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ABSTRACT Symbiotic Organism Search (SOS) algorithm is highly praised by researchers for its excellent

convergence performance, global optimization ability and simplicity in solving various continuous practical

problems. However, in the real world, there are many binary problems, which can only take values of 0 and

1, that still need to be solved. Since the original SOS algorithm cannot directly solve the binary problem, the

original ASOS Binary SOS (BSOS) algorithm has the disadvantage of premature convergence. In order to

improve the limitations of the ASBSOS algorithm, we propose an Improved BSOS (IBSOS) algorithm.

As we all know, the transfer function is very important in the binarization of continuous optimization

algorithms. Therefore, we used 9 transfer functions in the IBSOS algorithm to binarize the continuous SOS

algorithm and analyzed the impact of each transfer function on the performance of the BSOS algorithm.

Moreover, we use the same three biological symbiosis strategies as the continuous SOS algorithm in

our proposed IBSOS algorithm to binarize the SOS algorithm to improve The diversity of the algorithm

execution process and the ability to balance algorithm exploration and development. In order to verify the

performance of IBSOS using different transfer functions, we use 13 benchmark functions to show the global

optimization capability and convergence speed of the BSOS algorithm. Finally, we apply the algorithm to

feature selection in the ten data sets of UCI. The experimental results with low classification error and few

features further verify the excellent performance of the IBSOS algorithm.

INDEX TERMS Binary Symbiotic Organism Search, transfer function, swarm intelligence, feature

selection

I. INTRODUCTION

I
N today’s huge information systems, thousands of pro-

grams are constantly generating a large number of

datasets. Application personnel utilize various analysis meth-

ods to select valuable data information from the generated

datasets, such as neural networks [1], data mining and analy-

sis [2], etc. Many functions applied to pattern recognition and

machine learning are redundant and unimportant. However,

without prior conditions, it is difficult for us to require the

computer to automatically recognize. In this case, it is crucial

to select some imperative features in the dataset from the

original features to reduce the dimensionality of the data, and

the feature selection that requires the selected subset to have

higher accuracy [3].

Feature selection algorithms are generally divided into

three types: Filter, Wrapper, and Embedded [4]. The Filter

method first selects features from the dataset and then trains

the model [5]. The feature selection process has nothing to

do with subsequent model training [6]. The Wrapper method

directly uses the performance of the model to be finally used

as the evaluation standard of the feature subset. The purpose

of the wrapped feature selection is to select the feature subset,

it is most beneficial to the performance of a given model

[7]. The embedded method is a combination of the feature

selection process and the model training process. Both are

completed in the same optimization process, which means

the feature selection is automatically performed during the

model training process. In general, feature selection can be

viewed as a search optimization problem. For a feature set of

size n, the search space consists of 2n − 1 possible states.
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Davies et al. proved that the search of the smallest feature

subset is an NP -hard problem, that is, in addition to an

exhaustive search, it cannot guarantee to find the optimal

solution. However, in practical application, when the number

of features is too large to perform an exhaustive search,

people will change the strategy and use a heuristic search

algorithm to find the optimal alternative solution within a

certain period of time. [8].

In recent decades, as the need to find the optimal alterna-

tive solution has continued to increase [9], such as supply

chain problem [10–12], Traveling Salesman Problem (TSP)

[13, 14], transportation planning problem, etc. Meta-heuristic

evolutionary algorithms, also known as Evolutionary Com-

putation (EC) [15], have developed rapidly. When we need

the maximum or minimum value of a function, we usually

apply the gradient descent method [16]. However, when the

data dimension increases, the calculation is extremely time-

consuming and even incomplete. Some problems in real life

is not differentiable, so the method of gradient descent is

not universally applicable [17–19]. Therefore, we need to

use EC to obtain the maximum value of these complex

functions [20]. EC is divided into three categories: Evolu-

tionary Algorithm (EA) [21], Swarm Intelligence (SI) [22–

26], and Memetic Calculation (MC). Where SI is a variety

of algorithms generated through the stimulation of various

natural phenomena or laws. Particle Swarm Optimization

(PSO) [27] is a classic algorithm inspired by birds flying

and foraging in a specific space [28–31]. Ant Colony Algo-

rithm (ACO) is a simulation of ant colony foraging behavior

widely used in path planning problems [32–34]. The QUasi-

Affine TRansformation Evolutionary (QUATRE) algorithm

is inspired by the process of quasi-affine transformation in

geometry [35–39]. Cat Swarm Optimization (CSO) [40–

43] is inspired by the process of cats preying on prey. SI

also includes Cuckoo Algorithm (CA) [44, 45], Differential

Evolution (DE) [46–49], Artificial Bee Colony (ABC) [50–

52] and Binary PSO(BPSO) algorithm [5], etc.

The SOS algorithm is a very promising SI algorithm[53–

55]. It has state-of-the-art convergence speed and the ability

of global optimization. Because of this, it has been loved

by researchers recently. It was first proposed by Cheng and

Prayogo in 2014 [56–58]. Many researchers have continued

working to improve the performance and application sce-

narios of the original SOS [59–62]. For example, in 2017,

Ezugwu and Adewumi proposed the discrete SOS algorithm

(DSOS) for Travelling Salesman Problem (TSP) [13]. In

2020 we proposed the MQSOS algorithm Applied in Wire-

less Sensor Networks [63]. The original SOS was originally

proposed to solve continuous problems in the real world.

However, in real life, there are many binary problems that

need to be solved. Therefore, we need to binarize the SOS

algorithm to make full use of the outstanding performance

of the original SOS algorithm, enables the SOS algorithm to

solve a wider range of practical problems.

In 2019, Cao Han, Guo Zhou and Yongquan Zhou pro-

posed the BSOS algorithm with AS of transfer method and

FIGURE 1: Mutualism relationship between small tropical

fish and coral.

we call this algorithm ASBSOS in this paper, then applied

it to feature selection [64]. In order to further improve the

performance of the BSOS algorithm, we binarized the orig-

inal SOS in this paper by using multiple types of transfer

functions and observed performance analysis of our proposed

IBSOS algorithm in 13 benchmark functions. We verified and

analyzed the performance difference of the IBSOS algorithm

using nine transfer functions. Finally, we applied the IBSOS

algorithm to the practical application of feature selection.

The rest of the paper is organized as follows. Section II

briefly introduces the SOS and ASBSOS algorithm. Section

III mainly introduces our proposed IBSOS algorithm. Sec-

tion IV, we compare the difference between the ASBSOS

algorithm based on 4 transfer functions and the IBSOS al-

gorithm based on 9 transfer functions through 13 benchmark

functions. Section V, the comparison results of the IBSOS

and ASBSOS algorithm after being applied to feature selec-

tion are presented. Finally, we give conclusions and further

research plans in Section VI.

II. RELATED WORKS

A. SOS ALGORITHM

In this section, we introduce the original SOS algorithm,

which is inspired by the three coexistence relations of Mu-

tualism, Commensalism, and Parasitism among organisms in

the ecosystem. Next, we will introduce the three phases of

the SOS algorithm in detail.

1) Mutualism Phase

The mutualism phase describes the mutually beneficial sym-

biotic relationship between two organisms in the ecosystem.

Just like the relationship between the small tropical fish

and coral in FIGURE 1. Much small tropical fish use coral

branches as their refuges and nests. In exchange, corals have

"defence" and "housekeepers" and can get nutrients from fish

excreta. We describe this relationship with eq.1 - eq.4.

Xi_new = XG
i + r1 × (XG

gbest −XG
MV × b1), (1)

Xj_new = XG
j + r2 × (XG

gbest −XG
MV × b1), (2)
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FIGURE 2: The turtle’s commensalism relationship with

algae.

XG
MV =

XG
i +XG

j

2
, (3)

{

b1 = round(1 + rand(0, 1)),

b2 = round(1 + rand(0, 1)),
(4)

Where XG
i and XG

j respectively represent the position states

of the i-th creature and the i-th creature when iterating to

the G-th generation. They update their positions to Xi_new

and Xj_new according to the symbiotic relationship between

organisms, and maintain themselves to be optimal through

eq.5. r1 and r2 are a random variable between 0 and 1. XG
MV

is the central position state (also known as the relationship

state) of XG
i and XG

j , and b1 and b2 are the profit factors of

the two creatures through the Mutualism stage, respectively.

{

XG+1
i = Xi_new, if f(XG

i ) > f(Xi_new),

XG+1
j = Xj_new, if f(XG

j ) > f(Xj_new),
(5)

2) Commensalism Phase

Commensalism refers to the interaction between species that

has no effect on one party but is beneficial to the other

party (if it has no effect on one party and is harmful to the

other party, it is called partial symbiosis). Mutual beneficial

symbiosis and primitive collaboration can be called "positive

interactions". The phenomenon that two kinds of independent

living creatures live together in a certain relationship. As

shown in FIGURE 2, algae growing on the shell of the turtle

benefit from the substrate provided by the daughter turtle.

The relationship between the organisms is shown in eq.6.

{

Xi_new = XG
i + r3 × (XG

gbest −Xj),

XG+1
i = Xi_new, if f(XG

i ) > f(Xi_new),
(6)

Where r3 is a random variable between -1 and 1, f(x) is a

fitness function. In the Commensalism phase, XG
i and XG

i

interact through eq.6, but only XG
i can benefit from this

process. When the fitness value of XG
i_new is better than the

XG
i , the creature XG+1

i will update to the state of Xi_new.

3) Parasitic Phase

Parasites are two kinds of organisms living together. One

side benefits from the relationship while the other suffers.

The latter provides the former with nutrients and a place

to live. The relationship between these organisms is called

parasitism. Just like the new coronavirus that broke out in

2020, the new coronavirus is transmitted to humans through

wild animals (such as bats, civets, and other intermediate

hosts), infecting human hosts with diseases. When the human

host’s own immunity is strong enough, the virus will not be

able to affect humans. When the human host’s own immunity

is weak, humans will die from viral infection. The parasitic

relationship between organisms is shown in eq.7.











Xparasite = XG
i , randn > 0.5

Xparasite = rand(0, 1)×

(Bmax −Bmin) +Bmin, else

, (7)

XG+1
j = Xparasite, if f(Xparasite) < f(XG

j ), (8)

Where XG
i and XG

j represent the state of the virus and the

human host, Xparasite represents the state of the interme-

diate host, and Bmax and Bmin represent the range of the

biological activity interval, respectively.

The creatures update their positions through Mutualism,

Commensalism, and Parasitism until the maximum number

of iterations is reached. The SOS algorithm pseudo-code is

shown in Algorithm 1.

B. THE ASBSOS ALGORITHM

This algorithm is proposed by Cao Han, Guo Zhou and

Yongquan Zhou to binarize the continuous SOS algorithm by

AS transfer. Only four S-shaped transfer functions are used

in the transfer process. We have a description in Section III,

corresponding to its S2, S3, S4 and S5. We take the transfer

function S3 in Table 1 as an example. The transfer method of

this AS is shown in the following eqs.9-11 [64].

AS(xt
i) =

1

1 + e
−xt

I
A

(9)

A = (1−
t

T
)× Tmax +

t

T
× Tmin (10)

xt+1
i =

{

0, if rand < AS(xt
i)

1, else
(11)

Where t represents the current number of iterations, and T
represents the maximum number of iterations we set. In the

article [64], Tmax and Tmin are control parameters, set to 4

and 0.01 respectively.
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Algorithm 1 Shows the Pseudo Code of SOS Algorithm.

1: Set the size of the biological population to ps, the maxi-

mum and minimum values of the boundary to Bmax and

Bmin, the maximum number of iterations to iterMax,

and the current iteration currentIter number is 1.

2: //initialization Initialize the position matrix X of

the population and calculate the optimal value matrix

F of each creature in the population through the fitness

function, and calculate the global optimal position Gbest
and the global optimal value of Gfit.

3: //MainLoop

4: for currentIter = 1 : iterMax do

5: for i = 1 : ps do

6: /* Mutualism*/

7: Randomly select a creature Xj to interact with

Xi for Mutualism stage by eq 1 to 5.

8: /* Commensalism*/

9: Randomly select a creature Xj to interact with

Xi for Commensalism stage by eq 6.

10: /* Parasitism*/

11: Randomly select a creature Xj to interact with

Xi for Parasitism stage by eq 7 to 8.

12: end for

13: Calculate the current global optimal creature Gbest
and its optimal value Gfit.

14: end for

Ensure: The global optimum Gbest, global best fitness

value Gfit.

III. OUR PROPOSED IBSOS ALGORITHM WITH

MULTIPLE TYPES OF TRANSFER FUNCTIONS

In order to distinguish the binary method for the SOS al-

gorithm, we call the original BSOS algorithm the ASBSOS

algorithm in this paper. We can clearly see from Section

2.2 that in the process of binarizing the continuous SOS

algorithm, the ASBSOS algorithm only relies on the position

status of the organism itself for binarization. However, in the

idea of the original SOS algorithm, the process of optimiza-

tion relies on three coexistence relationships between living

things. The coexistence of these three creatures is not well

reflected in the ASBSOS algorithm. In order to make full use

of the optimization ideas in the original SOS, we proposed

the Improved Binary Symbiotic Organism Search (IBSOS)

algorithm in this paper.

In SOS, because particles can choose any point in the

search space to be the current state of the creature, the

algorithm can be easily implemented. However, in the binary

problem, the value of each dimension of the creature can only

be 1 or 0, so the original formula cannot be used to update

the position of the creature. Therefore, we will introduce the

binarization of the three biological symbiotic stages of SOS.

A. MUTUALISM SYMBIOSIS STRATEGY OF BSOS

ALGORITHM

The BSOS algorithm uses the same strategy to find the

parameters b1, b2 and the intermediate position Xmv between

the organisms through eq 3 and eq 4. Then, we obtain the

value of si and si by using an S-type function, as shown in

eq.12.






sdi = 1

1+e
−10(Cd

i
−0.5)

sdj = 1

1+e
−10(Cd

j
−0.5)

, (12)

where Ci and Cj are vector of transfer variables, and d
represents the value of the d-th dimension,as shown in eq.13.

{

Cd
i = r1 × (XG,d

gbest −X
G,d
MV × b1)

Cd
j = r2 × (XG,d

gbest −X
G,d
MV × b2)

(13)

The values of bstepi and bstepj can be calculated by

eqs.14-15. After the above steps, the value we get will not be

a continuous value but will be converted into a binary value.

bstepdi =

{

1 if(sdi > randn)

0 else
(14)

bstepdj =

{

1 if(sdj > randn)

0 else
(15)

Where randn is a random number that obeys a uniform

distribution between 0 and 1. bstepdi represents the distance

that the i-th creature needs to move in the d-th dimension,

so the formula for the movement of the creature in the

Mutualism phase is shown in eq.16.

Xd
i_new =

{

1 Xd
i + bstepdi ≥ 1

0 else
(16)

Xi_new is the position searched by creature Xi, and

Xj_new can also be calculated by eq.16. We use eq.5 to keep

the creature in the optimal position.

B. COMMENSALISM AND PARASITISM STRATEGIES OF

BSOS ALGORITHM

In the commensalism phase, since only one creature can

benefit from the interaction between the creatures, at this

stage, only the creature Xi can randomly select a creature

Xj in the population to interact. Then, the creature can

continuously search and update to a better position in the

search space. We first get the value of si through the sigmoid

transfer function as shown in eq.17.

{

sdi = 1

1+e
−10(Cd

i
−0.5)

Cd
i = r3 × (XG,d

gbest −Xd
j )

, (17)

Where r3 has the same meaning as r3 in eq.6. To find the

value of si, we can also get the value of bstepi through eq.14,

and finally update the position of the creature Xi through

eq.14 and eq.16.
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TABLE 1: The details of five S-type transfer functions.

Name Transferfunction

S1 1/(1 + e−10(x−0.5)
S2 1/(1 + e−2x)
S3 1/(1 + e−x)

S4 1/(1 + e−x/2)

S5 1/(1 + e−x/3)

In the commensalism phase, because the benefit of one

organism is usually based on the harm of another organism,

Xparasite is calculated as shown in eqs.18-20.
{

Xd
parasite = X

G,d
i randn > 0.5

Xd
parasite = bstepd else

, (18)

sd =
1

1 + e−10((−1+2×randn)−0.5)
(19)

bstepd =

{

1 if(sd > randn)

0 else
(20)

We use the three biological symbiosis relationships of the

original SOS algorithm to calculate the size of the transfer

function value sd. The larger the value, the higher the proba-

bility of obtaining 1 in a certain dimension (bstepd) in the

solution space. When the value is smaller, the probability

that bstepd takes 0 is higher. Three sd calculation methods

are used to improve the diversity of the algorithm in the

solution space. In this way, compared to the original BSOS

algorithm (or ASBSOS algorithm), our proposed algorithm

has the advantage of jumping out of the local optimum and

avoiding premature convergence of the algorithm.

C. OTHER TRANSFER FUNCTIONS

In the binary SOS algorithm, continuous values are mapped

to continuous values between 0 and 1 by a transfer function

and then binarized according to probability. This method

retains the performance of the original SOS and enables the

particle point (biological) to move in the binary space. In

Section III-A and Section III-B, we used to binarize the S1-

type curve function. In this section, we will introduce the

other four S-type and four V-type transfer function curves.

In the original BSOS paper, the author used only the four

transfer formulas S2, S3, S4, and S5 for binarization. This

time we added five transfer functions, S1 and V1 − V4, to

compare the performance of BSOS.

Table 1 shows all the S-type transfer functions, and Table

2 shows all the V-type functions. At the same time, we show

all the S-shaped and V-shaped function images in FIGURE

3(a) and FIGURE 3(b) respectively.

From FIGURE 3(a), we can see that when x tends to

negative infinity, these S-shaped curves tend to be 0. When

x tends to positive infinity, the value tends to 1, and the

function near x is equal to 0. The trend of image change

is rising rapidly. From FIGURE 3(b), we can see that for

the V -shaped transfer function curve, when x is equal to 0,

the value of the transfer function is 0, and the value of the

TABLE 2: The details of four V-type transfer functions.

Name Transferfunction

V1 | 2
π

∫ (
√

π/2)x
−0 et

2
dt|

V2 |tanh(x)/tanh(4)|
V3 |

√
17x/(4

√
1 + x2)|

V4 arctan( 2
π
)/arctan(2π)

transfer function tends to 1 when x goes to positive infinity

and negative infinity.

The pseudo-code of the BSOS algorithm is shown in

Algorithm 2, and the specific execution flow of the algorithm

is shown below.

Step 1: Set the parameters used by the algorithm, such as

the population size ps, the maximum number of iterations

maxIter, and select the binary transfer function used by the

algorithm.

Step 2: Initialize the biological population position X, and

calculate the optimal value F of each creature according to

the fitness function, and set the current iteration number Iter
to 1.

Step 3: Randomly select creatures Xi and Xj , and per-

form interactions between creatures in the Mutualism stage

according to eq.5 and eqs.12-20. The creatures interact in the

commensalism phase according to eq.6, eq.14, and eqs.16-

17. The parasitic between organisms is realized by eqs.18 -

20. Update the creature’s position through the above three

stages to complete one iteration.

Step 4: Repeat Step 3 until the maximum number of

iterations is met.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we will use 13 benchmark functions to verify

the exploration and exploitation capabilities of our proposed

BSOS algorithm with multiple types of transfer functions.

Where the 13 benchmark functions, there are 7 unimodal

functions, 6 multimodal functions. In the unimodal function,

there is only one globally optimal solution and there is no

local trap (local optimal solution). We can use this function to

test the convergence speed of the algorithm. The multimodal

function includes not only a globally optimal solution but

also one or more local optimal solutions. We can use the

multimodal function to test whether the algorithm has a

strong ability to break out of local traps and avoid premature

convergence. Tables 3 - 4 describe these different types of

functions. In the table, "Name" represents the name of the

function, "No." represents the simplified representation of

the function, "Dim" represents the dimension of the function,

and "Space" represents the boundary of the search space for

the function, fmin represents the optimal value (minimum

value) of the function we know.

A. EXPERIMENTAL RESULTS

In order to verify the performance of our proposed BSOS

algorithm and the effectiveness of various S-type and V-type

transfer functions, we performed simulation experiments on

VOLUME 4, 2016 5
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FIGURE 3: Transfer function curve.

TABLE 3: Unimodal benchmark functions.

No. Name Function Dim Space fmin

f1 Sphere
∑n

i=1 x
2
i 30 [-100,100] 0

f2 Schwefel’s function 2.21
∑n

i=1 |xi|+
∏n

i=1 |xi| 30 [-10,10] 0

f3 Schwefel’s function 1.2
∑n

i=1(
∑i

j−1 xj)
2 30 [-100,100] 0

f4 Schwefel’s function 2.22 maxi{|xi|, 1 6 i 6 n} 30 [-100,100] 0

f5 Rosenbrock
∑n−1

i=1 [100(xi+1 − x2
i )

2 − (xi − 1)2] 30 [-30,30] 0

f6 Step
∑n

i=1(xi + 0.5)2 30 [-100,100] 0

f7 Dejong’s noisy
∑n

i=1 ix
4
i + random[0, 1) 30 [-100,100] 0

TABLE 4: Multimodal benchmark functions.

No. Name Function Dim Space fmin

f8 Schwefel
∑n

i=1 −xisin(
√

|xi|) 30 [-500,500] -125969

f9 Rastringin
∑n

i=1[x
2
i − 10cos(2πxi) + 10] 30 [-5.12,5.12] 0

f10 Ackley −20e
−0.2

√

1
n

∑

n
i=1 x2

i

−e
1
n

∑n
i=1 cos(2πxi) + 20 + e

30 [-32,32] 0

f11 Griewank 1
4000

∑n
i=1 x

2
i −

∏n
i=1 cos(

x[i]
√

i
) + 1 30 [-600,600] 0

f12 Generalized penalized 1

π
n
{10sin(πyi) +

∑n−1
i=1 (yi − 1)2

×[1 + 10sin2(πyi+1)]+
(yn − 1)2}+

∑n
i=1 u(xi, 10, 100, 4)

yi = 1 + xi+1
4

u(xi, a, k,m) =










k(xi − a)m xi > a

0 − a < xi < a

k(−xi − a)m xi < −a

30 [-50,50] 0

f13 Generalized penalized 2

0.1{sin2(3πx1) +
∑n

i=1(xi − 1)2

×[1 + sin2(3πxi + 1)]
+(xn − 1)2[1 + sin2(2πxn)]}

+
∑n

i=1 u(xi, 10, 100, 4)

30 [-50,50] 0

the algorithm, and the results are shown in Tables 6-7. Where

"Aver." and "Std." is the average value and variance ob-

tained by repeating the algorithm 30 times, respectively. The

parameters set in the BSOS algorithm are shown in Table 5.

In the optimization process, the calculation of the optimal

value is very time-consuming, and the time consumed by

other calculations does not have a decisive impact on the

overall performance of the algorithm. In the comparison

process, we use the same number of iterations to make each

algorithm have the same number of calls to the optimal value

function, thereby ensuring the fairness of each algorithm in

the comparison process.

B. EXPERIMENTAL ANALYSIS

In order to more intuitively reflect the performance of BSOS

based on various transfer functions, we summarize Table

9 through Tables 6-7, where ′Winner′ represents the best

transfer function based on a certain test function. We can

clearly see that among the S-type transfer functions, the

relative performance of the S1 transfer function is better than

other S-type functions, and the V3 transfer function performs

better than other V-type functions.

In order to more clearly see the convergence process of

the ASBSOS and IBSOS algorithms under different trans-

fer functions, we have given Figures 4-5. We can clearly

see that the IBSOS algorithm has a stronger convergence

6 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3045043, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 5: The parameter values of BSOS.

parameter value Meaning

iterMax 500 Population evolution iterations
ps 50 Population size

Renumber 30 Repeat the number of experiments

TABLE 6: The mean and variance of the ASBSOS algorithm and IBSOS algorithm run 30 times under the f1-f7 benchmark

function.

Function f1 f2 f3 f4 f5 f6 f7

ASBSOS_S2
Aver. 6.033333333 6.266666667 332.9666667 1 0 19.9 76.56347656
Std. 0.718395402 0.691491807 82.67947389 0 0 1.693802089 11.81378699

ASBSOS_S3
Aver. 5.233333333 5.466666667 232.2666667 1 0 18.03333333 65.76540921
Std. 0.858359837 0.730296743 80.36165381 0 0 1.655363974 8.94E+00

ASBSOS_S4
Aver. 4.933333333 4.9 182.0666667 1 0 17.3 52.74106224
Std. 0.583292281 0.844862772 64.83662935 0 0 1.214850636 11.26997601

ASBSOS_S5
Aver. 4.833333333 4.866666667 194.2333333 1 0 16.76666667 54.25444364
Std. 0.647719252 0.628810225 60.77526909 0 0 1.337350271 9.469125989

IBSOS_S1
Aver. 0 0 0 0.182574186 0 0 0.014764461
Std. 0 0 0 0.966666667 0 7.5 0.014451011

IBSOS_S2
Aver. 0.413840993 0.449776445 6.173357662 0 0 0.980265036 3.689960218
Std. 0.966666667 1.066666667 5.6 1 0 9.433333333 6.004836588

IBSOS_S3
Aver. 0.371390676 0.571346464 4.250219737 0 0 0.8051558 4.028806751
Std. 1 1.133333333 6.933333333 1 0 9.3 7.600074204

IBSOS_S4
Aver. 0.490132518 0.52083046 6.905270351 0 0 0.909717652 3.21438807
Std. 1.033333333 1.066666667 7.8 1 0 9.5 6.017740252

IBSOS_S5
Aver. 0.490132518 0.413840993 6.504110106 0 0 1.04166092 3.851690809
Std. 0.966666667 1.033333333 7.2 1 0 9.633333333 7.529215078

IBSOS_V1
Aver. 0.4660916 0.449776445 1.932480985 0 0 0.932183199 1.382312186
Std. 0.3 0.266666667 1.3 1 0 8.1 1.166820522

IBSOS_V2
Aver. 0.406838102 0.379049022 1.07425462 0 0 0.691491807 0.728216062
Std. 0.2 0.166666667 0.533333333 1 0 7.766666667 0.934840475

IBSOS_V3
Aver. 0 0 0 0.253708132 0 0 0.016430568
Std. 0 0 0 0.066666667 29 7.5 0.015662488

IBSOS_V4
Aver. 0.449776445 0.305128577 0.379049022 0 0 0.813676204 1.400961368
Std. 0.266666667 0.1 0.166666667 1 0 7.9 1.010274961

TABLE 7: The mean and variance of the ASBSOS algorithm and IBSOS algorithm run 30 times under the f8-f13 benchmark

function.

Function f8 f9 f10 f11 f12 f13

ASBSOS_S2 Aver. -25.24412954 6.3 1.739579026 0.201875788 2.645919146 1.35E-32
Std. 1.08E-14 0.749712589 0.098759326 0.019329458 1.47E-01 5.57E-48

ASBSOS_S3 Aver. -25.24412954 5.2 1.614150028 0.173936402 2.52025544 1.35E-32
Std. 1.08E-14 0.71438423 0.098072064 0.02190067 1.18E-01 5.57E-48

ASBSOS_S4 Aver. -25.24412954 4.833333333 1.51938329 0.145157309 2.465932067 1.35E-32
Std. 1.08E-14 0.791477594 0.150045427 0.024205425 1.03E-01 5.57E-48

ASBSOS_S5 Aver. -25.24412954 4.8 1.539086766 0.147693628 2.390446577 1.35E-32
Std. 1.08E-14 0.71438423 0.102745763 0.02832289 0.118356171 5.57E-48

IBSOS_S1 Aver. 1.08E-14 0 0 0 1.13E-15 5.57E-48
Std. -25.24412954 0 8.88E-16 0 1.668971097 1.35E-32

IBSOS_S2 Aver. 1.08E-14 0.4025779 0.236930983 0.010319943 0.047113022 5.57E-48
Std. -25.24412954 0.9 0.664708993 0.02521479 1.821687407 1.35E-32

IBSOS_S3 Aver. 1.08E-14 0.449776445 0.252234199 0.013106762 0.06592209 5.57E-48
Std. -25.24412954 0.933333333 0.684006181 0.029291927 1.806415776 1.35E-32

IBSOS_S4 Aver. 1.08E-14 0.480660465 0.288197134 0.012227909 0.07102779 5.57E-48
Std. -25.24412954 1.1 0.669750634 0.029660133 1.783071997 1.35E-32

IBSOS_S5 Aver. 1.08E-14 0.484234198 0.265868834 0.014550755 0.084164042 5.57E-48
Std. -25.24412954 1.2 0.640804852 0.029531511 1.796598299 1.35E-32

IBSOS_V1 Aver. 1.08E-14 0.490132518 0.247942764 0.009621601 0.032537062 5.57E-48
Std. -25.24412954 0.366666667 0.095616564 0.008768877 1.682715565 1.35E-32

IBSOS_V2 Aver. 1.08E-14 0.449776445 0.130928372 0.007979154 0.047117725 5.57E-48
Std. -25.24412954 0.266666667 0.023904141 0.004722658 1.691005879 1.35E-32

IBSOS_V3 Aver. 1.08E-14 0 0 0 1.13E-15 5.57E-48
Std. -25.24412954 0 8.88E-16 0 1.668971097 1.35E-32

IBSOS_V4 Aver. 1.08E-14 0.379049022 0.271825237 0.007130108 0.029926327 5.57E-48
Std. -25.24412954 0.166666667 0.119520705 0.003498499 1.677479577 1.35E-32
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Algorithm 2 Shows the Pseudo Code of BSOS Algorithm.

1: Set the size of the biological population to ps, the max-

imum number of iterations to iterMax, and the current

iteration Iter number is 1, the fitness function is f (x),

and the transfer function is g (x).

2: //initialization
3: for i=1:ps do

4: /*D is the dimension of the space in which the living

beings are located.*/

5: for i=1:D do

6: if rand>1 then

7: Xi,j=1;

8: else

9: Xi,j=0;

10: end if

11: end for

12: end for

13: F = f(X);
14: [Gbest,Gfit] = min(F);
15: //MainLoop

16: for currentIter = 1 : iterMax do

17: for i = 1 : ps do

18: /* Mutualism*/

19: Randomly select a creature Xj to interact with

Xi for Mutualism stage by 5 and eqs.12-20.

20: /* Commensalism*/

21: Randomly select a creature Xj to interact with

Xi for Commensalism stage by eq 6, 14, 16 and 17.

22: /* Parasitism*/

23: Randomly select a creature Xj to interact with

Xi for Parasitism stage by eqs.18 - 20.

24: end for

25: Calculate the current global optimal creature Gbest
and its optimal value Gfit.

26: end for

Ensure: The global optimum Gbest, global best fitness

value Gfit.

performance than the ASBSOS algorithm, and the ASBSOS

algorithm has the shortcomings of being extremely premature

and easily falling into the local optimum. Compared with the

two algorithms as a whole, the IBSOS algorithm makes better

use of the continuous SOS algorithm with good performance.

In the nine transfer functions used in the IBSOS algorithm in

this paper, we can draw the following conclusions through

the experimental results and the convergence process of the

algorithm in the global optimization: the S1 and V3 transfer

functions are compared to other transfer functions In terms

of achieving good global optimization and convergence per-

formance.

From the above table, it is shown that the BSOS algorithm

based on S1, V3 and V4 transfer functions obtains better

convergence and optimization capabilities.

V. APPLICATION FOR FEATURE SELECTION

The reason for our feature selection is to deal with the

dimensional disaster. The so-called dimensional disaster is

that when the feature dimension exceeds a certain limit, the

performance of the classifier decreases with the increase of

the feature dimension (and the higher the dimension, the

greater the cost of training the model). The reason for the

decline of the classifier is usually because these high-latitude

features contain irrelevant and redundant features, so the

main purpose of feature selection is to remove the irrelevant

and redundant features. In this paper, we use the wrapper

method to implement feature selection to verify our proposed

algorithm.

A. TEST DATA SET DESCRIPTION

In this article, we used ten data test sets from the UCI

database in machine learning. These datasets have different

attributes and examples. The specific contents are shown in

Table 8.

B. EXPERIMENTAL SIMULATION

Feature selection is to identify useful features and useless fea-

tures from the original data set. In the simulation experiment

of feature selection through the Binary SOS algorithm, we

mark the useful features as 1 and the useless features as 0.

1) k-Nearest Neighbor(KNN)

K Nearest Neighbor (KNN) is one of the relatively simple

classification algorithms that are popular among researchers.

The algorithm is to divide a sample data into k most similar

samples in the sample space, most samples belong to a certain

category, we think that the entire sample also belongs to this

category. Although KNN relies on the limit theorem (based

on the classification of one or more samples in the classifica-

tion decision) to make decisions, it is only relevant to a very

small number of adjacent samples. The KNN method is more

suitable for the division or overlap of the sample set because

the KNN classification method is based on a small number of

adjacent samples in the periphery, rather than by dividing the

category area.

In KNN, the dissimilarity index between each sample is

the distance between samples. This index is to avoid the prob-

lem of matching between samples. As shown in eqs.21-22,

the distance we solve generally uses two methods: Euclidean

distance or Manhattan distance.

d(x,y) =

√

√

√

√

k
∑

i=1

(xi − yi)2, (21)

d(x,y) =

√

√

√

√

k
∑

i=1

|xi − yi|, (22)
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FIGURE 4: Comparison of the convergence process of ASBSOS and IBSOS based on the f1-f8 test function.
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FIGURE 5: Comparison of the convergence process of ASBSOS and IBSOS based on the f9-f13 test function.

Where x = {x1, x2, ..., xk} represents training data, y =
{y1, y2, ..., yk} represents test data, and k represents the

number of features contained in the original data.

2) K-fold cross validation

In machine learning, we usually divide the data into a training

set and a test set. The K-Fold cross-validation method is to

divide the data into K groups, of which the training set used

as the model is K − 1 group, and the remaining one is used

as the test set for model evaluation. K-Fold cross-validation

mainly includes the following steps.

Step 1: The original data is randomly divided into K
groups.

Step 2: One of the K groups is used as the test data set,

and the remaining K − 1 group is used as the training data

set.

Step 3: Repeat Step 2 K times, so that each subset has a

chance to be used as a test set, and the remaining opportuni-

ties are used as a training set.

Step 4: We use the model to test the corresponding test set,

and at the same time calculate and save the evaluation index

value of the model.

Step 5: Calculate the average value of K sets of test results

as the performance index of the model under the current k-

fold cross-validation, and as an index to judge whether the

model is accurate.
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FIGURE 6: Performance comparison of IBSOS and ASBSOS based on 9 test data sets in UCI
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TABLE 8: The details of the testing datasets.

S.no. Datasets Instances Number of classes (k) Number of features (d) Size of classes

1 Ionosphere 351 2 34 126,225
2 Sonar 208 2 60 97,111
3 Vehicle 846 3 18 199,217,218,212
4 CMC 1473 3 9 629,333,511
5 WBC 683 2 9 444,239
6 WDBC 569 2 30 357,212
7 Cancer 683 2 9 444,239
8 Glass 214 6 9 29,76,70,17,13,9
9 Diabetes 768 2 8 268,500
10 Robotnavigation 5456 4 25 82,620,972,205,329
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FIGURE 7: Performance comparison of IBSOS and ASBSOS based on 2 test data sets in UCI

TABLE 9: Comparison results of all transfer functions in the BSOS algorithm.

Fun. Winner

f1 IBSOS_S1, IBSOS_V3

f2 IBSOS_S1, IBSOS_V3

f3 IBSOS_S1, IBSOS_V3

f4 IBSOS_V3

f5
IBSOS_S1, IBSOS_S2, IBSOS_S3, IBSOS_S4,
IBSOS_S5, IBSOS_V1, IBSOS_V2, IBSOS_V4

f6 IBSOS_S1, IBSOS_V3

f7 IBSOS_S1

f8 all
f9 IBSOS_S1, IBSOS_V3

f10 IBSOS_S1, IBSOS_V3

f11 IBSOS_S1, IBSOS_V3

f12 IBSOS_S1, IBSOS_V3

f13 all
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FIGURE 8: Architecture of feature selection based on IB-

SOS.

3) Fitness Functions

In the process of feature selection, it is very important

for the classification of features. We need to calculate the

classification error value and the number of feature subsets

to assess the merits of classification (feature selection). In

the simulation process, we can choose the following fitness

function as the evaluation standard during the operation of

the algorithm.

F = M ×Kfold+N ×
T

C
(23)

Where T represents the number of useful subsets selected

from the original features, C represents the features of the

original data, and Kflod represents the classification error

of K-fold cross validation. M and N are two coefficients,

where the value of M is set to 0.99 and N is set to 0.01 in [7].

The complete system architecture based on IBSOS feature

selection is shown in FIGURE 8.

C. RESULT ANALYSIS

In the simulation experiment of feature selection, we com-

pare the advantages and disadvantages of the nine BSOS

transfer functions to the performance of the BSOS algorithm

through the ten test datasets of UCI. In the simulation experi-

ment, the average value of the error we obtained by repeating

the operation 10 times is shown in Table 10, and in Table

11 we give the squared difference of each transfer function

repeated 10 times in each test data set. In the KNN simulation

experiment, the parameter value of NumNeighbors is set to

5, and the parameter value of KFold is set to 2 in cross-

validation.

We can see from the above two tables that in the two

test datasets of Ionosphere and Sonar, the V3 type transfer

function has obtained relatively excellent performance. In the

four test datasets of V ehicle, WDBC, Cancer, Diabetes,

the V1 type transfer obtains better performance. In the CMC
and Glass test datasets, the transfer function of the S3

type obtained good convergence ability. The S2 type transfer

function obtains good feature selection capabilities based on

two test datasets, WBC and Robotnavigation. In general,

V1 transfers have obtained better feature selection capabilities

in UCI’s ten test datasets.

Table 6 and Table 7 show the performance differences

in feature selection for ASBSOS and IBSOS algorithms

based on different transfer functions. We can see that the

performance of the proposed IBSOS algorithm is better than

the ASBSOS algorithm for feature selection overall. In Iono-

sphere, Sonar and Robotnavigation three instance test data set

IBSOS_V3 obtained good convergence ability. IBSOS_S1

has a good performance in the test data set of Vehicles.

IBSOS_S4 has the best performance in the CMC and Can-

cer test data sets. The performance of IBSOS_S2 in the test

data set of WBC and Diabetes is the best. IBSOS_V2 has

a better ability to select features in the two test data sets of

WDBC and Glass.

VI. CONCLUSION

In this paper, we use V-type and S-type transfer functions

to improve the performance of the BSOS algorithm and

compare the impact of each transfer function on the BSOS al-

gorithm. These transfer functions have different convergence

capabilities for the BSOS algorithm. Experimental results

show that the transfer function is very important for the per-

formance of the algorithm. In this algorithm, we have given

nine transfer functions to binarize the three stages of the

original continuous SOS algorithm. We use 23 benchmark

functions to verify the performance of the BSOS algorithm

and the difference in the performance of the nine transfer

functions for the BSOS algorithm, and through the machine

learning UCI’s ten test datasets, the performance of the BSOS

algorithm in the practical application of feature selection to

verify the practicality of the algorithm in practice, and further

verify the performance difference of each transfer function

for the BSOS algorithm in the feature selection experiment.

In the experimental results, the V-type transfer function has

shown a relatively good optimization performance in the

BSOS algorithm simulation experiment or feature selection.

In future research, we will further study various optimiza-

tion strategies of swarm intelligence algorithms to apply

to various complex problems in real life. For example, the

surrogate-assisted model cite sun2017surrogate is used to

solve the extremely time-consuming and expensive opti-

mization problem of feature selection. In addition, we will

also work on applying intelligent optimization algorithms to

14 VOLUME 4, 2016
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different scenarios in real life, such as energy supply, routing

plans, and node coverage issues in wireless sensor networks.
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