental Studies (NIES), Japan

MIROC-ESM-CHEM JAMSTEC and NIES, Japan

MIROC5 Atmosphere and Ocean Research Institute and NIES, Japan

MPI-ESM-LR Max Planck Institute for Meteorology, Germany

MPI-ESM-MR Max Planck Institute for Meteorology, Germany

MRI-CGCM3 Meteorological Research Institute, Japan

NorESM1-M Norwegian Climate Centre, Norway
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the results shown below, we focus on 2070–99 as our

‘‘future’’ period. The climatological (historical) period is

the last 30 years of the GCMs’ historical runs (1976–

2005), used for both the models and observations. We

bias correct and evaluate the models over the same

historical period (1976–2005) so that difference between

the bias-corrected results and observations is known to

be due to the bias correction itself, rather than due to

differences in climate between the historical period and

an independent verification period (cf. Teutschbein and

Seibert 2012). This differs from, for example, down-

scaling, where an independent period is typically used to

evaluate the downscaled results.

3. Preserving model-predicted mean changes

We evaluate temperature changes as a difference

(future minus historical) and precipitation changes as a

ratio (future/historical). This is unlike Maurer and

Pierce (2014), which evaluated precipitation changes

as a difference. However, evaluating precipitation

changes as a ratio can be useful since a fixed amount

of precipitation change has different implications in an

arid region than in a wet region.

The present work explores three approaches to bias

correction: preserving the mean model-predicted change,

reducing frequency-dependent biases, and precondition-

ing and reducing biases in different time windows. If all

approaches were implemented simultaneously, it would

be difficult to distinguish the influence of each procedure

on the resultant change. In this section we use standard

monthly bias correction (all January values are bias cor-

rected together, etc.) excluding frequency-dependent

bias correction (FDBC) or preconditioning.

a. Effect of QM, CDF-t, and EDCDFm on model-

predicted changes

1) QUANTILE MAPPING

Quantile mapping (Panofsky and Brier 1968; Wood

et al. 2002) bias corrects a model value by changing it to

the observed value at the quantile that the model value

falls in the model’s historical distribution. The process is

illustrated schematically in Fig. 1a, using cumulative

distribution functions (CDFs) of synthetic gamma dis-

tributions to mimic precipitation.

Averaged across the 21 GCMs, QM exaggerates

monthly mean model-projected warming (2070–99 mi-

nus 1976–2005) in the Rockies in January and di-

minishes it in July (Fig. 2a). Maurer and Pierce (2014)

showed why QM alters the GCM trend when model

variance is biased; briefly, if the model’s variance is in-

correct, QM alters the trend as it corrects the variance.

Figure 2a shows multimodel mean values, but the

modification in any individual model can be much

greater. The RMS spread across the 21 models is shown

in Fig. 2b. The spread is appreciable using the QM

technique, with RMS values of up to 28C, and more

spread is found in the warmer months.

Figure 3 shows a similar analysis for precipitation,

evaluated multiplicatively in terms of percentage

change. QM tends to make the original model-predicted

mean change wetter over the northwestern United

States in January and California in July. The RMS

spread across models is ;25% points in parts of the

Northwest in January and exceeds 60% points in the dry

California–Great Basin region in July.

2) CDF-t

CDF-t bias correction (Michelangeli et al. 2009) finds a

transformation that maps the GCM CDF of a climate

variable in the historical period to the observedCDF, then

applies that samemapping to theGCM’s futureCDF. The

process is illustrated schematically in Fig. 1c. When bias

correcting a historical run, CDF-t reduces to QM, al-

though the treatment of values off the end of the distri-

bution (discussed below) comes into play.

The CDF-t results in Figs. 2 and 3 show that CDF-t

modifies the original monthly mean temperature pro-

jection less than QM, but still on the order of 0.58C.

CDF-t tends to make the precipitation projections drier,

which can be understood in terms of Fig. 1c. To

produce a point on the bias-corrected future distribution

(green dotted line), it is necessary that the model his-

torical value at the quantile being bias corrected falls

within the range of observed values, as indicated by ar-

row ‘‘2’’ in Fig. 1c. As arrow ‘‘2’’ progressively moves to

the right in Fig. 1c, at higher quantiles it becomes im-

possible to map future changes beyond the maximum

observed value. In this event, following Michelangeli

et al. (2009), the correction used is that found at the

maximum valid historical value. However, in climate

projections the precipitation distribution changes shape

such that the most extreme events increase preferen-

tially (e.g., IPCC 2007, 2013). In this situation, CDF-t

uses a correction that falls at a lower quantile and so

misses the preferential increase in the highest quantiles.

3) EDCDFm

EDCDFm (Li et al. 2010) bias corrects a future value x

that falls at quantile u in the future distribution by adding

the historical value at u to the model-predicted change in

value at u. The process is illustrated schematically in

Fig. 1b (note the nonlinear x axis when considering the

length of the arrow ‘‘D’’). When bias correcting a model

historical run, EDCDFm reduces to QM.

2424 JOURNAL OF HYDROMETEOROLOGY VOLUME 16



EDCDFm preserves the GCM-predicted median

change evaluated additively, but not necessarily the

mean change since the quantile at which the mean falls

can change in the future. However, for daily maximum

temperature, GCM-predicted changes are generally a

weak function of quantile in the neighborhood of the

mean value, so EDCDFm preserves the model-

predicted change in mean temperature to within a few

hundredths of a degree Celsius (Fig. 2, right).

As expected, EDCDFm does not preserve GCM-

predicted fractional changes, that is, (future model

value 2 historical model value)/(historical model

value). At every quantile EDCDFm preserves the nu-

merator of this ratio, but in the process of bias correction

substitutes the observed value for the historical model

value in the denominator, changing the ratio. This is il-

lustrated in Fig. 3. EDCDFm alters the original model-

predicted mean precipitation change by more than 30%

points in the dry (rain shadow) parts of the northwestern

United States. This will happen particularly when there

are both large biases and large changes in the upper

quantiles of a skewed precipitation distribution.

b. Bias correction that preserves model-predicted

mean changes

Given the same GCM input, QM, EDCDFm, and

CDF-t produce different future temperature and pre-

cipitation fields, and it is not obvious which one is cor-

rect. QM assumes that the historical model error in

value at a given value is preserved in the future (arrow

FIG. 1. CDFs of synthetic daily precipitation data schematically illustrating how each bias correction method constructs the model’s

bias-corrected future CDF (green dotted and dashed lines). The solid blue, gray, and red lines show the observed (1976–2005), model

historical (1976–2005), and model future (2070–99) CDFs, respectively. The example point being corrected is X 5 30mmday21, which

falls at the 0.56 quantile in the model future distribution (dotted orange line). (a) QM, starting at the point to be corrected, goes vertically

to the gray line (indicated by a ‘‘1’’), horizontally to the blue line (indicated by a ‘‘2’’), and vertically to the original percentile (indicated by

a ‘‘3’’). (b) EDCDFm at the quantile of the point being corrected computes the offset from the model historical value to the model future

value (indicated by a ‘‘D’’), then adds D to the observed value at the percentile being corrected (indicated by a ‘‘1’’). (c) The CDF-t

method, starting at the point to be corrected, goes horizontally to the gray line (indicated by a ‘‘1’’), vertically to the blue line (indicated by

a ‘‘2’’), and horizontally to the original value (indicated by a ‘‘3’’). (d) Final results from all three bias correction methods (green dotted

and dashed lines), alongwith the PresRatmethod (solid purple line) for comparison. Note that the x axis uses a square root transformation

and the y axis uses an inverse error function (probability plot) transformation.
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‘‘2’’ in Fig. 1a), EDCDFm assumes that the historical

model error in value at a given quantile is preserved in

the future (‘‘D’’ in Fig. 1b), and CDF-t assumes that the

historical model error in quantile at a given quantile is

preserved in the future (arrow ‘‘2’’ in Fig. 1c). (The

‘‘missing’’ version of this quartet of bias correction

methods, which would assume that the historical model

error in quantile at a given value is preserved in the

future, could also be constructed.)

Here we explore an alternative assumption: that the

GCM-predicted mean change is preserved in the bias-

corrected future projections. EDCDFm already pre-

serves model-predicted mean change in temperature

(evaluated additively) for all practical purposes, so we

adopt it for temperature. However, an amended form is

required for precipitation since we evaluate its changes

multiplicatively. If the predicted GCM value x falls at

quantile u, then the bias-corrected precipitation value is

the historical value at u multiplied by the model-

predicted change at u evaluated as a ratio (i.e., model

future precipitation/model historical precipitation). This

preserves the model-predicted median (not mean)

change evaluated multiplicatively. In fact, Li et al.

(2010) do this for a small number (;0.3%) of grid points

that otherwise are problematic when bias correcting

precipitation additively, although they did not explore

the implications of preserving a model-predicted mean

future precipitation change. Also, Wang and Chen

−2 −1 0 1 2 −2 −1 0 1 2 −2 −1 0 1 2

−2 −1 0 1 2 −2 −1 0 1 2 −2 −1 0 1 2

QM CDF−t EDCDFm
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a
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J
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l
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a
n

J
u

l
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a
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a
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a) Mean error

b) RMS error

FIG. 2. (a) Ensemble averaged across all 21 models, the mean difference between the bias-corrected and the

original GCM-predicted changes (2070–99 minus 1976–2005) in daily max temperature (8C). (b) RMS spread of the

differences between the bias-corrected and original GCM-predicted temperature changes across the 21 GCMs.

Values are shown for two months (rows) and three bias correction methods (columns).
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(2014) adopt this ratio-based approach for bias cor-

recting precipitation, although their stated reason is to

avoid the negative precipitation values that might arise

when using additive factors. This scheme cannot be ap-

plied at quantiles with no precipitation, in which case we

set the model-predicted change ratio to 1.

Applying EDCDFm with model-predicted change ra-

tios is only part of the solution to preserve the original

model-predicted mean change, because the quantile at

which the mean falls can change between the historical

and future period if the shape of the distribution changes.

Although this results in negligible errors in temperature,

precipitation distributions are more skewed and GCMs

can show significantly varying projections of future

change as a function of quantile. However, the mean

precipitation change can be preserved exactly if the bias-

corrected value is multiplied by a correction factor

K5 hxi/hx̂i, where x is the change (expressed as a ratio) in

mean precipitation from the GCM, x̂ is the change in

mean precipitation following bias correction, and angle

brackets indicate that the mean is taken over all days in

the temporal window (monthly here).

The treatment of zero-precipitation days is an im-

portant consideration for regional climate change

(Polade et al. 2014). At each grid cell we calculate a

location-specific zero-precipitation threshold t, such

that applying t makes the model’s number of zero-

precipitation days match observations over the histori-

cal period. We require t $ 0.01mmday21 to avoid the

possibility of very small denominators in the model-

predicted change ratio. Current GCMs tend to pre-

cipitate too frequently, often at daily amounts above

0.01mm, so this limit is rarely invoked. The GCM-

predicted future fraction of zero-precipitation days Zgf

is calculated using t with the GCM’s original (not bias

corrected) future time series. The model data are then

bias corrected, and the smallest Zgf of precipitation

values are set to zero. This preserves the model-

predicted change in fraction of nonprecipitating days,

even if it increases. However, if the model has a strong

dry bias, so that it has many more zero-precipitation

days than observed, themodel-predicted change in zero-

precipitation daysmay not be preserved since there is no

way to know which of the extra zero-precipitation days

should be set to a positive value.

We call the combination of using the model-predicted

change ratio, the treatment of zero-precipitation days

outlined above, and the final correction factor the PresRat

bias correction method because it preserves the mean

GCM-predicted future mean precipitation change

FIG. 3. As in Fig. 2, but for precipitation with four bias correction methods and units of percentage points.
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evaluated as a ratio. Figure 1d includes results from

PresRat applied to the synthetic example data

(purple line).

Corrections that PresRat requires to maintain the

model-predicted mean precipitation change are second

order, arising from changes in the percentile at which

the mean falls combined with differing model-predicted

changes at different percentiles, and so tend to be

modest. Figure 4 shows K for four different months

averaged across all 21 GCMs. In any given month,

using the model change ratio alone tends to alter the

model-predicted mean change by less than 5% in

most of the region. In some places though, especially

California in the summer, PresRat requires substantial

corrections to preserve the model-predicted mean

change.

By construction, PresRat preserves the model-

projected mean precipitation change almost exactly

(Fig. 3, right). Discrepancies only arise because of

problems with the model’s number of zero-precipitation

days, as noted above.

In summary, both temperature and precipitation can

be bias corrected using methods that preserve GCM-

predicted future mean changes. Doing so helps minimize

confusion and inconsistent results between downscaled

regional climate simulations and global model analyses,

such as in IPCC (2007, 2013). This also means that

model-predicted mean changes can be subsequently

downscaled if desired [cf. Wood et al. (2002), who re-

move the mean GCM change before downscaling and

then add it back afterward].

4. Frequency-dependent bias correction

a. Overview

The effect of bias correction on model-predicted

trends is a special case of the effect of bias correction

on variability evaluated at long (multidecadal) time

scales. We now address the more general question of

model biases at different time scales and how to

reduce them.

Details of our spectral approach are given in the ap-

pendix. In brief, the model variance is compared to

observations in 100 logarithmically spaced frequency

bins. A digital filter is then applied in frequency space to

make the model spectrum better match observations.

One caveat is that we do not consider frequency-

dependent biases in different seasons or months, only

as a whole over the entire time period. This potentially

means that it is not feasible to expect a removal of biases

across all time scales of interest by this technique (e.g.,

FIG. 4. Correction factors K for the PresRat scheme that are necessary to preserve model-

predicted changes (2070–99 vs 1976–2005) in mean precipitation, illustrated for four months.

Values are averaged across 21 GCMs. White areas are within 5% of unity.
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bias correcting 2–10-day time-scale temperature biases

in winter and summer separately).

Since we bias correct in 30-yr periods (section 2c), the

PresRat method will preserve model-predicted mean

changes at periods of 30 years and longer in the future

projection. Accordingly, we consider, at most, periods

from 2 days (the Nyquist frequency given daily model

output) to 30 years. This interval is further refined to

periods from 2 days to 11 years in light of our spectral

analysis technique (see the appendix).

b. Frequency-dependent model errors

Figure 5 shows the observed (1976–2005) distribution

of variance in daily maximum temperature across fre-

quencies (labeled using equivalent periods; Fig. 5, left)

and the multimodel mean errors in representing this

distribution (Fig. 5, middle). Figure 5 (right) shows

multimodel RMSE (i.e., at each point, the spread of

values across the 21 models). The FDBC is based on

normalized spectra (spectral values divided by the var-

iance of the original time series) so that it leaves the

overall variance unaltered. Therefore, at every location

the values in Fig. 5 (left) summed across frequency

bands totals 100%.

The annual cycle (9–15-month bands) dominates daily

maximum temperature variability over almost all of the

conterminous United States (CONUS), containing on

average 62% of the variance. The main exceptions are

along the California coast, Florida, and in a strip of the

central United States downwind of the Rockies, where

higher frequencies (,9 months) contribute more than

elsewhere.

Models allocate less of the total variance to periods

shorter than 9 months than observed. In the 10–30-day

band, the mean error reaches 29% (not shown). The

proportion of variance in the annual cycle is represented

with little mean error and spread across models. Con-

versely, models allocate more of the total variance to

periods longer than 30 months, with nearly;40% more

variance than observed, and the spread across models is

large. However, the fraction of total variance in these

long time scales is small (,1%).

Figure 6 shows the same analysis using daily pre-

cipitation. Periods between 2 and 10 days contain the

majority of the variance (;62%). The exception is the

west coast, where 10-day to 9-month variability is nearly

as important, and the annual cycle contains.7% of the

total variance. The models have a 5%–10% mean bias

toward too much short-period (2–10 day) variability

along the West Coast and upper Midwest, and too little

variability in the southern Great Plains and the Gulf

Coast. Model-simulated precipitation variability at

30 months or longer accounts for an anomalously large

proportion of the total variance in the southeastern

United States and an anomalously small proportion in

the Pacific Northwest. Such errors could arise from, for

example, misrepresentations of the frequency, strength,

or teleconnections of ENSO or other low-frequency

modes of natural climate variability. Rupp et al. (2013)

also found that models overestimate temperature vari-

ance and underestimate precipitation variance at time

scales longer than a year in the Pacific Northwest. Dis-

agreements across the models are large at these longer

periods.

c. Frequency-dependent bias correction

To reduce the frequency-dependent model biases, the

ratio s of the model’s variance spectrum to the observed

variance spectrum in the historical run is computed in

each of the 100 logarithmically spaced frequency bins.

The model time series is then transformed to frequency

space, and the amplitude of the Fourier components are

multiplied by s(f )21/2 (the square root accounts for the

fact that variance is proportional to the amplitude of the

Fourier components squared). The result is then trans-

formed back to the time domain. Basing the corrections

on the historical run means that model-predicted future

changes in the spectrum are retained, but assumes (like

all statistical approaches) that model errors in the his-

torical period are present in the future simulation as

well. Amore detailed illustration of the FDBCprocess is

given in section S1 of the supplemental material.

Even standard bias correction techniques such as QM,

EDCDFm, andCDF-t alter the spectra of the time series

they are applied to. To isolate the effect of the FDBC,

we first present results using only FDBC, then examine

combined results using FDBC and standard bias

correction.

Example results of the FDBC using daily maximum

temperature fromCCSM4 are illustrated at a location in

central Nevada (hot, dry) and a location in western

Washington State (cool, wet) in Fig. 7a. The error in the

model’s representation of the spectrum of variability

decreases substantially after FDBC is applied [i.e., green

circles in Fig. 7 (right) are much closer to 1].

It is useful to define an RMSE metric appropriate for

ratios, which we designate as log-RMSE to differentiate

it from standard RMSE measures more appropriate to

differences. Let �5 ln s; then

log-RMSE[ exp(h�2i1/2)2 1, (1)

where the angle brackets indicate the mean over the

logarithmically spaced frequency values. This expres-

sion treats equal ratios of error equally (i.e., the model

having twice the observed variance produces the same
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FIG. 5. (left) Proportion (%) of total variance of daily max temperature that falls in the frequency band whose

period is indicated in the header, from observations over the period 1976–2005. Note that the color range varies

substantially by frequency band. (middle) The multimodel mean error (%) for the same quantity in the GCMs,

relative to the observations. (right) The multimodel RMSE (%).
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FIG. 6. As in Fig. 5, but for daily precipitation.
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error as the observations having twice the model’s var-

iance), and the final 21 makes a perfect result (model

variance equal observed, so s 5 1) give a log-RMSE of

0. In general, if the model values are incorrect (on

average across log-spaced frequencies) by a factor of s,

then the log-RMSE is s 2 1. These log-RMSE values

are indicated in Fig. 7 (right). When we refer to log-

RMSE below, we specifically mean the model’s error in

log−RMSE orig: 0.61
log−RMSE corr: 0.13

log−RMSE orig: 0.53
log−RMSE corr: 0.10

log−RMSE orig: 0.89
log−RMSE corr: 0.11

log−RMSE orig: 0.43
log−RMSE corr: 0.07

FIG. 7. For daily max (a) temperature and (b) precipitation, normalized spectra from ob-

servations (red line), CCSM4 (blue line), and CCSM4 after FDBC (green dots and line) (left)

and ratio of CCSM4 spectral power to observations before (blue line) and after FDBC (green

dots and line) (right). Values are shown at a hot, dry location in central Nevada (39.58N,

116.58W) and a cool, wet location between Seattle and Portland (46.58N, 122.58W), as indicated

in the header.
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reproducing the distribution of variance across fre-

quencies, as illustrated in Fig. 7.

Precipitation is more difficult to correct in frequency

space than temperature because it cannot have negative

values, which limits the adjustments FDBC can produce.

There are also days with zero precipitation, and to avoid

exacerbating the models’ drizzle problems (Sun et al.

2006; Dai 2006) we leave unmodified any values less

than 1mmday21. In dry areas this can leave few days for

FDBC to operate upon.

Precipitation results at the two example locations are

shown in Fig. 7b. CCSM4 shows a much stronger than

observed annual cycle at the hot dry location, likely

related to the coarse model overestimating winter

precipitation in the Sierra Nevada rain shadow. The

log-RMSE values show that, despite the limitations

inherent in correcting precipitation, errors decrease

after FDBC.

The multimodel ensemble average log-RMSE for

daily maximum temperature is shown in Fig. 8 (top)

both before (Fig. 8, top left) and after (Fig. 8, top mid-

dle) FDBC. The models’ spectra systematically disagree

with the observations, particularly along theWest Coast

and in a band extending north from northern Texas.

Before FDBC the mean log-RMSE is 0.50; after FDBC

the log-RMSE drops to 0.11.

Results for daily precipitation are shown in Fig. 8

(bottom). The models do worse in the RockyMountains

and theGreat Basin than elsewhere. As expected for the

reasons given above, precipitation is less easily cor-

rected than temperature; the mean log-RMSE for pre-

cipitation drops by less than a factor of 2 after FDBC.

The histograms in Fig. 8 (right) show the difference

between each grid cells’ corrected and original log-

RMSE, pooled across every location and model. On

average, FDBC decreases the log-RMSE for daily

maximum temperature by 0.39, and no locations are

worse. Even for precipitation, which shows less im-

provement than temperature, the correction virtually

always decreases the log-RMSE.

Histograms of the amplitude of the corrections pooled

across all models and locations are shown in Fig. 9. Any

day’s maximum temperature is changed less than 38C

about 95% of the time, although rarely the changes can

exceed 48C. The change in precipitation is less than 40%

or 1.5mmday21 about 95%of the time, although on rare

occasion can be more than 50% or 2.5mmday21. Since

FDBC operates on normalized spectra, altering the

FIG. 8. For daily max (top) temperature and (bottom) precipitation, the multimodel ensemble average log-RMSE in simulating the

observed distribution of variance across frequency, both (left) before and (middle) after the FDBC. (right) Histograms of how the FDBC

changes the log-RMSE, taken over all models and all locations.
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distribution of variance across frequencies without al-

tering the overall variance, the mean changes are

approximately zero.

COMBINED EFFECTS OF STANDARD AND

FREQUENCY-DEPENDENT BIAS CORRECTION

The FDBC is implemented using normalized spectra

so that the overall variance of the input time series are

unchanged, since the technique is intended to be used in

conjunction with standard bias correction.We evaluated

FDBC in conjunction with quantile mapping since we

want to compare the bias-corrected results to observa-

tions, which are only available over the historical period.

This in turn restricts this analysis to QM since the other

bias correction methods differ from QM only in the

future period.

For daily maximum temperature, the models’ domain-

average log-RMSE is 0.50 (Fig. 8, top left). Using QM

alone decreases this to 0.35, while using FDBC alone

decreases this to 0.11. The best results are obtained by

using QM followed by FDBC, which not only preserves

the decrease in log-RMSE, but makes no points in the

domainworse.QMalone worsens the log-RMSE at 9.6%

of the grid cells.

For daily precipitation, the models’ domain-average

log-RMSE is 0.49, which drops to 0.36 using QM alone,

and 0.28 using FDBC alone. Using QM followed by

FDBC gives the best result, a log-RMSE of 0.24. In this

case 1.3% of the grid cells end up having a worse log-

RMSE, which is still much better than the 22.9% of grid

cells that are worsened by QM alone or the 4.5% of

cells worsened by FDBC followed by QM. This small

but consistent superiority when applying QM before

FDBC is the reason we perform the operations in

this order.

To evaluate the effect of FDBC on runoff in a hy-

drological simulation, we used the VIC (Liang et al.

1994), configured for the western United States and

forced over the period 1950–99 with four sources of daily

temperatures and precipitation: 1) observations (Livneh

et al. 2013), 2) CCSM4, 3) CCSM4 fields bias corrected

using QM (since this is a historical simulation), and 4)

CCSM4 fields withQMand FDBC.We define themodel

error in simulating runoff variability in a frequency band

as the log (base 10) of the ratio of the spectral power of

runoff found using theGCM forcing fields to the spectral

power found using the observations. An error of 11

means the model has 10 times too much spectral power

in a given frequency band, while21 means 10 times too

little power. Figure 10a shows that when driven by

CCSM4 fields, VIC overestimates low-frequency runoff

variance by more than an order of magnitude over much

of the interior Southwest, a result of CCSM4’s overly

strong precipitation in the region. Bias correction

(Fig. 10b) improves the simulation markedly, while

FDBC (Fig. 10c) improves it somewhat more. Averaged

across points in the domain, the mean error after bias

correction is greatest at highest frequencies (Fig. 10d,

black line), and FDBC reduces the mean error at nearly

all frequencies (red line), and overall by about a factor of

2 compared to bias correction alone.

5. Preconditioning and iterative bias correction

Bias correction is typically applied in a time window.

For example, it can be applied monthly, so all January

values are bias corrected together, then all February

values, etc., as in Wood et al. (2002) and Maurer et al.

(2010). However, monthly bias correction of daily data

potentially has discontinuities at the edges of the time

window (e.g., 31 January is corrected using information

from 1 January, which is 30 days away, but no in-

formation from 1 February, which is only 1 day away).

To reduce these discontinuities Thrasher et al. (2012)

use amoving-window approach, where bias correction is

applied on a single day-of-year at a time using pooled

values from a surrounding 31-day time window as

training data for better sampling.

FIG. 9. Histograms of how much the FDBC alters the daily (left) temperature (8C) and

(middle),(right) precipitation. The precipitation results are given both as the fraction change

(%) and absolute change (mmday21). Results are shown for all the models across all points in

the CONUS.
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A drawback to using a time window of a month is that

many weather extremes can occur anytime over a mul-

timonth season. For example, the 20 highest values of

California-averaged daily precipitation over the period

1930–2002 have occurred as early as November and as

late as February, while extreme hot days have occurred

as early as June and as late as September. Ideally,

the largest model value would be bias corrected to the

largest observed value even if the maximum fell at the

beginning of the season in the observations and the end

of the season in the model. This argues for using a time

window that is no narrower than a multimonth season if

the extremes are distributed over a season. (Of course, if

the variable being bias corrected truly does have all its

extreme values fall in a single month of the year, then a

single-month time window is appropriate.) A more

complete illustration of the problems obtained when

using a 31-day sliding time window is given in section S2

of the supplemental material.

In this work we apply bias correction over a 91-day

window, chosen to be wide enough to encompass sea-

sonal weather phenomena. To address the issue of dis-

continuities at the edges of time windows, we iteratively

apply the bias correction two additional times, with

windows of 181 and 365 days, respectively. This ensures

that every day is bias corrected with at least some in-

formation from adjoining days nomatter where it falls in

the initial 91-day window. A similar approach, dubbed

FIG. 10. Analysis of runoff simulated by the VIC with various meteorological forcing fields.

(a) Error in simulated spectral power of runoff (at a period of 30 years) whenVIC is forcedwith

temperature and precipitation fields from CCSM4, where error is defined as log10 (power using

GCM forcing/power using observed forcing). (b) As in (a), but for bias-corrected GCM forcing

fields. (c) As in (a), but for bias-corrected and FDBC fields. (d) Domain-averaged mean error

as a function of frequency; black line is for bias-corrected forcing fields and dashed red line is

for bias-corrected and FDBC forcing fields.
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nested bias correction, was adopted by Johnson and

Sharma (2012), although they used it for a different

purpose than is done here.We use fixed, nonoverlapping

time windows rather than moving ones to avoid the

complications of matching quantiles in datasets with

greatly different sizes. For example, consider the case

described above of bias correcting a single central day-

of-year using training data from the surrounding 31-day

window, and the whole process is moved through the

year. In a 50-yr record the training data will consist of

50 3 31 5 1550 days while the data to be corrected will

consist of only 50 days. It is not straightforward to match

the most extreme event in a 50-event record to the most

extreme event in a 1550-event record.

The disadvantage to using a season-long time window

is that the correction of the annual cycle worsens. Bias

correction techniques such as QM, CDF-t, EDCDFm,

and PresRat cannot rearrange the input time series’

corresponding rank time series (i.e., the time series of

the rank of each value, where rank 1 is the largest value

in the time series, etc.). Instead, they change the asso-

ciation of ranks to values. Fixing a distorted simulation

of the annual cycle requires rearranging the rank time

series. For example, imagine that January is climato-

logically colder than February (the average rank of

February days is less than the average January rank), but

the model has this relationship reversed. Fixing this er-

ror requires rearranging the rank time series.

The traditional approach to this problem is to apply

bias correction in a relatively narrow time window. For

example, using a simple monthly window ensures that

the monthly means will be correct. However, this does

not address the discontinuities at the edges of the time

window, nor the desirability of including all extreme

values over an entire season when remapping the model

distribution to the observed distribution.

In our bias correction process, we precede the primary

bias correction with a simple preconditioning step

designed to correct the annual cycle. The bias correction

can then be applied to a time series that has a rank order

consistent with the observed annual cycle. For pre-

cipitation, every day’s value is multiplied by the ratio of

the observed to model climatological value for that day

of the year, where the climatologies are calculated over

the historical period to allow changes in the future. For

temperature, the preconditioning operates on the daily

anomaly with respect to the period being downscaled.

The model anomaly is multiplied by the ratio of the

observed to model climatological standard deviation for

that day (calculated over the historical period so it can

change in the future), then added to the observed cli-

matological value for that day (thus adjusting the annual

cycle) plus themodel-projected change in climatological

value for that day (to allow for future temperature

changes). Since estimating a daily climatology from

30-yr records is noisy, the daily values are cubic spline

interpolated between 15-day averages. This precondi-

tioning is a basic form of bias correction, but would be

unsatisfactory if applied alone since it corrects only on

the mean value and, for temperature, the variance.

Following the preconditioning byQM,CDF-t, EDCDFm,

or PresRat addresses extreme values as well, which are of

great societal importance.

The effects of preconditioning on the annual cycle are

illustrated using CCSM4 in Fig. 11, which shows the

RMSE difference between the observed and model-

simulated annual cycle of daily precipitation at each grid

cell over the period 1976–2005. (The analogous figure

for daily maximum temperature, which typically has a

stronger annual cycle than precipitation, is shown in

Fig. S1 of the supplemental material.) Values are nor-

malized by the annual mean at each point so that errors

in arid and wet regions can be more easily compared. To

reduce noise, the annual cycles are filtered with a 31-day

boxcar filter before theRMSE is calculated. The original

model has appreciable errors in the annual cycle

(Fig. 11a), which are reduced with a simple monthly bias

correction (Fig. 11b). Correcting a day at a time based

on statistics of a surrounding 31-day window yields

the least error (Fig. 11c). Using either a single 91-day

window or our iterative approach with 91-, 181-, and

365-day windows gives mediocre results since the wide

windows are less able to correct errors in the annual

cycle, as described above (Figs. 11d,e). However, pre-

conditioning helps substantially (Fig. 11f), giving a result

with less error than monthly bias correction although

somewhat more than with the sliding central day in a

31-day window approach.

The annual cycle is important, but many societal im-

pacts are affected more by extreme events. Figure 12

shows a scatterplot of sorted daily precipitation values in

CCSM4 and observations at a point in the central Sierra

Nevada (37.58N, 119.58W; 1976–2005). In a perfect

model, values would fall along the diagonal (gray). Be-

fore bias correction (Fig. 12a), the model under-

represents the strongest events by a factor of 2. Simple

monthly bias correction (Fig. 12b) and using the central

day in a 31-day sliding window (Fig. 12c) improve the

representation considerably, but still with errors.

Using a wide bias correction window gives good agree-

ment between the observed and model-simulated ex-

trema (Figs. 12d,e). Preconditioning, which addresses

the annual cycle rather than the extremes, has little ef-

fect on this measure (Fig. 12f).

Summary statistics of the modeled representation of

extremes at every grid cell can be obtained by fitting a
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line between the top five observed and model extremes

(red dashed lines in Fig. 12). The slopes and intercepts

of the lines at all locations can then be mapped

(Fig. 13). A perfect model representation of extremes

would give a slope of 1 and intercept of 0. By this

measure, the original model (Figs. 13a,b) has appre-

ciable errors in its representation of daily extremes, as

does the model after bias correction using either sim-

ple monthly bias correction (Figs. 13c,d) or bias cor-

rection using a central day in a sliding 31-day window

(Figs. 13e,f). Using a wider, 91-day window improves

the representation considerably (Figs. 13g,h), and it-

erating over the 91-, 181-, and 365-day windows gives

excellent agreement between the model and observa-

tions (Figs. 13i,j).

In summary, bias correction techniques that map one

distribution to another are not optimally suited for

correcting the annual cycle. The traditional solution of

applying the correction in time windows of about a

month is not necessarily a good fit with weather ex-

tremes, which in many locations can occur anytime in a

multimonth season. To get around this problem, we

FIG. 11. RMSE (percent of climatological annual mean value) in the annual cycle of precipitation (smoothed with

a 31-day boxcar filter) as simulated by CCSM4, using various bias correction approaches. (a) Original model (no bias

correction); (b) simple monthly bias correction; (c) single central day corrected based on statistics of a sliding 31-day

window; (d) 91-daywindow; (e) iterative bias correction with 91-, 181-, and 365-daywindows, but no preconditioning;

and (f) iterative bias correction with preconditioning.
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use a simple preconditioning step that improves the

representation of the annual cycle along with a relatively

wide (91 day) time window for bias correction and it-

erate the bias correction twice (181- and 365-day win-

dows) to reduce discontinuities at the edges of the

window. The overall result yields a representation of the

annual cycle that is superior to simple monthly bias

correction and a distribution of extremes that agrees

well with observations over the training period.

6. Summary and conclusions

GCMs generally produce biased simulations of vari-

ables such as temperature and precipitation. It is necessary
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FIG. 12. Scatterplot of sorted daily precipitation values, observed vsmodel with the following

bias correction applied: (a) original model (no bias correction); (b) simple monthly bias

correction; (c) single central day corrected based on statistics of a sliding 31-day window;

(d) 91-day window; (e) iterative bias correction with 91-, 181-, and 365-day windows, but no

preconditioning; and (f) iterative bias correction with preconditioning. The dashed red line

shows the best fit least squares line based on the five largest values. Model data are from

CCSM4 at a point in the Sierra Nevada (37.58N, 119.58W), over the period 1976–2005.
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FIG. 13. The (left) slope and (right) intercept of the best-fit least squares line between the top

five observed and modeled (CCSM4) extreme events for different bias correction approaches

as indicated in the header.
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to remove these biases before using the model-

simulated fields in applications that have nonlinear

sensitivities to biases, such as land surface or hydrolog-

ical modeling.

The choice of bias correction method is particularly

important in climate change impact studies since bias

correction can alter GCM projected mean changes. We

demonstrate that quantile mapping (QM; Panofsky and

Brier 1968) or the CDF transform method (CDF-t;

Michelangeli et al. 2009) can alter the original GCM-

projected monthly mean change by up to 28C when bias

correcting temperature and 30% points when bias cor-

recting precipitation. This introduces a source of un-

certainty comparable to uncertainty from emission

scenarios in some cases. TheEDCDFmmethod (Li et al.

2010) preservesGCM changes inmean temperature, but

not changes in mean precipitation measured multipli-

catively (as a ratio or percentage change). We in-

troduced an extension to EDCDFm for precipitation

termed PresRat that preserves the model-projected

percentage change in mean precipitation by using a

model-predicted change ratio [as in Wang and Chen

(2014)], but also a final correction factor and a zero-

precipitation threshold that makes the modeled number

of zero-precipitation days match observations. How-

ever, none of the bias correction techniques, PresRat

included, can preserve the model-predicted mean pre-

cipitation change in locations that are so dry there are

insufficient precipitation days to bias correct.

We also examined the more general issue of the

models’ representation of variance across a range of time

scales and introduced an FDBC method that reduces in-

accuracies in the GCMs’ spectra. As a group, the 21

GCMs apportion too little variability of daily maximum

temperature to time scales between 10 and 90 days and

too much to time scales longer than 30 months. The

models’ simulation of daily precipitation variability was

more mixed, but at long time scales (.30 months) they

show more variability than observed in the Gulf Coast

region and less than observed in the Pacific Northwest.

These problems can be reduced by a frequency-

dependent bias correction implemented as digital filter

in the frequency domain. This is one step toward ad-

dressing time-dependent model biases, an important

subject that has many implications for impacts such as

droughts and heat waves. We implement the FDBC as a

separate step following the EDCDFm or PresRat bias

correction, which means this step could be combined with

any other existing bias correction method (such as quan-

tile mapping or CDF-t) as well. However, the current

implementation operates on the entire time series of daily

values, so frequency-dependent errors on the seasonal or

monthly time scale can persist under some circumstances.

Traditional bias correction is done in a time window,

often of about a month, to reduce errors in the annual

cycle. However, inmany locations weather extremes can

occur sometime during a multimonth season, which ar-

gues for using a time window on the order of a season in

such places. A simple preconditioning technique has

been shown to yield a good simulation of the seasonal

cycle even when using a seasonwide time window. The

end result captures both the extremes of the time series

and the annual cycle.

This study has not addressed whether bias correction

should be applied at any particular location given that

model–observational disagreements are influenced by

natural climate variability, which can be large and affect

climate means over years to decades (e.g., Maraun et al.

2010; Deser et al. 2012). Although this is an interesting

question, in this work we have followed the common

practice of applying bias correction to the GCMs at all

locations to bring them into agreement with a pre-

selected recent climatological period.

In the end, as global climate model results continue to

be applied to investigate phenomena that are sensitive

to model biases, bias correction will become an ever

more important step. The bias correction methods out-

lined here can improve these simulations, giving a

clearer picture of future climate conditions for a variety

of applications.
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APPENDIX

Details of Spectral Approach

Ghil et al. (2002) review some of the numerous tech-

niques that are available to compute variance spectra.

Many newer methods have been developed to identify

narrow-band signals against a background of noise.

However, in this work we are also concerned with the

power in the broad parts of the spectrum that might in

other applications be considered simply noise. This

variability represents weather and climate fluctuations
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that affect hydrology and ecosystems across a wide

range of time scales. Accordingly, we use relatively wide

bandwidths and employ the Jenkins and Watts (1969)

method of computing variance spectra as the Fourier

transformation of the autocovariance function. We re-

quire at least 40 degrees of freedom in the spectral es-

timates, which given 30 years of daily data and a Parzen

lag window, means truncating the autocovariance func-

tion after 1020 lags (Jenkins andWatts 1969). Following

the Jenkins andWatts recommendations, the number of

frequencies is set to twice the number of lags (2040), so

the first nonzero frequency corresponds to a period of

;11 years. Longer periods are unresolved, and the

FDBC does not alter their relative proportion of

variance.

With over 2000 frequencies spanning from 2 days to 11

years, it is useful to reduce the number of frequencies at

which the model error is corrected to avoid spurious

overfitting. Accordingly, the frequency-dependent

model errors are calculated in a reduced set of 100 fre-

quency bins of equal width in the logarithm of fre-

quency. This means that higher-frequency bins have

multiple samples. All periods shorter than ;80 days

have at least five samples per bin, reaching 140 samples

at a period of 2 days. Averaging in bins therefore re-

duces the uncertainty in the spectral estimates for pe-

riods shorter than ;80 days.

Von Storch and Zwiers (2001) note the problems in

interpreting spectral plots on a logarithmic frequency

axis, since the displayed area under the spectrum is no

longer proportional to the variance. It is possible to

maintain the property of being a spectral density if the

spectral value is multiplied by frequency, or if the plot-

ted values are integrated (as opposed to averaged)

across constant widths of the logarithmic frequency axis.

However, these approaches change the angle of a plot-

ted spectrum (e.g., a white spectrum is then no longer

flat), which can be confusing. To avoid this potentially

misleading situation, values shown here are simply av-

eraged in frequency so that the spectra appear similar to

what is typically found in the literature (i.e., a white

spectrum is flat).
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