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IMPROVED BOHR’S PHENOMENON IN QUASI-SUBORDINATION

CLASSES

SAMINATHAN PONNUSAMY, RAMAKRISHNAN VIJAYAKUMAR,
AND KARL-JOACHIM WIRTHS

Abstract. Recently the present authors established refined versions of Bohr’s inequal-
ity in the case of bounded analytic functions. In this article, we state and prove a
generalization of these results in a reformulated “distance form” version and thereby we
extend the refined versions of the Bohr inequality for the class of the quasi-subordinations
which contains both the classes of majorization and subordination as special cases. As
a consequence, we obtain several new results.

1. Introduction and two Main results

Let D = {z ∈ C : |z| < 1} denote the open unit disk, and D = D ∪ ∂D = {z : |z| ≤ 1}.
Then the classical Bohr inequality [8], compiled by Hardy in 1914 from his correspondence
with Bohr, states the following.

Theorem A. If f(z) =
∑∞

n=0 anz
n is analytic in D with values in D, then

(1) Mf (r) :=
∞
∑

n=0

|an| rn ≤ 1 for each r ≤ 1/3

and the constant 1/3 cannot be improved.

Bohr originally proved the inequality (1) only for r ≤ 1/6 and the value 1/3 was
obtained independently by M. Riesz, I. Schur and N. Wiener. Some other proofs of this
inequality (1) were given by Sidon [28] and Tomić [29]. Several extensions of Theorem A
may be obtained from [7–10, 14]. For a detailed account of literature on this topic, we
refer to Abu-Muhanna et al. [2], Defant and Prengel [13], Garcia et al. [17]. See also
recent works from [3,4,6,12,16,18–22] and the references therein. Surprisingly, in a recent
paper, the present authors in [25] refined the Bohr inequality in the following improved
form.

Theorem B. Suppose that f(z) =
∑∞

n=0 anz
n is an analytic function in D, |f(z)| ≤ 1 in

D, f0(z) = f(z)− a0, and ‖f0‖r denotes the quantity defined by

‖f0‖r =
∞
∑

n=1

|an|2r2n.
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Then

(2) |a0|+
∞
∑

n=1

|an|rn +
(

1

1 + |a0|
+

r

1− r

)

‖f0‖r ≤ 1, for every r ≤ 1

2 + |a0|

and the numbers 1
2+|a0|

and 1
1+|a0|

cannot be improved. Moreover,

(3) |a0|2 +
∞
∑

n=1

|an|rn +
(

1

1 + |a0|
+

r

1− r

)

‖f0‖r ≤ 1 for every r ≤ 1

2

and the numbers 1
2
and 1

1+|a0|
cannot be improved.

It is important to point out that 1
3
≤ 1

2+|a0|
≤ 1

2
and 1/3 is achieved when |a0| = 1. In

the case a0 = 0, we have a sharp result in [25, Theorem 2].

Remark 1. If the constant term |a0| in (2) is replaced by |a0|p for 0 < p ≤ 2, then it can
be easily seen from the hypothesis of Theorem B that the sharp inequality

(4) |a0|p +
∞
∑

n=1

|an|rn +
(

1

1 + |a0|
+

r

1− r

)

‖f0‖r ≤ 1 for every r ≤ 1− |a0|p
2− |a0|2 − |a0|p

holds, where

inf
|a0|<1

{

1− |a0|p
2− |a0|2 − |a0|p

}

=
p

2 + p
.

The cases p = 1, 2 obviously lead to (2) and (3), respectively. The inequality (4) follows
from the proof of Theorem B in [25]. Indeed in the proof of [25, Theorem 1], we just need
to consider

Ψp(r) = |a0|p +
r

1− r

(

1− |a0|2
)

and observe that Ψp(r) ≤ 1 if and only if

r ≤ ϕ(x) =
1− xp

2− x2 − xp
, x = |a0| ∈ [0, 1).

Moreover, for 0 < p ≤ 2, it is a simple exercise to see that

ϕ′(x) =
xp−1A(x)

(2− x2 − xp)2
, A(x) = −p− (2− p)x2 + 2x2−p.

Because A′(x) = 2(2 − p)x1−p(1 − xp) ≥ 0 for 0 < p ≤ 2 and x ∈ [0, 1], it follows that
A(x) ≤ A(1) = 0 and thus, ϕ is decreasing on [0, 1). This gives

ϕ(x) ≥ lim
x→1−

ϕ(x) =
p

2 + p
.

For the sharpness of the radius in question in (4), we consider the function f = ϕa given
by

ϕa(z) =
a− z

1− az
= a− (1− a2)

∞
∑

k=1

ak−1zk, z ∈ D,

where a ∈ (0, 1). For this function as in [25], it follows that

−a + ap +Mϕa
(r) +

(

1

1 + a
+

r

1− r

)

‖ϕa − a‖r = 1− a+ ap +
(1− a)[(2 + a)r − 1]

1− r
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which is bigger than 1 if and only if

r ≤ ϕ(a) =
1− ap

2− a2 − ap
, a ∈ [0, 1),

and allowing a → 1− one also gets the value p/(2 + p), independent of a.

Our main concern in this article is to deal with few other related questions about the
Bohr inequality. For example, it is well-known that the Bohr radius 1/3 continues to hold
in Theorem A even if the assumption on f is replaced by the condition Re f(z) < 1 in
D and a0 = f(0) ∈ [0, 1). In fact, this condition implies that (see [15, Carathéodory’s
Lemma, p.41]) |an| ≤ 2(1 − a0) for all n ≥ 1 and thus, we have the following sharp
inequality as observed in [24]

Mf (r) = a0 +

∞
∑

n=1

|an| rn ≤ a0 + 2(1− a0)
r

1− r
≤ 1 for each r ≤ 1/3.

Therefore a natural question is to look for the analog of the refined version of it in the
settings of Theorem B. We answer this question in the following statement whose proof
will be given in Section 2.

Theorem 1. Let f(z) be an analytic function in D such that f(z) =
∑∞

n=0 anz
n, a0 ∈

(0, 1), and Re f(z) < 1 in D. Then
∞
∑

n=0

|an|rn +
(

1

1 + a0
+

r

1− r

) ∞
∑

n=1

|an|2r2n ≤ 1

holds for all r ≤ r∗, where r∗ ≈ 0.24683 is the unique root of the equation 3r3−5r2−3r+
1 = 0 in the interval (0, 1). Moreover, for any a0 ∈ (0, 1) there exists a uniquely defined
r0 = r0(a0) ∈

(

r∗,
1
3

)

such that

∞
∑

n=0

|an|rn +
(

1

1 + a0
+

r

1− r

) ∞
∑

n=1

|an|2r2n ≤ 1

for r ∈ [0, r0]. The radius r0 = r0(a0) can be calculated as the solution of the equation

(5) Φ(λ, r) = 4r3λ2 − (7r3 + 3r2 − 3r + 1)λ+ 6r3 − 2r2 − 6r + 2 = 0,

where λ = 1− a0. The result is sharp.

In Section 2, we generalize Theorem B for a general class of quasi-subordinations which
contains both subordination and majorization. Furthermore, we present few other impor-
tant consequences including the proof of Theorem 1. In Section 3, we introduce Bohr’s
phenomenon in a refined formulation in a more general family of subordinations.

2. Quasi-subordination and the proof of Theorem 1

For any two analytic functions f and g in D, we say that the function f is quasi-
subordinate to g (relative to Φ), denoted by f(z) ≺q g(z) (relative to Φ) in D, if there
exist two functions Φ and ω, analytic in D, satisfying ω(0) = 0, |Φ(z)| ≤ 1 and |ω(z)| ≤ 1
for |z| < 1 such that

(6) f(z) = Φ(z)g(ω(z)).
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The case f is quasi-subordinate to g (relative to Φ ≡ 1) corresponds to subordination.
That is f(z) ≺q g(z) (relative to Φ ≡ 1) in D is equivalent to saying that f(z) ≺ g(z),
the usual subordination. Similarly, the case ω(z) = z gives majorization, i.e. (6) reduces
to the form f(z) = Φ(z)g(z). Thus, the notion of quasi-subordination includes both the
concept of subordination and the principle of majorization. See [23,26,27] and the recent
paper [4] in connection with Bohr’s radius.

2.1. Bohr’s phenomenon for the class of quasi-subordinations. For the proof of
Theorem 1, we need some preparation.

Lemma 1. Let f(z) and g(z) be two analytic functions in D with the Taylor series expan-
sions f(z) =

∑∞
n=0 anz

n and g(z) =
∑∞

n=0 bnz
n for z ∈ D. Suppose that f0(z) = f(z)−a0,

g0(z) = g(z) − a0 and ‖f0‖r is defined as in Theorem B. If f(z) ≺q g(z) (relative to Φ)
then

∞
∑

n=0

|an|rn +
(

1

1 + |a0|
+

r

1− r

)

‖f0‖r ≤

∞
∑

n=0

|bn|rn +
(

1

1 + |b0Φ0|
+

r

1− r

)

(|b0|2(1− |Φ0|2) + ‖g0‖r)

holds for all r ≤ 1/3, where a0 = Φ0b0 with Φ0 = Φ(0).

Proof. We remark that this theorem was proved in [4] without the second term on both
sides of the last inequality. Suppose that f ≺q g. Then there exist two analytic functions
Φ and ω satisfying ω(0) = 0, |ω(z)| ≤ 1 and |Φ(z)| ≤ 1 for all z ∈ D such that

(7) f(z) = Φ(z)g(ω(z)).

Setting z = 0 in (7) gives that a0 = Φ0b0. According to [4, Theorem 2.1], we obtain that

(8) Mf (r) =

∞
∑

n=0

|an|rn ≤ Mg(r) =

∞
∑

n=0

|bn|rn for r ≤ 1/3.

Finally, by (7), it follows that

|f(z)|2 ≤ |g(ω(z))|2 for z ∈ D

and thus, as in the proof of Rogosinski’s Theorem [27], we can easily obtain that

(9) ‖f‖r =
∞
∑

n=0

|an|2r2n ≤ ‖g‖r =
∞
∑

n=0

|bn|2r2n for all r ∈ [0, 1)

and therefore, since a0 = Φ0b0, we have

(10) ‖f0‖r ≤ |b0|2(1− |Φ0|2) + ‖g0‖r for all r ∈ [0, 1).

The desired inequality follows from (8), (9) and (10). �

The following result is regarded as a generalization of Theorem B and can be used to
cover many situations. Because of its independent interest, we state it here.
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Lemma 2. Let f(z) and g(z) be two analytic functions in D with the Taylor series ex-
pansions f(z) =

∑∞
n=0 anz

n and g(z) =
∑∞

n=0 bnz
n for z ∈ D. If f(z) ≺ g(z) then

∞
∑

n=0

|an|rn+
(

1

1 + |a0|
+

r

1− r

) ∞
∑

n=1

|an|2r2n ≤
∞
∑

n=0

|bn|rn+
(

1

1 + |a0|
+

r

1− r

) ∞
∑

n=1

|bn|2r2n

holds for all r ≤ 1/3.

Proof. Set Φ(z) ≡ 1. Then Φ0 = 1 and a0 = b0. �

Problem 1. Determine sharp radii in Lemmas 1 and 2.

2.2. Proof of Theorem 1. Since Re f(z) < 1, we may write the given condition as

f(z) ≺ g(z), g(z) = a0 − 2(1− a0)
z

1− z
= a0 − 2(1− a0)

∞
∑

n=0

zn.

Here g(z) is a univalent mapping of D onto the left half-plane {w : Re (w) < 1}. According
to Lemma 2, with g(z) =

∑∞
n=0 bnz

n, it suffices to show that

Sg(r) :=
∞
∑

n=0

|bn|rn +
(

1

1 + |b0|
+

r

1− r

) ∞
∑

n=1

|bn|2r2n ≤ 1 for every r ≤ r∗ ,

where r∗ is as in the statement. For convenience, we let 1 − a0 = λ so that a0 = 1 − λ
and bn = −2λ for n ≥ 1. This gives for λ ∈ [0, 1] and r ∈ (0, 1) that

Sg(r) = 1− λ+ 2λ

∞
∑

n=1

rn +

(

1

2− λ
+

r

1− r

)

4λ2

∞
∑

n=1

r2n

= 1− λ

[

1− 2r

1− r
−
(

1 + r − λr

(2− λ)(1− r)

)

4λr2

1− r2

]

= 1− λ

[

1− 3r

1− r
− 4λr2 + 4λr3 − 4λ2r3

(2− λ)(1− r)(1− r2)

]

= 1− λ

[

1− 3r

1− r
− 4λr2{1 + (1− λ)r}

(2− λ)(1− r)(1− r2)

]

= 1− λ

[

Φ(λ, r)

(2− λ)(1− r)(1− r2)

]

,

which shows that the left hand side is less than or equal to 1 whenever Φ(λ, r) ≥ 0, where

Φ(λ, r) = 4r3λ2 − (7r3 + 3r2 − 3r + 1)λ+ 6r3 − 2r2 − 6r + 2.

Before we continue, we observe from the fourth equality in the above equalities that
Sg(r) > 1 for r > 1/3 and for each λ ∈ (0, 1].

We claim that Φ(λ, r) ≥ 0 for every r ≤ r∗ and for λ ∈ (0, 1]. It follows that

∂2Φ(λ, r)

∂λ2
≥ 0 for every λ ∈ (0, 1]
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and thus, ∂Φ
∂λ

is an increasing function of λ. This gives

∂Φ(λ, r)

∂λ
≤ ∂Φ

∂λ
(1, r) = r3 − 3r2 + 3r − 1 = −(1− r)3,

whence Φ is a decreasing function of λ on (0, 1] so that

Φ(λ, r) ≥ Φ(1, r) = 3r3 − 5r2 − 3r + 1,

which is greater than or equal to 0 for all r ≤ r∗, where r∗ is the unique root of the equation
3r3−5r2−3r+1 = 0, which lies in (0, 1). It is easy to see that Φ(1, r) = 3r3−5r2−3r+1
is an increasing function of r in [0, 1] and using Mathematica or by numerical computation
by Cardano’s formula, one can find that

r∗ =
5

9
− 2

9

√
13 cos

[

1

3
arctan

(

9
√
303

103

)]

+
2

3

√

13

3
sin

[

1

3
arctan

(

9
√
303

103

)]

which is approximatively 0.24683.
Since Φ(0, r) = 2(1 − 3r)(1− r2), we have Φ(0, r) ≥ 0 for r ≤ 1/3 and Φ(0, r) < 0 for

r < 1/3.
Furthermore, Φ(1, r) = 3r3−5r2−3r+1 and Φ′(1, r) = −9r(1− r)− (r+3) < 0 imply

Φ(1, r) ≥ 0 for r ≥ r∗ and Φ(1, r) < 0 for r < r∗. According to the fact that Φ(λ, r) is a
monotonic decreasing function of λ, we see that for any r ∈ (r∗, 1/3) there is a uniquely
defined λ(r) ∈ (0, 1) such that Φ(λ(r), r) = 0.

To prove the last assertion, we have to show that dλ(r)
dr

< 0. Since

dλ(r)

dr
= −

∂Φ(λ(r),r)
∂r

∂Φ(λ(r),r)
∂λ

,

it is sufficient to prove that
∂Φ(λ(r), r)

∂r
< 0

for λ ∈ (0, 1) and r ∈
[

r∗,
1
3

]

, where

∂Φ(λ(r), r)

∂r
= 12r2λ2 − (21r2 + 6r − 3)λ+ 18r2 − 4r − 6

= [12r2λ2 − (21r2 + 6r)λ+ 3λ− 3] + [18r2 − 4r − 3]

= −[12r2λ(1− λ) + 3r(3r + 2)λ+ 3(1− λ)]− [2(1− 9r2) + 4r + 1].

This is clearly negative for the intervals in question. This completes the proof of our
theorem. �

3. Bohr’s phenomenon for a family of subordinations

We now turn to a discussion of Bohr’s phenomenon in a refined formulation in a more
general family of subordinations. Let us first rewrite the refined version of the Bohr
inequality (2) in an equivalent form

∞
∑

n=1

|an|rn +
(

1

2− (1− |f(0)|) +
r

1− r

)

‖f0‖r ≤ 1− |a0| = 1− |f(0)|,
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where ‖f0‖r is defined as in Theorem B. We observe that the number 1 − |f(0)| is the
distance from the point f(0) to the boundary ∂D of the unit disk D and thus, we use this
“distance form” formulation to generalize the concept of the Bohr radius for the class of
functions f analytic in D which take values in a given simply connected domain Ω (see
also [1]).

Now for a given univalent function g, let S(g) = {f : f ≺ g}, Ω = g(D) and dist(c, ∂Ω)
denote the Euclidean distance from a point c ∈ Ω to the boundary ∂Ω. We say that
the family S(g) has a Bohr phenomenon in the refined formulation if there exists an rg,
0 < rg ≤ 1, such that whenever f(z) =

∑∞
n=0 anz

n ∈ S(g), then

(11) Tf(r) :=

∞
∑

n=1

|an|rn +
(

1

2− λ
+

r

1− r

)

‖f0‖r ≤ λ

for |z| = r < rg, and λ = dist(g(0), ∂g(D))≤1. The largest such rg, f ∈ S(g), is called the
Bohr radius in the refined formulation (as described above).

From our earlier two results, we have obtained that Bohr phenomenon in refined formu-
lation exists for the class of bounded analytic functions and also for the case of analytic
functions with real part less than 1 in the unit disk. Hence the distance form allows us
to extend Bohr’s theorem in refined formulation to a variety of distances. We have the
following result which extends Theorem 1 in a natural way. Note that f(0 = g(0) and,
f ≺ g if and only if

f(z)− f(0)

g′(0)
≺ g(z)− g(0)

g′(0)
= z +

1

g′(0)

∞
∑

n=2

g(n)(0)

n!
zn, z ∈ D.

and thus, if needed, it might be convenient to work with normalized superordinate func-
tion.

Theorem 2. Let f(z) =
∑∞

n=0 anz
n and g be analytic in D such that g is univalent and

convex in D. Assume that f ∈ S(g) and λ = dist(g(0), ∂g(D))≤1. Then (11) holds for
all r ≤ r∗, where r∗ ≈ 0.24683 as in Theorem 1. Moreover, for any λ ∈ (0, 1) there exists
a uniquely defined r0 ∈

(

r∗,
1
3

)

such that Tf (r) ≤ λ for r ∈ [0, r0]. The radius r0 is as in
Theorem 1 given by (5).

Proof. Let f ≺ g, where g(z) =
∑∞

n=0 bnz
n is a univalent mapping of D onto a convex

domain Ω = g(D). Then it is well known from the growth estimate for convex functions
and Rogosinksi’s coefficient estimate that (see [11, 27])

1

2
|g′(0)| ≤ λ ≤ |g′(0)|, and |bn| ≤ |g′(0)| for n ≥ 1,

where λ = dist(g(0), ∂Ω). It follows then that |bn| ≤ 2λ for n ≥ 1. Because f ≺ g, it
follows that ‖f0‖r ≤ ‖g0‖r for each 0 ≤ r < 1 and

∞
∑

n=1

|an|rn ≤
∞
∑

n=1

|bn|rn for r ≤ 1

3
.
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Combining these two inequalities, we see that the desired conclusion follows if we can
show the conclusion for Tg(r), i.e.,

Tg(r) =

∞
∑

n=1

|bn|rn +
(

1

2− λ
+

r

1− r

)

‖g0‖r ≤ λ.

Finally, because |bn| ≤ 2λ for n ≥ 1, we have

Tg(r) ≤ 2λ
∞
∑

n=1

rn +

(

1

2− λ
+

r

1− r

)

4λ2
∞
∑

n=1

r2n

= λ− λ

[

Φ(λ, r)

(2− λ)(1− r)(1− r2)

]

,

where Φ(λ, r) is as in the proof of Theorem 1. Thus, Tg(r) ≤ λ holds whenever Φ(λ, r) ≥ 0.
Remaining part of the proof follows from the argument in Theorem 1. The sharpness
follows from a suitable half-plane mapping. �

The idea of this section and Theorem 2 can be applied to many other situations. An-
other instance of this is when g is just univalent in D (compare with [1] where it is shown
that the sharp radius without the consideration of second term in the expression Tf (r) in

(11) turns out to be 3− 2
√
2 ≈ 0.17157).

Theorem 3. Let g be an analytic and univalent function in D, f ∈ S(g) and f(z) =
∑∞

n=0 anz
n. Then the inequality

∞
∑

n=1

|an|rn +
(

1

2− λ
+

r

1− r

)

‖f0‖r ≤ λ

holds for |z| = r < rg, where λ = dist(g(0), ∂g(D)) < 1 and rg ≈ 0.128445 is the unique
root of the equation

(1− 6r + r2)(1− r)2(1 + r)3 − 16r2(1 + r2) = 0

in the interval (0, 1). The sharpness of rg is shown by the Koebe function f(z) = z/(1−z)2.

Proof. Let f ≺ g, where g(z) =
∑∞

n=0 bnz
n is a univalent mapping of D onto a sim-

ply connected domain Ω = g(D). Then it is well known from the Koebe estimate and
Rogosinksi’s coefficient estimate for univalent functions that (see [11, 27])

(12)
1

4
|g′(0)| ≤ λ ≤ |g′(0)|, and |bn| ≤ n|g′(0)| for n ≥ 1,

where λ = dist(g(0), ∂Ω). Also, the first inequality above gives |bn| ≤ 4nλ for n ≥ 1. As
in the proof of Theorem 2, we easily have

Tg(r) ≤ 4λ

∞
∑

n=1

nrn +

(

1

2− λ
+

r

1− r

)

16λ2
∞
∑

n=1

n2r2n

= λ− λ

[

(1− r)2 − 4r

(1− r)2
−
(

1

2− λ
+

r

1− r

)

16λr2(1 + r2)

(1− r2)3

]

= λ− λ

[

Ψ(λ, r)

(2− λ)(1− r)(1− r2)3

]

,
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where the equality in the above inequality is attained when g(z) equals the Koebe function
z/(1− z)2, and

Ψ(λ, r) = (1− 6r + r2)(2− λ)(1− r)2(1 + r)3 − (1 + r(1− λ))16λr2(1 + r2)

= 16λ2r3(1 + r2)− λ[(1− 6r + r2)(1− r)2(1 + r)3 + 16r2(1 + r)(1 + r2)]

+2(1− 6r + r2)(1− r)2(1 + r)3.

We claim that Ψ(λ, r) ≥ 0 for every r ≤ rg and for λ ∈ (0, 1]. Clearly,

∂2Ψ(λ, r)

∂λ2
≥ 0 for every λ ∈ (0, 1]

which implies that

∂Ψ(λ, r)

∂λ
≤ ∂Ψ

∂λ
(1, r)

= −(1− r)[16r2(1 + r2) + (1− 6r + r2)(1− r)(1 + r)3]

= −(1− r)[1− 4r + 5r2 + 27r4 + 4r5 − r6]

= −(1− r)[r5(1− r) + r2 + 27r4 + 3r5 + (2r − 1)2]

from which we obtain that Ψ is an decreasing function of λ on (0, 1) so that

Ψ(λ, r) ≥ Ψ(1, r) = (1− 6r + r2)(1− r)2(1 + r)3 − 16r2(1 + r2)

which is greater than or equal to 0 for all r ≤ rg, where rg is as in the statement. The
sharpness of rg can be easily shown by the Koebe function f(z) = z/(1 − z)2. �
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