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ABSTRACT Feature selection (FS), an important pre-processing step in the fields of machine learning and
data mining, has immense impact on the outcome of the corresponding learning models. Basically, it aims
to remove all possible irrelevant as well as redundant features from a feature vector, thereby enhancing the
performance of the overall prediction or classification model. Over the years, meta-heuristic optimization
techniques have been applied for FS, as these are able to overcome the limitations of traditional optimization
approaches. In this work, we introduce a binary variant of the recently-proposed Sailfish Optimizer (SFO),
named as Binary Sailfish (BSF) optimizer, to solve FS problems. Sigmoid transfer function is utilized here
to map the continuous search space of SFO to a binary one. In order to improve the exploitation ability of the
BSF optimizer, we amalgamate another recently proposed meta-heuristic algorithm, namely adaptive β-hill
climbing (AβHC) with BSF optimizer. The proposed BSF and AβBSF algorithms are applied on 18 standard
UCI datasets and compared with 10 state-of-the-art meta-heuristic FS methods. The results demonstrate the
superiority of both BSF and AβBSF algorithms in solving FS problems. The source code of this work is
available in https://github.com/Rangerix/MetaheuristicOptimization.

INDEX TERMS Binary sailfish optimizer, feature selection, adaptive β-hill climbing, hybrid optimization,
UCI dataset.

I. INTRODUCTION

With the recent advancements of computing devices, huge
amount of data has become available in the domain of image
processing, pattern recognition, financial analysis, business
management, and medical studies [1], [2] amongst others.
As a consequence, data dimensionality has increased a lot,
which has huge impact on the performance of machine
learning and data mining algorithms, both in terms of time
and storage requirements. However, not all the attributes
or features are important for the corresponding learning
model. In this context, feature selection (FS) method is
used as a data pre-processing step which helps remove
all such irrelevant and redundant features [3], and thereby
reduces required processing time and storage space. This,
in turn, increases the overall classification (or prediction)
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accuracy of the corresponding machine learning or data min-
ing algorithms [4]. Depending on the evaluation criteria of
features, FS techniques are divided in two categories [3]:
filter and wrapper. Filter method evaluates features based on
pre-defined criteria, (e.g., Information Gain [5], ReliefF [6],
Chi-square [7], Fisher Score [8], Laplacian score [9] etc.), and
thereby selects the most important features according to that
criteria. On the other hand, wrapper method uses a learning
algorithm to evaluate feature subsets and thereby selects the
optimum feature subset for the corresponding task [10]. Due
to non-requirement of learning algorithms, filter methods
perform faster than wrapper methods but wrapper methods,
in general, achieve higher accuracy [11].

In the last decade, meta-heuristic algorithms have become
quite popular in solving various optimization problems
due to their ability to avoid local optima, non-derivative
mechanism, and flexibility [12]. Two major characteris-
tics of a meta-heuristic algorithm are [10]: exploration or
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diversification, which is the ability to search the whole
solution space for best solution in each iteration avoid-
ing local optima, and exploitation or intensification, which
implies finding a better solution in the neighborhood of the
obtained solution, leading to faster convergence. A good
meta-heuristic algorithm tries to balance between exploration
and exploitation.
The presence of a significant number of meta-heuristic and

hybrid meta-heuristic FS strategies clearly brings up the issue
about presenting another hybrid meta-heuristic FS algorithm.
In any case, as indicated by No Free Lunch theorem [13]
for optimization, there cannot be any single algorithm that
can take care of all the improvement issues. With each
new algorithm following any regular or natural phenomena,
researchers primarily focus to give some new facet to the
algorithm where both exploration and exploitation will have
a superior trade-off, so that it ultimately gets away from the
local optima and compasses to the global optima. Neverthe-
less, accomplishing these objectives are not simple, explicitly
in the event that one needs to propose an algorithm that can be
applicable to different domains. This is the motivation to the
researchers to formulate better methods over the past which,
thus, keeps the research area alive. For a specific problem,
in order to discover the best algorithm, the No Free Lunch
theorem ought to advise us that we have to concentrate on
the particular problem at hand, the hypotheses, the priors
(additional data), the information and the cost.
While considering an optimization problem, the multi-

modal functions suffer from huge dimensions and finding
an ideal value for every dimension at the same time is
almost next-to-impossible. This is the reason why researchers
attempt to take care of these sorts of issues utilizing some
meta-heuristic strategies where the aim is to get an opti-
mal solution within a reasonable amount of time. As FS is
considered as an optimization problem [10], there may exist
numerous optimal subsets i.e., having same dimension and
same precision. Here likewise, it would be extremely hard to
discover an optimal feature subset keeping in mind the extra
storage space and running time alongside the performance
of the machine learning algorithm. In this regard, research
is still going on in order to meet these prerequisites. This
has inspired us to propose a hybrid meta-heuristic FS method
based on Sailfish Optimizer (SFO) [14] algorithm. SFO is
proposed bymimicking the behavior of sailfish group hunting
that follows attack-alternation strategy to hunt a school of
sardine. In this paper, we have hybridized the binary variant of
SFO, known as Binary Sailfish (BSF) optimizer with another
recently proposed meta-heuristic algorithm, adaptive β-hill
climbing (AβHC) [15]. Generally, two different models are
followed for hybridizing meta-heuristic algorithms [16]: low
level and high level. In low level hybridization, a function
in a meta-heuristic is replaced by another meta-heuristic.
In its high level variant, the candidate meta-heuristics are
executed in sequence. We have hybridized BSF and AβHC in
a high level fashion, following the pipelinemodel, where each
meta-heuristic optimization algorithm works on the output of

previous optimization algorithm. To the best of our knowl-
edge, this is the first time BSF is used in FS where it is
hybridized with AβHC algorithm. In a nutshell, the main
contributions of this work are as follows:

• A new FSmethod known as BSF optimizer is introduced
using the recently proposed meta-heuristic SFO.

• The newly proposed BSF optimizer is hybridized with
another recently proposedmeta-heuristic called adaptive
β-hill climbing (AβHC) algorithm.

• The proposed hybrid FS approach is evaluated on
18 standard UCI datasets [17] using K-nearest Neigh-
bors (KNN) classifier.

• The proposed FS approach is compared with 10 state-
of-the-art meta-heuristic based FS methods.

The rest of the paper is organized as follows: Section II pro-
vides a brief review of meta-heuristic FS methods present in
the literature. Section III provides detailed description of the
proposed FS method. The results obtained by the proposed
method are reported in Section IV. In Section V, the proposed
method is compared with 10 state-of-the-art meta-heuristic
and hybrid meta-heuristic FS methods. Lastly, Section VI
concludes this work, discusses its limitations and provides
direction of possible future work.

II. LITERATURE SURVEY

Recently, the field of optimization has gained much atten-
tion from researchers, especially the field of hybrid meta-
heuristics. Meta-heuristic is a high-level procedure [18]
designed to find, generate, or select a heuristic (partial search
algorithm) that may provide a sufficiently good solution
to an optimization problem. Meta-heuristic algorithms can
be divided into different categories: single solution based
and population based [19], nature inspired and non-nature
inspired [20], metaphor based and non-metaphor based [21]
etc. From the ‘inspiration’ point of view, these algorithms can
roughly be divided into four categories [22]: Evolutionary,
Swarm inspired, Physics based, and Human related.

• Evolutionary algorithms are basically inspired from
biology. It utilizes crossover and mutation operators to
evolve the initial random population over the iterations
and eliminates the worst solutions to obtain improved
solution. Genetic algorithm (GA) [23] is a well-known
method of this category which follows the Darwin’s the-
ory of evolution. Co-evolving algorithm [24], Cultural
algorithm [25], Genetic programming [26], Grammati-
cal evolution [27], Bio-geography based optimizer [28],
Stochastic fractal search [29] etc. are some well-known
evolutionary algorithms.

• Swarm inspired algorithms imitate individual and social
behavior of swarms, herds, schools, teams or any
group of animals. Every individual has its own behav-
ior, but the behavior of the accumulated individuals
helps to solve complex optimization problems. One
of the most popular algorithms of this category is
Particle swarm optimization (PSO) [30], developed
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by following the behavior of flock of birds. Another
notable method of this category is Ant colony opti-
mizer (ACO) [31], inspired from the foraging method of
some ant species. Some other methods belonging to this
category are: Shuffled frog leaping algorithm [32], Bac-
terial foraging [33], Artificial bee colony (ABC) [34],
Firefly algorithm [35], Greywolf optimizer (GWO) [12],
Crow search algorithm [36], Whale optimization
algorithm (WOA) [37], Grasshopper optimization
algorithm [38], Squirrel search algorithm [39] etc.

• Physics based algorithms are inspired by the rules
governing a physical process. The inspiring physical
process ranges from music, metallurgy to mathemat-
ics, physics, chemistry, and complex dynamic sys-
tems. One of the oldest algorithms of this category
is: Simulated annealing (SA) [40], developed by fol-
lowing the annealing [41] process of metals studied
in metallurgy and materials sciences. Another popular
method of this category is Gravitational search algo-
rithm (GSA) [42], developed by following gravity and
mass interaction. Some other methods of this category
are: Self propelled particles [43], Harmony search algo-
rithm [44], Black hole optimization [45], Sine cosine
algorithm [46], Multi-verse optimizer [47], Find-Fix-
Finish-Exploit-Analyze [48] etc.

• Human related algorithms find global optima by fol-
lowing human behavior. Teaching-Learning-Based opti-
mization [49] is one such popular method belonging
to this category, developed by following the enhanc-
ing procedure of class grade. Some other methods of
this category are: Society and civilization [50], League
championship algorithm [51], Fireworks algorithm [52],
Tug of war optimization [53], Volleyball premier league
algorithm [54].

FS, however, is a binary optimization problem andmost of the
above mentioned optimization algorithms have been applied
for solving FS problems. Different applications of GA for FS
can be found in [55]–[58]. PSO based FS methods can be
found in [59]–[61]. ACO and GSA based FS methods can be
found in [62] and [42] respectively.
In recent times, hybrid meta-heuristic algorithms have

been used in a large margin for solving FS problems. These
algorithms are reported to achieve better performance in
various real-life problems [63]. In [64], the first hybrid
meta-heuristic algorithm is proposed for FS by combining
GA with local search algorithm. The hybrid of Markov chain
and SA is proposed in [65]. Memetic algorithm and Late
acceptance hill climbing have been hybridized and used for
FS for facial emotion recognition [66]. Spotted hyena opti-
mizer is combined with SA and used for FS on UCI datasets
in [3]. Hybrid of GA and SA has been used for FS on UCI
datasets in [67]. In [68], Salp swarm algorithm is hybridized
with Opposition based learning (OBL) and a local search
method which are applied on UCI datasets for FS. In [69],
GA and PSO have been hybridized for FS and applied on
Digital mammogram datasets. In [70], the hybrid of GWO

and PSO has been applied on UCI datasets for FS. Hybridiza-
tion of PSO with GSA can be found in [71]. Hybrid combi-
nation of ACO and GA has been proposed in [72]. In [73],
a hybrid version of Differential Evolution (DE) and ABC for
FS has been proposed and applied on UCI datasets.

The recently developed SFO is inspired by a group
of hunting sailfish. This method is previously applied on
20 uni-modal and multi-modal mathematical functions. It is
also applied for solving five engineering design problems
such as Circular antenna array design problem, Gear train
design problem, I-beam design problem, Three-bar truss
design problem, and Welded beam design problem.

III. PRESENT WORK

A. SAILFISH OPTIMIZER: AN OVERVIEW

SFO [14] is a population based meta-heuristic algorithm,
which is inspired from the attack-alternation strategy of a
group of hunting sailfishes which hunts a school of sardines.
This hunting strategy gives an upper hand to the hunters by
providing them the chance of saving their energy. It considers
two populations: sailfish population and sardine population.
The sailfishes are considered as the candidate solutions and
the problem’s variables are positions of sailfishes in the
search space. The algorithm tries to randomize the movement
of search agents (both sailfish and sardine) as much as pos-
sible. Sailfishes are considered to be scattered in the search
space, whereas the positions of sardines help to find the best
solution in the search space.

The sailfish with best fitness value is called ‘elite’ sailfish
and its position at ith iteration is given by PiSlfBest . In case of
sardine, the ‘injured’ is the one with the best fitness value
and its position at ith iteration is given by PiSrdInjured . At each
iteration, the positions of sardines and sailfishes are updated.
At i+ 1th iteration, the new position Pi+1

Slf of a sailfish is
updated using ‘elite’ sailfish and ‘injured’ sardine as per
Equation 1.

Pi+1
Slf = PiSlfBest

−µi ×
(

rnd ×
PiSlfBest + PiSrdInjured

2
− PiSlf

)

(1)

where PiSlf is the previous position of the Slf th sailfish, rnd
is a random number between 0 and 1 and µi is a coefficient
which is generated as per Equation 2.

µi = 2 × rnd × PrD− PrD (2)

where PrD is prey density, which indicates the number of
preys at each iteration. At each iteration, the value of PrD,
calculated by Equation 3, decreases as the number of prey
decreases during group hunting.

PrD = 1 −
NumSlf

NumSlf + NumSrd
(3)

where NumSlf and NumSrd are the number of sailfishes and
sardines respectively.

NumSlf = NumSrd × Prcnt (4)
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wherePrcnt denotes the percentage of sardine population that
forms the initial sailfish population. Initial number of sardines
is always considered to be larger than number of sailfishes.
The sardine positions are updated in each iteration as given

by Equation 5.

Pi+1
Srd = rnd(0, 1) × (PiSLfBest − PiSrd + ATK ) (5)

ATK = A× (1 − (2 × itr × κ)) (6)

where PiSrd and Pi+1
Srd denote the previous and updated posi-

tions of the sardine respectively and ATK represents the
sailfish’s attack power at iteration itr . Now, the number
of sardines that updates their positions and the amount of
displacement depend upon ATK . Reducing the ATK assists
the convergence of search agents. Using the parameter ATK ,
the number of sardines that updates their position (γ ) and the
number of variables of them (δ) are calculated as follows:

γ = NumSrd × ATK (7)

δ = v× ATK (8)

where v is the number of variables and NumSrd is the number
of sardines. If any of the sardines becomes fitter than any sail-
fish, the sailfish updates its position following this sardine,
and the sardine is eliminated from its population.

Random selection of sailfishes and sardines guarantees the
exploration of search space. As the attack power of sail-
fishes decreases after every iteration, it provides a chance
to a sardine to escape from the best sailfish, which assists
in exploitation. The ATK parameter tries to find a balance
between exploration and exploitation.

B. ADAPTIVE β-HILL CLIMBING

AβHC [15] is a recently proposed meta-heuristic algo-
rithm, an adaptive version of the βHC [74], which is,
in fact, an improved version of Hill climbing (HC) algo-
rithm. HC algorithm is a simplest form of local search
method. But it often gets stuck in local optima. To over-
come this limitation, βHC is proposed. Given a solution
R = (r1, r2, . . . , rD), βHC iteratively generates an improved
solution R′′ = (r ′′

1 , r ′′
2 , . . . , r ′′

D) based on two opera-
tors:N − operator (Neighborhood operator) and β-operator.
The N − operator randomly chooses a neighbor R′ =

(r ′
1, r

′
2, . . . , r

′
D) of the solution R, which is defined in Equa-

tion 9 as:

r ′
i = ri ± U (0, 1) × N ∃i ∈ [1,D] (9)

where i is chosen randomly in the range [1,D], D is the
dimension of the problem, N denotes the highest pos-
sible distance between current solution and its neighbor.
β − operator is inspired from the uniform mutation operator
of GA.New solution is assigned values either from the current
solution or randomly from the corresponding range with
probability value β ∈ [0, 1].

r ′′
i =

{

rr if rnd ≤ β

r ′
i else

(10)

where rnd is a random number, rnd ∈ [0, 1], rr is another
random number within the range of that particular dimension
of the problem in consideration.

Now, the outcome of this βHC largely depends on the
chosen values ofN and β. Setting values for these two param-
eters requires exhaustive experiments. To avoid this overhead,
AβHC is proposed. In AβHC, N and β are expressed as a
function of iteration number. N (t) is the value of N in t th

iteration. N (t) is defined as Equation 11 following the work
presented in [47].

N (t) = 1 −
t
1
K

MaxIter
1
K

(11)

where K is a constant, MaxIter is maximum number of
iterations.

The value of β in t th iteration is denoted as β(t).
As per [75], it is adapted within a specific range [βmin, βmax]
and defined as Equation 12.

β(t) = βmin + (βmax − βmin) ×
t

MaxIter
(12)

Now, if the generated neighborR′′ is better than the solution
in considerationR, R is replaced withR′′.

C. PROPOSED BINARY SAILFISH OPTIMIZER

Let the original feature set be F = {f1, f2, . . . , fD}, where
D is the total number of features or the dimension of the
feature set and let the class label be C = {c1, . . . , cl},
where l is the number of classes. FS method finds a subset
S = {s1, . . . , sm}, where m < D, S ⊂ F and S has
lower classification error rate than any other subset of same
size or any proper subset of S . FS is a binary optimization
problem [10], where the solution is limited to binary values
{0, 1}. Here, a solution is represented using a binary vector
where 1 indicates that corresponding feature is selected and
0 indicates corresponding feature is not selected. The size
of this vector is equal to number of features in the original
dataset. SFO is proposed to solve continuous optimization
problems where a solution consists of real values. To map
the continuous search space of the standard SFO to a binary
one, we use a transfer function [76]. We have used Sigmoid
transfer function, depicted in Figure 1 and expressed by
Equation 13.

T (x) =
1

1 + e−x
(13)

Now, using the probability values generated by Equation 13,
the current position of the Sailfish will be updated as per
Equation 14.

Xd (t) =

{

1 if rnd < T (Xd (t))

0 if rnd ≥ T (Xd (t))
(14)

Generally, FS is a multi-objective problem, with two
objectives: (a) to achieve highest classification accuracy
(i.e. maximization problem), and (b) to select lowest num-
ber of features (i.e. minimization problem). Now, these two
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FIGURE 1. Utilized transfer function for converting continuous search
space of SFO to binary.

objectives are contradictory in nature. To eliminate this con-
tradiction, we have considered classification error rate. Using
Equation 15, these two objectives are combined and the FS
problem is converted to a single objective problem.

↓ Fitness = ωγ (S) + (1 − ω)
|S|

D
(15)

where S represents the selected feature subset, |S| repre-
sents cardinality of the selected feature subset or number of
selected features, γ (S) represents classification error rate of
S , D is the original dimension of the dataset and ω ∈ [0, 1]
represents weight.
Now, in SFO, the exploration is taken care of [14]

by using random initialization of the sailfish and sardine
population, and encircling strategy following hyper-sphere
neighborhood. Exploitation is taken care of by using sardine
population and movement of sardines around best sailfish
and sardine. The parameter, ATK (defined in Equation 6)
tries to find a balance between exploration and exploitation
capabilities of the algorithm. Now, to find the optmial feature
subset, the FS technique needs to find the global optima
which requires proper exploration and exploitation of the
search space. So, we have used AβHC to enhance both the
exploration and exploitation abilities of BSF.
The analysis of AβBSF shows that, its worst case time

complexity isO(maxIter×(Nsrd×tfitness+D)), wheremaxIter
is the maximum number of iterations, Nsrd is the number of
sardines, tfitness is the time requirement for calculating the
fitness value of a particular agent using a given classifier and
D is the dataset dimension.

IV. EXPERIMENTAL RESULTS

We have used KNN classifier [77] with Euclidean distance
metric to measure the classification accuracy of the selected
feature subset obtained by applying the proposed FS method
on the entire (i.e. original) dataset. As per the recommenda-
tions provided in [10], [78], [79], we have set K = 5. For
each dataset, 80% of the instances are used for training the
model and rest 20% are used for testing. We have applied the

FS methods on the train data, and determined which features
are to be included in the selected feature subset. From test
data, only those features are selected and then classification
accuracy is measured based on test data using KNN classifier.
Proposed method is implemented using Python3 [80] and
graphs are plotted using Matplotlib [81].

A. DATASET DESCRIPTION

In order to assess the performance of BSF and AβBSF,
18 UCI datasets [17] have been considered. The datasets are
selected from various backgrounds. The description of these
datasets is presented in Table 1. Table 1 shows that there
are 15 bi-class and 3 multi-class datasets. These datasets are
diverse in terms of both number of attributes (features) and
instances. These variances help in establishing the robustness
of the proposed methods.

B. PARAMETER TUNING

There are two parameters which are always very important for
any multi-agent evolutionary algorithm: population size and
number of maximum iterations. Population size characterizes
how a single agent learns from other agents’ experiences,
whereas iterations provide step-wise evolution of the agents.
In order to find the proper values for these two parameters,
experiments have been performed by varying one parameter
w.r.t. the other.

We have experimented with different values of A, κ

and Prcnt mentioned in Equation 6 and Equation 4. Both A
and κ are responsible for the decrease in attack power.
ATK decreasing linearly from A to 0, intends to lead the
method from exploration towards exploitation. As already
mentioned in [14], we have also set A = 4 and κ =

0.001 through thorough experimentation. In case of Prcnt ,
mentioned in Equation 4, decrease in value implies more
Sardines (larger Nsrd ), which in turn implies increased explo-
ration. Hence, with decrease in Prcnt , the classification accu-
racy improves. But, as per the computational complexity of
AβBSF mentioned in Section III-C, the time requirement
also increases with the increase of Nsrd . So, in order to
maintain a trade-off between the obtained classification accu-
racy and time requirement, we have decided to set the value
of Prcnt = 0.1.

Figure 2 shows the effect of the size of the population on
achieved classification accuracy using the proposed methods.
Considering that the time requirement increases with increase
in population size and the effect of the same on classification
accuracy, we have decided to use population size as 20 for
all the further experiments. Figure 3 shows the value of the
fitness function in each iteration.

C. DISCUSSION

In this section, we have discussed about the results of the
proposed BSF and AβSF methods for the datasets men-
tioned in Section IV-A. From Table 2, it is quite evident
that the proposed methods have performed quite well for FS.
BSF has achieved ≥ 90% accuracy in case of 11 (61.1%)
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TABLE 1. Description of the datasets used in the present work.

datasets, whereas for AβSF,, that count is 15 (83.33%). AβSF
has achieved 100% accuracy for 10 (55.5%) datasets such
as Breastcancer, BreastEW, CongressEW, Lymphography,
M-of-n, PenglungEW, Vote, WineEW, and Zoo, which is
quite impressive. For KrvskpEW dataset, it has achieved
99.06% accuracy.
Now, observing Table 2, we can also conclude that AβHC

significantly helps the BSF algorithm to explore different
parts of the search space and achieve better solution. In case of
some datasets like Exactly, HeartEW, M-of-n, PenglungEW,
SonarEW, and SpectEW, the classification accuracies have
improved by a significant margin (> 9%).

V. COMPARISON

To check the applicability of the proposed methods,
we have compared it with 10 state-of-the-art methods:
4 popular meta-heuristic FS methods: GA, PSO, Ant Lion
optimizer (ALO), and GSA and 6 hybrid meta-heuristic
FS methods. GWO and WOA are hybridized follow-
ing three different strategies [78]: serial grey-whale opti-
mizer (HSGW), random switching grey-whale optimizer
(RSGW), and adaptive switching grey-whale optimizer
(ASGW). WOASAT-2 [10] is hybrid of WOA and SA.
BGWOPSO [70] is developed by hybridizingGWOand PSO.
In WOA-CM [82], the performance of WOA is enhanced
by using crossover and mutation. The values of the control
parameters of these methods are described in Table 3.
Table 4 shows the performance of AβHC in terms

of achieved classification accuracy. For each dataset, the
methods are ranked as per their corresponding achieved
classification accuracies. The Average rank is obtained by
taking average over the utilized 18 UCI datasets. Assigned
rank indicates the rank assigned to the methods as per their
obtained average rank. From Table 4, it can be observed that
AβHC performs the best in 16 cases (88.9%), which is quite
high. In case of Exactly2 dataset, it performs as the 2nd best

following HSGW, whereas for SonarEW dataset, it performs
as the 3rd best following BGA and RSGW.

It is worth mentioning that AβHC outperforms BGA com-
pletely in 15 cases, and ties in 2 cases. For SonarEW dataset,
BGA performs better than AβHC. AβHC outperforms PSO
in 16 cases with ties in 2 cases. AβHC completely outper-
forms both BALO and BGSAmethods for all the 18 datasets,
which is quite impressive.

The HSGW method outperforms AβHC in case of
Exactly2 dataset. Both HSGW and AβHC methods ties
in 4 cases. However, AβHC outperforms HSGW method
in 13 cases. With respect to RSGW method, AβHC has
4 ties, 13 wins and 1 loss. The ASGW method is unable to
outperformAβHC for any of the datasets. In comparison with
RSGW method, AβHC has 5 ties and 13 wins. With respect
to WOASAT2 method, AβHC has 0 loss, 2 ties and 16 wins.
Again, the BGWOPSO method fails to outperform AβHC in
any case. Moreover, both AβHC and BGWOPSO methods
tie in 4 cases whereas in 14 cases, AβHC algorithm out-
performs BGWOPSO. Both the methods namely WOA-CM
and AβHC tie in case of Exactly dataset and for the rest
of 17 datasets, the proposed AβHC algorithm wins.
Table 5 shows the performance of AβHC w.r.t. number of

selected features. Average rank is calculated by averaging
the ranks obtained for each dataset based on the number
of features selected. AβHC has selected the lowest num-
ber of features in case of 6 datasets. For SonarEW dataset,
though AβHC algorithm fails to achieve the highest classi-
fication accuracy, it has selected lowest number of features
and achieved 3rd best accuracy. So, considering both Table 4
and Table 5, we can say that AβHC performs best with
respect to the state-of-the-art methods considered here for
comparison.

Figure 4 shows the average classification accuracies
achieved by AβBSF and 10 state-of-the-art methods used
here for comparison. It clearly shows that AβBSF has
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FIGURE 2. Effect of population size on classification accuracy for 18 UCI datasets using BSF and AβBSF.
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FIGURE 3. Best fitness value in each iteration for 18 UCI datasets using BSF and AβBSF.
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TABLE 2. Performance of BSF and AβSF in terms of classification accuracy and selected no. of features.

TABLE 3. Parameter setting of state-of-the-art methods used for
comparison.

achieved highest average classification accuracy as compared
to state-of-the-art methods. Figure 5 shows the average num-
ber of features selected by AβBSF and the 10 state-of-the-art
methods used. Now, from Figure 5, it can also be observed
that the AβBSF algorithm has selected second lowest number
of features.
To determine the statistical significance of AβBSF algo-

rithm, Wilcoxon rank-sum test [83] has been performed. It is
a non-parametric statistical test where pairwise comparison

FIGURE 4. Average accuracies achieved by the proposed method and
10 state-of-the-art methods over the utilized 18 UCI datasets.

FIGURE 5. Average number of features selected by the proposed method
and 10 state-of-the-art methods over the utilized 18 UCI datasets.

is performed. Here, the null hypothesis states that the two
sets of results have same distribution. This implies that if the
distribution of two results are statistically different, then the
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TABLE 4. Comparison of classification accuracy obtained by proposed FS method with some state-of-the-art FS methods for 18 UCI datasets.

TABLE 5. Comparison of number of selected features obtained by proposed FS method with some state-of-the-art FS methods for 18 UCI datasets.

TABLE 6. p-values obtained by the Wilcoxon rank-sum test for the classification accuracy of the proposed FS method as compared to 10 state-of-the-art
FS methods considered here.

generated p-value from the test statistics will be < 0.05, when
the test is performed at 0.05% significance level. This will
result in the rejection of the null hypothesis. From the test
results provided in Table 6, we can conclude that the results
of the proposed AβBSF algorithm is found to be statistically
significant.

A meta-heuristic algorithm can fail to find the optimal
subset if (i) it cannot find the ‘promising’ area where the
optimal solution (global optima) may lie, and gets stuck in
local optima, or (ii) it fails to properly search the promising

areas discovered, and cannot converge, or (iii) both. We have
tried to address both the issues in the proposed method. The
proposed AβBSF method uses an encircling strategy [14],
that provides a hyper-sphere neighborhood around the solu-
tions. This ensures that all the possible solutions are examined
properly, both in terms of exploration and exploitation: the
two main aspects of any meta-heuristic algorithm.

In terms of the factors present in the proposed methods,
exploration is controlled by sardine population and their
diverse movement, and bandwidth of neighborhood (N ).
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Exploitation is mainly taken care by the movement of
sailfishes around best sardine, sailfish’s attack power and,
random-walk strategy in the β-operator.

VI. CONCLUSION

In this work, we have proposed binary version of SFO to solve
FS problems. To convert continuous SFO to BSF (which
is its binary variant), we have used the Sigmoid transfer
function. Besides, we have hybridized SFOwith AβHC algo-
rithm and proposed a binary hybrid meta-heuristic AβBSF
for FS. Both the proposed BSF and AβBSF methods are
applied on 18 standard UCI datasets. From the obtained
results and comparisonwith 10 state-of-the-art meta-heuristic
FS approaches, we can conclude that the proposed AβBSF
performs significantly well for solving FS problems.

Now, the proper functioning of the AβBSF algorithm
depends on the parameters of AβHC and SFO. The optimal
values of these parameters for a different set of problems
may be completely different, which would require exhaustive
experiments to determine. Therefore, it can be considered as
a limitation of the proposed method. Also, as per No Free
Lunch theorem [13], just like any other meta-heuristic opti-
mization algorithm, the AβBSF algorithm is not guaranteed
to produce the best results for all FS problems. For future
studies, we can apply the AβBSF algorithm to different real
world problems like facial emotion recognition, handwriting
recognition, script recognition, etc. It would be interesting to
hybridize BSF with other meta-heuristic algorithms as well
as hybridize AβHC with other meta-heuristic algorithms.

REFERENCES

[1] L. Xiong, R.-S. Chen, X. Zhou, and C. Jing, ‘‘Multi-feature fusion and
selectionmethod for an improved particle swarm optimization,’’ J. Ambient
Intell. Hum. Comput., vol. 2019, Dec. 2019, doi: 10.1007/s12652-019-
01624-4.

[2] H. Faris, A. A. Heidari, A. M. Al-Zoubi, M. Mafarja, I. Aljarah, M. Eshtay,
and S. Mirjalili, ‘‘Time-varying hierarchical chains of salps with ran-
dom weight networks for feature selection,’’ Expert Syst. Appl., vol. 140,
Feb. 2020, Art. no. 112898, doi: 10.1016/j.eswa.2019.112898.

[3] H. Jia, J. Li, W. Song, X. Peng, C. Lang, and Y. Li, ‘‘Spotted
hyena optimization algorithm with simulated annealing for feature selec-
tion,’’ IEEE Access, vol. 7, pp. 71943–71962, 2019, doi: 10.1109/
access.2019.2919991.

[4] G. Chandrashekar and F. Sahin, ‘‘A survey on feature selection methods,’’
Comput. Electr. Eng., vol. 40, no. 1, pp. 16–28, Jan. 2014, doi: 10.1016/j.
compeleceng.2013.11.024.

[5] C. E. Shannon, ‘‘A mathematical theory of communication,’’ Bell

Syst. Tech. J., vol. 27, no. 3, pp. 379–423, 1948, doi: 10.1002/j.1538-
7305.1948.tb01338.x.

[6] K. Kira and L. A. Rendell, ‘‘A practical approach to feature selection,’’ in
Machine Learning Proceedings. Amsterdam, The Netherlands: Elsevier,
1992, pp. 249–256, doi: 10.1016/b978-1-55860-247-2.50037-1.

[7] Z. Zheng, X. Wu, and R. Srihari, ‘‘Feature selection for text categorization
on imbalanced data,’’ ACM SIGKDD Explor. Newslett., vol. 6, no. 1,
pp. 80–89, Jun. 2004, doi: 10.1145/1007730.1007741.

[8] Q. Gu, Z. Li, and J. Han, ‘‘Generalized Fisher score for feature selection,’’
in Proc. 27th Conf. Uncertainty Artif. Intell. Arlington, Virginia, USA:
AUAI Press, 2011, pp. 266–273.

[9] X. He, D. Cai, and P. Niyogi, ‘‘Laplacian score for feature selection,’’ in
Proc. 18th Int. Conf. Neural Inf. Process. Syst. Cambridge, MA, USA:
MIT Press, 2005, p. 507–514.

[10] M. M. Mafarja and S. Mirjalili, ‘‘Hybrid whale optimization algorithm
with simulated annealing for feature selection,’’Neurocomputing, vol. 260,
pp. 302–312, Oct. 2017, doi: 10.1016/j.neucom.2017.04.053.

[11] M. Ghosh, S. Adhikary, K. K. Ghosh, A. Sardar, S. Begum, and R. Sarkar,
‘‘Genetic algorithm based cancerous gene identification from microarray
data using ensemble of filter methods,’’Med. Biol. Eng. Comput., vol. 57,
no. 1, pp. 159–176, Jan. 2019, doi: 10.1007/s11517-018-1874-4.

[12] S. Mirjalili, S. M. Mirjalili, and A. Lewis, ‘‘Grey wolf optimizer,’’
Adv. Eng. Softw., vol. 69, pp. 46–61, Mar. 2014, doi: 10.1016/j.
advengsoft.2013.12.007.

[13] D. H. Wolpert and W. G. Macready, ‘‘No free lunch theorems for opti-
mization,’’ IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 67–82, Apr. 1997,
doi: 10.1109/4235.585893.

[14] S. Shadravan, H. R. Naji, and V. K. Bardsiri, ‘‘The sailfish optimizer:
A novel nature-inspired Metaheuristic algorithm for solving constrained
engineering optimization problems,’’ Eng. Appl. Artif. Intell., vol. 80,
pp. 20–34, Apr. 2019, doi: 10.1016/j.engappai.2019.01.001.

[15] M. A. Al-Betar, I. Aljarah, M. A. Awadallah, H. Faris, and S. Mirjalili,
‘‘Adaptive β-hill climbing for optimization,’’ Soft Comput., vol. 23, no. 24,
p. 13 489–13 512, Mar. 2019, doi: 10.1007/s00500-019-03887-7.

[16] E.-G. Talbi, Metaheuristics: From Design to Implementation. Hoboken,
NJ, USA: Wiley, 2009.

[17] D. Dua and C. Graff. (2017).UCI Machine Learning Repository. [Online].
Available: http://archive.ics.uci.edu/ml

[18] R. Balamurugan, A. M. Natarajan, and K. Premalatha, ‘‘Stellar-mass
black hole optimization for biclustering microarray gene expression
data,’’ Appl. Artif. Intell., vol. 29, no. 4, pp. 353–381, Apr. 2015,
doi: 10.1080/08839514.2015.1016391.

[19] M. Gendreau and J.-Y. Potvin, ‘‘Metaheuristics in combinatorial optimiza-
tion,’’ Ann. Operations Res., vol. 140, no. 1, pp. 189–213, Nov. 2005,
doi: 10.1007/s10479-005-3971-7.

[20] I. F. Jr, X.-S. Yang, I. Fister, J. Brest, and D. Fister, ‘‘A brief review
of nature-inspired algorithms for optimization,’’ 2013, arXiv:1307.4186.
[Online]. Available: https://arxiv.org/abs/1307.4186

[21] M. Abdel-Basset, L. Abdel-Fatah, and A. K. Sangaiah, ‘‘Metaheuristic
algorithms: A comprehensive review,’’ in Computational Intelligence for
Multimedia Big Data on the Cloud with Engineering Applications. Ams-
terdam, The Netherlands: Elsevier, 2018, pp. 185–231, doi: 10.1016/b978-
0-12-813314-9.00010-4.

[22] A. F. Nematollahi, A. Rahiminejad, and B. Vahidi, ‘‘A novel meta-
heuristic optimization method based on golden ratio in nature,’’ Soft
Comput., vol. 24, no. 2, pp. 1117–1151, Jan. 2020, doi: 10.1007/s00500-
019-03949-w.

[23] L. Davis, Handbook of Genetic Algorithms. New York, NY, USA: Van
Nostrand Reinhold, 1991.

[24] W. D. Hillis, ‘‘Co-evolving parasites improve simulated evolution as
an optimization procedure,’’ Phys. D, Nonlinear Phenomena, vol. 42,
nos. 1–3, pp. 228–234, Jun. 1990, doi: 10.1016/0167-2789(90)90076-2.

[25] X. Xue, M. Yao, and R. Cheng, ‘‘A novel selection operator of cultural
algorithm,’’ in Advances in Intelligent and Soft Computing. Berlin, Ger-
many: Springer, 2011, pp. 71–77, doi: 10.1007/978-3-642-25661-5_10.

[26] J. R. Koza, Genetic Programming: On the Programming of Computers by
Means of Natural Selection. Cambridge, MA, USA: MIT Press, 1992.

[27] C. Ryan, J. Collins, and M. O. Neill, ‘‘Grammatical evolution: Evolving
programs for an arbitrary language,’’ in Genetic Programming (Lecture
Notes in Computer Science). Berlin, Germany: Springer, 1998, pp. 83–96,
doi: 10.1007/bfb0055930.

[28] D. Simon, ‘‘Biogeography-based optimization,’’ IEEE Trans.

Evol. Comput., vol. 12, no. 6, pp. 702–713, Dec. 2008, doi: 10.
1109/tevc.2008.919004.

[29] H. Salimi, ‘‘Stochastic fractal search: A powerful Metaheuristic
algorithm,’’Knowl.-Based Syst., vol. 75, pp. 1–18, Feb. 2015, doi: 10.1016/
j.knosys.2014.07.025.

[30] J. Kennedy and R. Eberhart, ‘‘Particle swarm optimization,’’ in Proc.

IEEE ICNN, vol. 4. Nov./Dec. 1995, pp. 1942–1948, doi: 10.1109/
ICNN.1995.488968.

[31] M. Dorigo, M. Birattari, and T. Stutzle, ‘‘Ant colony optimization,’’
IEEE Comput. Intell. Mag., vol. 1, no. 4, pp. 28–39, Nov. 2006,
doi: 10.1109/mci.2006.329691.

[32] M. Eusuff, K. Lansey, and F. Pasha, ‘‘Shuffled frog-leaping algorithm:
A memetic meta-heuristic for discrete optimization,’’ Eng. Optim., vol. 38,
no. 2, pp. 129–154, Mar. 2006, doi: 10.1080/03052150500384759.

[33] K. M. Passino, ‘‘Biomimicry of bacterial foraging for distributed
optimization and control,’’ IEEE Control Syst. Mag., vol. 22, no. 3,
pp. 52–67, Jun. 2002, doi: 10.1109/MCS.2002.1004010.

[34] D. Karaboga and B. Basturk, ‘‘A powerful and efficient algorithm for
numerical function optimization: Artificial bee colony (ABC) algorithm,’’
J. Global Optim., vol. 39, no. 3, pp. 459–471, Oct. 2007, doi: 10.1007/
s10898-007-9149-x.

83558 VOLUME 8, 2020

http://dx.doi.org/10.1007/s12652-019-01624-4
http://dx.doi.org/10.1007/s12652-019-01624-4
http://dx.doi.org/10.1016/j.eswa.2019.112898
http://dx.doi.org/10.1109/access.2019.2919991
http://dx.doi.org/10.1109/access.2019.2919991
http://dx.doi.org/10.1016/j.compeleceng.2013.11.024
http://dx.doi.org/10.1016/j.compeleceng.2013.11.024
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1016/b978-1-55860-247-2.50037-1
http://dx.doi.org/10.1145/1007730.1007741
http://dx.doi.org/10.1016/j.neucom.2017.04.053
http://dx.doi.org/10.1007/s11517-018-1874-4
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1016/j.engappai.2019.01.001
http://dx.doi.org/10.1007/s00500-019-03887-7
http://dx.doi.org/10.1080/08839514.2015.1016391
http://dx.doi.org/10.1007/s10479-005-3971-7
http://dx.doi.org/10.1016/b978-0-12-813314-9.00010-4
http://dx.doi.org/10.1016/b978-0-12-813314-9.00010-4
http://dx.doi.org/10.1007/s00500-019-03949-w
http://dx.doi.org/10.1007/s00500-019-03949-w
http://dx.doi.org/10.1016/0167-2789(90)90076-2
http://dx.doi.org/10.1007/978-3-642-25661-5_10
http://dx.doi.org/10.1007/bfb0055930
http://dx.doi.org/10.1109/tevc.2008.919004
http://dx.doi.org/10.1109/tevc.2008.919004
http://dx.doi.org/10.1016/j.knosys.2014.07.025
http://dx.doi.org/10.1016/j.knosys.2014.07.025
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1109/mci.2006.329691
http://dx.doi.org/10.1080/03052150500384759
http://dx.doi.org/10.1109/MCS.2002.1004010
http://dx.doi.org/10.1007/s10898-007-9149-x
http://dx.doi.org/10.1007/s10898-007-9149-x


K. K. Ghosh et al.: Improved Binary Sailfish Optimizer

[35] X.-S. Yang, ‘‘Firefly algorithms for multimodal optimization,’’ in
Stochastic Algorithms: Foundations and Applications. Berlin, Germany:
Springer, 2009, pp. 169–178, doi: 10.1007/978-3-642-04944-6_14.

[36] A. Askarzadeh, ‘‘A novel Metaheuristic method for solving constrained
engineering optimization problems: Crow search algorithm,’’
Comput. Struct., vol. 169, pp. 1–12, Jun. 2016, doi: 10.1016/j.
compstruc.2016.03.001.

[37] S. Mirjalili and A. Lewis, ‘‘The whale optimization algorithm,’’
Adv. Eng. Softw., vol. 95, pp. 51–67, May 2016, doi: 10.1016/j.
advengsoft.2016.01.008.

[38] S. Saremi, S. Mirjalili, and A. Lewis, ‘‘Grasshopper optimisation
algorithm: Theory and application,’’ Adv. Eng. Softw., vol. 105, pp. 30–47,
Mar. 2017, doi: 10.1016/j.advengsoft.2017.01.004.

[39] M. Jain, V. Singh, and A. Rani, ‘‘A novel nature-inspired algorithm for
optimization: Squirrel search algorithm,’’ Swarm Evol. Comput., vol. 44,
pp. 148–175, Feb. 2019, doi: 10.1016/j.swevo.2018.02.013.

[40] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, ‘‘Optimization by
simulated annealing,’’ Science, vol. 220, no. 4598, pp. 671–680, 1983,
doi: 10.1126/science.220.4598.671.

[41] P. J. M. van Laarhoven and E. H. L. Aarts, ‘‘Simulated annealing,’’ in Sim-
ulated Annealing: Theory and Applications. Amsterdam, The Netherlands:
Springer, 1987, pp. 7–15, doi: 10.1007/978-94-015-7744-1_2.

[42] E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, ‘‘GSA: A gravitational
search algorithm,’’ Inf. Sci., vol. 179, no. 13, pp. 2232–2248, Jun. 2009,
doi: 10.1016/j.ins.2009.03.004.

[43] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet,
‘‘Novel type of phase transition in a system of self-driven particles,’’
Phys. Rev. Lett., vol. 75, no. 6, pp. 1226–1229, Aug. 1995, doi:
10.1103/physrevlett.75.1226.

[44] Z. Woo Geem, J. Hoon Kim, and G. V. Loganathan, ‘‘A new heuristic
optimization algorithm: Harmony search,’’ Simulation, vol. 76, no. 2,
pp. 60–68, Feb. 2001, doi: 10.1177/003754970107600201.

[45] A. Hatamlou, ‘‘Black hole: A new heuristic optimization approach
for data clustering,’’ Inf. Sci., vol. 222, pp. 175–184, Feb. 2013,
doi: 10.1016/j.ins.2012.08.023.

[46] S. Mirjalili, ‘‘SCA: A sine cosine algorithm for solving optimization
problems,’’ Knowl.-Based Syst., vol. 96, pp. 120–133, Mar. 2016,
doi: 10.1016/j.knosys.2015.12.022.

[47] S. Mirjalili, S. M. Mirjalili, and A. Hatamlou, ‘‘Multi-verse optimizer:
A nature-inspired algorithm for global optimization,’’ Neural Comput.
Appl., vol. 27, no. 2, pp. 495–513, Feb. 2016, doi: 10.1007/s00521-015-
1870-7.

[48] A. Husseinzadeh Kashan, R. Tavakkoli-Moghaddam, and M. Gen,
‘‘Find-Fix-Finish-Exploit-Analyze (F3EA) meta-heuristic algorithm:
An effective algorithm with new evolutionary operators for global
optimization,’’ Comput. Ind. Eng., vol. 128, pp. 192–218, Feb. 2019,
doi: 10.1016/j.cie.2018.12.033.

[49] R. V. Rao, V. J. Savsani, and D. P. Vakharia, ‘‘Teaching–learning-
based optimization: A novel method for constrained mechanical design
optimization problems,’’ Comput.-Aided Des., vol. 43, no. 3, pp. 303–315,
Mar. 2011, doi: 10.1016/j.cad.2010.12.015.

[50] T. Ray and K. M. Liew, ‘‘Society and civilization: An optimization algo-
rithm based on the simulation of social behavior,’’ IEEE Trans. Evol. Com-
put., vol. 7, no. 4, pp. 386–396, Aug. 2003, doi: 10.1109/tevc.2003.814902.

[51] A. Husseinzadeh Kashan, ‘‘League championship algorithm
(LCA): An algorithm for global optimization inspired by sport
championships,’’ Appl. Soft Comput., vol. 16, pp. 171–200, Mar. 2014,
doi: 10.1016/j.asoc.2013.12.005.

[52] Y. Tan and Y. Zhu, ‘‘Fireworks algorithm for optimization,’’ in Advances
in Swarm Intelligence (Lecture Notes in Computer Science). Berlin, Ger-
many: Springer, 2010, pp. 355–364, doi: 10.1007/978-3-642-13495-1_44.

[53] A. Kaveh, ‘‘Tug of war optimization,’’ in Advances in Metaheuristic

Algorithms for Optimal Design of Structures. Cham, Switzerland:
Springer, Nov. 2016, pp. 451–487, doi: 10.1007/978-3-319-46173-1_15.

[54] R. Moghdani and K. Salimifard, ‘‘Volleyball premier league
algorithm,’’ Appl. Soft Comput., vol. 64, pp. 161–185, Mar. 2018,
doi: 10.1016/j.asoc.2017.11.043.

[55] R. Leardi, ‘‘Application of genetic algorithm-PLS for feature selection in
spectral data sets,’’ J. Chemometrics, vol. 14, nos. 5–6, pp. 643–655,
Sep. 2000, doi: 10.1002/1099-128x(200009/12)14:5/6<643::aid-
cem621>3.0.co;2-e.

[56] P. Ghamisi and J. A. Benediktsson, ‘‘Feature selection based on hybridiza-
tion of genetic algorithm and particle swarm optimization,’’ IEEE Geosci.
Remote Sens. Lett., vol. 12, no. 2, pp. 309–313, Feb. 2015, doi: 10.1109/
lgrs.2014.2337320.

[57] J. Huang, Y. Cai, and X. Xu, ‘‘A hybrid genetic algorithm for feature
selection wrapper based on mutual information,’’ Pattern Recognit.

Lett., vol. 28, no. 13, pp. 1825–1844, Oct. 2007, doi: 10.1016/
j.patrec.2007.05.011.

[58] S. Oreski and G. Oreski, ‘‘Genetic algorithm-based heuristic for feature
selection in credit risk assessment,’’ Expert Syst. Appl., vol. 41, no. 4,
pp. 2052–2064, Mar. 2014, doi: 10.1016/j.eswa.2013.09.004.

[59] B. Chakraborty, ‘‘Feature subset selection by particle swarm optimization
with fuzzy fitness function,’’ in Proc. 3rd Int. Conf. Intell. Syst. Knowl.
Eng., Nov. 2008, pp. 1038–1042, doi: 10.1109/iske.2008.4731082.

[60] S. Lee, S. Soak, S. Oh,W. Pedrycz, andM. Jeon, ‘‘Modified binary particle
swarm optimization,’’ Prog. Natural Sci., vol. 18, no. 9, pp. 1161–1166,
Sep. 2008, doi: 10.1016/j.pnsc.2008.03.018.

[61] X.Wang, J. Yang, X. Teng,W. Xia, and R. Jensen, ‘‘Feature selection based
on rough sets and particle swarm optimization,’’ Pattern Recognit. Lett.,
vol. 28, no. 4, pp. 459–471, Mar. 2007, doi: 10.1016/j.patrec.2006.09.003.

[62] L. Ke, Z. Feng, and Z. Ren, ‘‘An efficient ant colony optimization approach
to attribute reduction in rough set theory,’’ Pattern Recognit. Lett., vol. 29,
no. 9, pp. 1351–1357, Jul. 2008, doi: 10.1016/j.patrec.2008.02.006.

[63] E.-G. Talbi, ‘‘Taxonomy of hybrid metaheuristics,’’ J. Heuristics, vol. 8,
no. 5, pp. 541–564, 2002, doi: 10.1023/a:1016540724870.

[64] I.-S. Oh, J.-S. Lee, and B.-R. Moon, ‘‘Hybrid genetic algorithms for
feature selection,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 26,
no. 11, pp. 1424–1437, Nov. 2004, doi: 10.1109/tpami.2004.105.

[65] O. C. Martin and S. W. Otto, ‘‘Combining simulated annealing with local
search heuristics,’’ Ann. Oper. Res., vol. 63, no. 1, pp. 57–75, Feb. 1996,
doi: 10.1007/bf02601639.

[66] M. Ghosh, T. Kundu, D. Ghosh, and R. Sarkar, ‘‘Feature selection
for facial emotion recognition using late hill-climbing based memetic
algorithm,’’ Multimedia Tools Appl., vol. 78, no. 18, pp. 25753–25779,
Sep. 2019, doi: 10.1007/s11042-019-07811-x.

[67] M. Mafarja and S. Abdullah, ‘‘Investigating memetic algorithm in solving
rough set attribute reduction,’’ Int. J. Comput. Appl. Technol., vol. 48,
no. 3, p. 195, 2013, doi: 10.1504/ijcat.2013.056915.

[68] M. Tubishat, N. Idris, L. Shuib, M. A. M. Abushariah, and
S. Mirjalili, ‘‘Improved salp swarm algorithm based on opposition
based learning and novel local search algorithm for feature
selection,’’ Expert Syst. Appl., vol. 145, May 2020, Art. no. 113122,
doi: 10.1016/j.eswa.2019.113122.

[69] J. Jona and N. Nagaveni, ‘‘A hybrid swarm optimization approach for
feature set reduction in digital mammograms,’’ WSEAS Trans. Inf. Sci.
Appl., vol. 9, pp. 340–349, 2012.

[70] Q. Al-Tashi, S. J. Abdul Kadir, H. M. Rais, S. Mirjalili, and H.
Alhussian, ‘‘Binary optimization using hybrid grey wolf optimization
for feature selection,’’ IEEE Access, vol. 7, pp. 39496–39508, 2019, doi:
10.1109/access.2019.2906757.

[71] X. Lai and M. Zhang, ‘‘An efficient ensemble of GA and PSO for real
function optimization,’’ in Proc. 2nd IEEE Int. Conf. Comput. Sci. Inf.

Technol., 2009, pp. 651–655, doi: 10.1109/iccsit.2009.5234780.
[72] M. E. Basiri and S. Nemati, ‘‘A novel hybrid ACO-GA algorithm for

text feature selection,’’ in Proc. IEEE Congr. Evol. Comput., May 2009,
pp. 2561–2568, doi: 10.1109/cec.2009.4983263.

[73] E. Zorarpacć and S. A. Özel, ‘‘A hybrid approach of differential evolution
and artificial bee colony for feature selection,’’ Expert Syst. Appl., vol. 62,
pp. 91–103, Nov. 2016, doi: 10.1016/j.eswa.2016.06.004.

[74] M. A. Al-Betar, ‘‘β-Hill climbing: An exploratory local search,’’
Neural Comput. Appl., vol. 28, no. S1, pp. 153–168, Dec. 2017,
doi: 10.1007/s00521-016-2328-2.

[75] M. Mahdavi, M. Fesanghary, and E. Damangir, ‘‘An improved
harmony search algorithm for solving optimization problems,’’
Appl. Math. Comput., vol. 188, no. 2, pp. 1567–1579, May 2007,
doi: 10.1016/j.amc.2006.11.033.

[76] S. Mirjalili and A. Lewis, ‘‘S-shaped versus V-shaped transfer functions
for binary particle swarm optimization,’’ Swarm Evol. Comput., vol. 9,
pp. 1–14, Apr. 2013, doi: 10.1016/j.swevo.2012.09.002.

[77] N. S. Altman, ‘‘An introduction to kernel and nearest-neighbor
nonparametric regression,’’ Amer. Statistician, vol. 46, no. 3, p. 175,
Aug. 1992, doi: 10.2307/2685209.

[78] M. Mafarja, A. Qasem, A. A. Heidari, I. Aljarah, H. Faris, and
S. Mirjalili, ‘‘Efficient hybrid nature-inspired binary optimizers for
feature selection,’’Cognit. Comput., vol. 12, no. 1, pp. 150–175, Jan. 2020,
doi: 10.1007/s12559-019-09668-6.

[79] E. Emary, H. M. Zawbaa, and A. E. Hassanien, ‘‘Binary grey wolf
optimization approaches for feature selection,’’ Neurocomputing, vol. 172,
pp. 371–381, Jan. 2016, doi: 10.1016/j.neucom.2015.06.083.

VOLUME 8, 2020 83559

http://dx.doi.org/10.1007/978-3-642-04944-6_14
http://dx.doi.org/10.1016/j.compstruc.2016.03.001
http://dx.doi.org/10.1016/j.compstruc.2016.03.001
http://dx.doi.org/10.1016/j.advengsoft.2016.01.008
http://dx.doi.org/10.1016/j.advengsoft.2016.01.008
http://dx.doi.org/10.1016/j.advengsoft.2017.01.004
http://dx.doi.org/10.1016/j.swevo.2018.02.013
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1007/978-94-015-7744-1_2
http://dx.doi.org/10.1016/j.ins.2009.03.004
http://dx.doi.org/10.1103/physrevlett.75.1226
http://dx.doi.org/10.1177/003754970107600201
http://dx.doi.org/10.1016/j.ins.2012.08.023
http://dx.doi.org/10.1016/j.knosys.2015.12.022
http://dx.doi.org/10.1007/s00521-015-1870-7
http://dx.doi.org/10.1007/s00521-015-1870-7
http://dx.doi.org/10.1016/j.cie.2018.12.033
http://dx.doi.org/10.1016/j.cad.2010.12.015
http://dx.doi.org/10.1109/tevc.2003.814902
http://dx.doi.org/10.1016/j.asoc.2013.12.005
http://dx.doi.org/10.1007/978-3-642-13495-1_44
http://dx.doi.org/10.1007/978-3-319-46173-1_15
http://dx.doi.org/10.1016/j.asoc.2017.11.043
http://dx.doi.org/10.1002/1099-128x(200009/12)14:5/6<643::aid-cem621>3.0.co;2-e
http://dx.doi.org/10.1002/1099-128x(200009/12)14:5/6<643::aid-cem621>3.0.co;2-e
http://dx.doi.org/10.1109/lgrs.2014.2337320
http://dx.doi.org/10.1109/lgrs.2014.2337320
http://dx.doi.org/10.1016/j.patrec.2007.05.011
http://dx.doi.org/10.1016/j.patrec.2007.05.011
http://dx.doi.org/10.1016/j.eswa.2013.09.004
http://dx.doi.org/10.1109/iske.2008.4731082
http://dx.doi.org/10.1016/j.pnsc.2008.03.018
http://dx.doi.org/10.1016/j.patrec.2006.09.003
http://dx.doi.org/10.1016/j.patrec.2008.02.006
http://dx.doi.org/10.1023/a:1016540724870
http://dx.doi.org/10.1109/tpami.2004.105
http://dx.doi.org/10.1007/bf02601639
http://dx.doi.org/10.1007/s11042-019-07811-x
http://dx.doi.org/10.1504/ijcat.2013.056915
http://dx.doi.org/10.1016/j.eswa.2019.113122
http://dx.doi.org/10.1109/access.2019.2906757
http://dx.doi.org/10.1109/iccsit.2009.5234780
http://dx.doi.org/10.1109/cec.2009.4983263
http://dx.doi.org/10.1016/j.eswa.2016.06.004
http://dx.doi.org/10.1007/s00521-016-2328-2
http://dx.doi.org/10.1016/j.amc.2006.11.033
http://dx.doi.org/10.1016/j.swevo.2012.09.002
http://dx.doi.org/10.2307/2685209
http://dx.doi.org/10.1007/s12559-019-09668-6
http://dx.doi.org/10.1016/j.neucom.2015.06.083


K. K. Ghosh et al.: Improved Binary Sailfish Optimizer

[80] G. van Rossum and F. L. Drake, The Python Language Reference Manual.
Boston, MA, USA: Network Theory Ltd., 2011.

[81] J. D. Hunter, ‘‘Matplotlib: A 2D graphics environment,’’ Comput. Sci.
Eng., vol. 9, no. 3, pp. 90–95, 2007, doi: 10.1109/MCSE.2007.55.

[82] M. Mafarja and S. Mirjalili, ‘‘Whale optimization approaches for wrapper
feature selection,’’ Appl. Soft Comput., vol. 62, pp. 441–453, Jan. 2018,
doi: 10.1016/j.asoc.2017.11.006.

[83] F. Wilcoxon, Individual Comparisons by Ranking Methods (Springer
Series in Statistics). New York, NY, USA: Springer, 1992, pp. 196–202,
doi: 10.1007/978-1-4612-4380-9_16.

KUSHAL KANTI GHOSH is currently pursuing
the undergraduate degree in computer science and
engineering with Jadavpur University, Kolkata,
India. His areas of interests include machine
learning, optimization, game theory, and image
processing.

SHAMEEM AHMED is currently pursuing the
sophomore undergraduate degree in computer sci-
ence and engineering with Jadavpur University,
Kolkata, India. His areas of interests include
machine learning, optimization, game theory, and
image processing.

PAWAN KUMAR SINGH (Member, IEEE)
received the B.Tech. degree in information tech-
nology from the West Bengal University of Tech-
nology, in 2010, the M.Tech. degree in computer
science and engineering and the Ph.D. degree
in engineering from Jadavpur University (J.U.),
in 2013 and 2018, respectively. He also received
RUSA 2.0 Fellowship for pursuing the Ph.D.
degree with J.U., in 2019. He is currently work-
ing as an Assistant Professor with the Department

of Information Technology, J.U. He has published more than 50 research
articles in peer-reviewed journals and international conferences. His areas of
current research interests are computer vision, pattern recognition, handwrit-
ten document analysis, image processing, machine learning, and artificial
intelligence. He is a member of The Institution of Engineers (India) and
Association for Computing Machinery (ACM) as well as a Life Member of
the Indian Society for Technical Education (ISTE, NewDelhi) and Computer
Society of India (CSI).

ZONG WOO GEEM (Member, IEEE) received
the B.Eng. degree from Chung-Ang University,
the Ph.D. degree from Korea University, and the
M.Sc. degree from Johns Hopkins University.
He was a Researcher with Virginia Tech, Univer-
sity ofMaryland, College Park, and Johns Hopkins
University. He is currently an Associate Professor
with the Department of Energy IT, Gachon Uni-
versity, South Korea. He invented a music-inspired
optimization algorithm, Harmony Search, which

has been applied to various scientific and engineering problems. His research
interest includes phenomenon-mimicking algorithms and their applications
to energy, environment, and water fields. He has served for various journals
as an Editor (an Associate Editor for the Engineering Optimization, a Guest
Editor for the Swarm and Evolutionary Computation, the International

Journal of Bio-Inspired Computation, the Journal of Applied Mathematics,
Applied Sciences, Complexity, and Sustainability).

RAM SARKAR (Senior Member, IEEE) received
the B.Tech. degree in computer science and engi-
neering from the University of Calcutta, in 2003,
the M.E. degree in computer science and engi-
neering, and the Ph.D. degree in engineering from
Jadavpur University, in 2005 and 2012, respec-
tively. He joined the Department of Computer
Science and Engineering with Jadavpur Univer-
sity as an Assistant Professor, in 2008, where
he is currently working as an Associate Profes-

sor. He received the Fulbright-Nehru Fellowship (USIEF) for Postdoctoral
Research with the University of Maryland, College Park, USA, from 2014 to
2015. His areas of current research interests are image processing, pattern
recognition, machine learning, and bioinformatics.

83560 VOLUME 8, 2020

http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1016/j.asoc.2017.11.006
http://dx.doi.org/10.1007/978-1-4612-4380-9_16

